煤层气田二氧化碳压裂适应性简介
- 格式:ppt
- 大小:1.75 MB
- 文档页数:45
CO2泡沫压裂技术在煤层气井的应用摘要:根据二氧化碳泡沫压裂的特点,系统分析了二氧化碳压裂增产机理,结合沁水盆地煤层地质的实际情况,设计了该区二氧化碳泡沫压裂的煤储层改造增产技术。
二氧化碳泡沫压裂井和常规清水压裂井的压后产气对比表明:二氧化碳泡沫压裂从一定程度上可以提高煤层气井的产气量,具有较好的应用前景。
煤层气是一种非常规天然气资源,煤层气储层于天然气储层相比具有很大的差异,为了提高煤层气储层的导流能力,研究人员对煤层气井进行了多方面的研究实验,大部分是将油井上用过的压裂技术直接搬到煤层气井上实验,目前,大多采用活性水作为压裂液进行煤层气储层改造,而且取得了一定效果,但产量不尽如人意。
而CO2泡沫压裂液具有防膨、降阻、滤失量低、助排及携砂能力强、返排快、对地层伤害小等多种特性,所以适合低压、低渗、水敏性等复杂煤层的压裂,为了促进煤层气产业的发展,本文以沁水盆地柿庄矿为研究对象,对该矿井内煤层气储层吸附CO2和甲烷气体的差异性进行比较,对CO2泡沫压裂工艺技术进行了研究。
一、沁水盆地CO2泡沫压裂增产机理沁水盆地位于山西省东南部,岩石力学性质处于中等强度。
沉积层有前寒武系、寒武系,加里东运动本区隆起,盆地含煤地层主要是石炭统太原组和下二叠统山西组,煤种以变质烟煤和无烟煤为主,煤层埋深适中(300-1000米),含气量高(19-26m3/t)具备良好的煤层气资源条件。
1.1煤层气储层对二氧化碳气体和甲烷吸附差异性影响煤层吸附气体能力的主要因素是:压力、温度、气体运动的剧烈程度。
相同状况下,甲烷气体比CO2气体分子运动更剧烈,因此CO2气体更容易被吸附。
为了了解沁水盆地煤储层对CO2和甲烷吸附性的差异性,根据沁水盆地煤样实验结果表明:在较低压力时,煤层优先吸附CO2,当压力较高时,煤层对CO2气体被有选择性地吸附。
1.2CO2泡沫压裂压裂增产机理CO2泡沫压裂有液体CO2与清水混注增能的储层改造,有纯CO2液体作为介质进行的储层改造,本文主要分析前者。
煤层气压裂技术及应用书煤层气是指埋藏在煤层中的天然气,是一种重要的清洁能源资源。
为了提高煤层气的采收率,保证煤层气井的稳产和有效开发,煤层气压裂技术应运而生。
本文将介绍煤层气压裂技术的原理、方法以及在实际应用中的关键问题。
煤层气压裂技术是指通过注入压裂液体,使其在含煤岩石中断裂,从而创造裂隙,增加天然气的流通面积和渗透率,提高煤层气的开采效果。
煤层气压裂技术主要包括水力压裂和气体压裂两种方法。
水力压裂是指通过注水泵将高压水注入煤层,增加煤层内的压力,使煤层裂开,从而促进煤层气与井筒的连接,提高煤层气的产量。
水力压裂的关键是选择合适的压裂液体,通常采用高浓度的水溶液和添加剂混合物,增加液体的黏度和稠度,提高水力压裂的效果。
水力压裂技术是煤层气开发中最常用的方法之一,广泛应用于大规模煤层气田的开发。
气体压裂是指通过注入压裂气体,利用气体的高压力将煤层断裂,创造裂隙,提高煤层气的渗透能力。
气体压裂主要包括液体氮压裂和临界点压裂两种方法。
液体氮压裂是指将低温液氮注入煤层中,通过氮气蒸发和煤层内部断裂,产生大量的裂隙和缝隙。
临界点压裂是指将临界点气体注入煤层,使煤层内的气体超过临界压力,从而引发煤层断裂,增加煤层气的产量。
气体压裂技术常用于较小规模的煤层气田开发中。
在煤层气压裂技术的应用中,存在一些关键问题需要解决。
首先是选井技术问题,包括选择合适的井位和井筒结构,以及合理布置井网,以提高压裂效果和采收率。
其次是压裂液体选择问题,包括选择适合的水质和添加剂,以及控制压裂液体的黏度和浓度,以提高煤层裂缝的渗透性和扩展性。
再次是压裂设计和施工问题,包括合理选择压裂参数,制定压裂方案,以及确保压裂工序的顺利进行。
最后是压裂后的油气开采问题,包括监测开采效果,调整开采方案,以及保证煤层气井稳定产量和长期运行。
总结起来,煤层气压裂技术是一种重要的煤层气开发方法,可以有效提高煤层气的产量和采收率。
通过水力压裂和气体压裂等方法,在煤层中创造裂隙和缝隙,增加煤层气的流通面积和渗透率。
煤层气高能气体压裂技术简介目录1.前言 (1)2.煤层气高能气体压裂原理 (2)3.煤层气多级脉冲加载压裂技术 (10)4.工艺设计研究 (11)5. 现场试验 (12)6.技术服务费(基本费用) (13)1.前言我国是世界上煤炭生产和消费大国,煤层气资源储量非常丰富。
但煤气层为低渗透率、低压力、低含水饱和度,富含煤层气的煤田大都具有构造复杂、煤体破坏严重、软煤发育、高塑性和煤层渗透率极低等特点,开发难度较大。
目前提高煤层渗透率主要有洞穴法和水力压裂法,主要包括:垂直井套管射孔完井、清水加砂压裂、活性水加砂压裂、洞穴完井等工艺;应用空气钻井,氮气泡沫压裂,清洁压裂液、胶加砂压裂,注入二氧化碳,以及欠平衡钻井、欠平衡水平钻井和多分支水平井钻井完井技术等技术[1-5],以提高煤层气井产量和采收率,积累了很多经验。
但从煤层气改造看,至目前还缺少适合我国煤层气有效开发的较成熟的技术。
针对煤气层的地质特点及开发现状,在分析了高能气体压裂技术研究的基础上,提出并开展了煤层气多级脉冲加载压裂开发技术的试验研究与应用。
高能气体压裂技术是利用固态、液态火药或推进剂在油层目的层快速燃烧产生的大量高温高压气体,对地层脉冲加载压裂,使地层产生并形成多裂缝体系,同时产生较强的脉冲震荡作用地层基质,综合改善和提高地层渗透导流能力,扩大有效采油(气)范围,以达到提高产量的目的。
其特点是:能在地层产生不受地应力约束的多裂缝体系,有利于沟通天然裂缝,扩大泄流面积,同时产生较强的脉冲震荡传播作用有利于改变地层岩性基质微错动变化,沟通基质通道,延伸地层深处,提高了地层渗透性,提高了油气井产量。
目前主要应用油层改造,而且对地层无污染,有利于储层保护。
与常规水力加砂压裂相比,高能气体压裂能够减小对煤储层造成水敏性污染,而且裂缝的延伸方向不受地应力控制、可形成多裂缝体系,成本也低,不伤害煤层。
因此,此项研究对探索适合我国煤层气有效开发的新技术具有重要的现实意义和应用前景。
CO2干法压裂据了解,二氧化碳压裂技术源于北美,是一种采用液态二氧化碳作为压裂液来代替水的技术,主要针对煤层气、水敏性储层、含原油较稠储层、低压储层的油气开发而设计。
液态二氧化碳在汽化后,无水相,无残渣,仅有支撑剂留在地层,不会对储层造成伤害,可实现快速排液投产;此外,二氧化碳具备比甲烷更强的吸附力,可置换出吸附于母岩的甲烷,从而提高天然气或煤层气的产量,并实现部分二氧化碳的永久埋存。
与常规水基压裂相比,二氧化碳干法压裂对地层几乎无伤害,具有良好的增产增能作用,大量节约了水资源,达到了节能减排、绿色环保的施工要求,对于非常规油气储层清洁、高效开发意义深远,具有广阔的应用前景。
一、工艺技术原理1、增产机理强水敏/水锁伤害储层由于水基压裂液的滤失而导致较大的储层渗透率损害,影响压裂作业的增产效果。
低压、低渗透气藏普遍具有较强的水锁伤害。
CO2干法加砂压裂能够较大幅度的提高强水敏/水锁伤害储层的压后产量,主要体现在:①压裂液具有极低的界面张力,受热汽化后能够从储层中完全、迅速返出;②压裂液无残渣,对支撑裂缝导流床具有较好的清洁作用,保持了较高裂缝导流能力和较长的有效裂缝长度;③CO2在地层原油中具有较高的溶解度,能够降低地层原油黏度,改善原油流动性;④超临界CO2具有极低的界面张力,理论上,对非常规天然气储层中吸附气的解析具有促进作用。
2、技术优点CO2干法加砂压裂具有诸多优点,主要体现在较小的储层渗透率伤害,较高的支撑裂缝导流能力保留系数,较快的压后返排速度和对吸附性天然气的解析等方面。
对于提高水敏/水锁伤害严重储层和吸附性天然气储层(页岩气、煤层气等)产能具有明显技术优势,是一项非常有前景的增产改造技术。
CO2干法压裂总结起来有以下优点:1)无水相,不会对储层造成水敏水锁伤害;2)无残渣,不会对储层和支撑裂缝渗透率造成残渣伤害;3)具有很好的增能作用,在压力释放后,二氧碳气体膨胀,可实现迅速返排,有低压气井的压后快速排液投产;4)CO2流动性强,可以流入储集层中的微裂缝,更好地沟通储集层;5)CO2溶于原油可以降低原油的黏度,利于原油的开采;6)CO2能够置换吸附于煤岩与页岩中的甲烷,在提高单井产量的同时,还可以实现温室气体的封存。
煤层气井压裂作业导则煤层气(Coalbed Methane, CBM)是一种煤层中储存的天然气,其开发与利用对于能源资源的开发和环境保护具有重要意义。
而煤层气井压裂作业是一种常用的提高煤层气产能的方法。
本文将针对煤层气井压裂作业进行详细介绍,并提供一些操作导则。
一、煤层气井压裂作业概述煤层气井压裂作业是通过注入高压液体使煤层中的裂缝扩展,从而提高煤层气的渗透性和产能。
该方法可以有效地提高煤层气井的产能,改善煤层气的采收率。
二、煤层气井压裂作业的适用条件煤层气井压裂作业适用于以下情况:1. 煤层渗透性较差,煤层气产能低;2. 煤层厚度较大,有足够的压裂空间;3. 煤层中存在一定的天然裂缝或孔隙。
三、煤层气井压裂作业的流程1. 压裂前准备:包括地质勘探、井筒设计、井口设备安装等;2. 压裂液设计:根据煤层的特点和井孔条件,选择合适的压裂液配方;3. 压裂液注入:通过压裂泵将压裂液注入煤层,形成裂缝;4. 压裂液回收:回收压裂液并进行处理,以便再次使用或排放;5. 井口设备恢复:将井口设备恢复到正常状态。
四、煤层气井压裂作业的注意事项1. 压裂液选择:应根据煤层的特点选择合适的压裂液配方,避免对煤层和环境造成不良影响;2. 压裂液注入参数控制:应控制好注入压力、注入速度、注入量等参数,避免过度压裂导致煤层破坏;3. 压裂液回收与处理:应采取合适的方法回收压裂液,并进行处理,以避免对环境造成污染;4. 压裂液与煤层相容性:应注意压裂液与煤层的相容性,避免因不相容而影响压裂效果;5. 安全生产:在进行煤层气井压裂作业时,应严格遵守相关的安全操作规程,确保作业安全。
五、煤层气井压裂作业的效果评价1. 压裂效果评价:通过监测煤层气井的产能和压力变化,评价压裂效果;2. 经济效益评价:通过计算投资回收期、产值增加等指标,评价压裂作业的经济效益;3. 环境效益评价:通过监测压裂作业对环境的影响,评价其环境效益。
六、煤层气井压裂作业的发展趋势1. 技术改进:随着科技的不断进步,煤层气井压裂作业的技术将不断改进,提高作业效率和效果;2. 绿色环保:未来的煤层气井压裂作业将更加注重环境保护,采用更环保的压裂液和回收处理技术;3. 自动化控制:煤层气井压裂作业将趋向于自动化控制,提高作业的精度和安全性。
浅谈煤层气压裂技术应用及压裂设备性能摘要:煤层气是煤的伴生矿产资源,其主要成分是甲烷,属于清洁型能源。
在美器材开采阶段,要确保各项工作的规范性,保障煤炭资源的经济效应。
深入分析煤层气压裂技术应用要点,针对压裂所使用的设备性能以及异常问题及时处理,为煤层气的压裂提供良好的技术支持条件。
关键词:煤层气;压裂技术;压裂设备;应用性能引言:煤层气是非常珍惜的资源,做好煤层气的开发与利用,能够治理瓦斯,并改善煤矿安全生产的条件,并补充常规的天然气的缺口,并优化我国的能源资源的结构,能够顺应我国的新能源产业的政策条件。
现如今煤层气的开采,可以对储层进行压裂与改造,完善压裂施工以及配套工艺技术手段。
这样便能更好地完成油气层开采的目标,对此本文结合实践具体分析如下:一、煤层气水力压裂技术的应用原理水力压裂技术,是石油天然气之中成熟应用,能够提升油气生产能力。
现如今水力压裂技术引入煤矿生产阶段,但是煤矿生产有其特殊性,其施工工艺对设备的要求,与一些常规的油气田开发技术有诸多的不同。
深埋地下的煤层承受着上覆岩层的重量,煤层内裂隙承受压力之后,会出现闭合或者半闭合的状态[1]。
煤层的原始透气层不足,水利压力通过高压柱塞泵泵送到高压水流进入井筒之中,水流大于底层虑失速率的排量以及压裂压力,就会让岩石破裂进而出现裂缝,而且在结构之中相互流通,形成一种流通的网络。
在水中加入石英砂作为支撑剂,送进煤层之中被撑开的裂缝之中,这样压裂结束,压裂用水反排之后,实质仍然会留在支撑开的裂缝之中,这样就为煤层瓦斯的流动奠定基础,这样储层与井筒的联通能力进一步提升,这样能加速游离瓦斯的运移,提升瓦斯采抽的效率。
二、煤层气压裂技术应用要点煤层气压裂技术,要明确其机理以及所用的试剂,这是最为基础的环节。
因此要足够的重视这项工作,并结合实际情况选择适合的试剂,这样能够提升煤层气压裂的质量以及工作效率。
分析煤层气的压裂机,明确压裂液与支撑剂合理应用,能有效推进压裂作业。
超临界co2与煤相互作用及其压裂增透机理概述及解释说明1. 引言1.1 概述随着能源需求的不断增长,传统的煤炭资源逐渐变得紧缺,而且使用煤炭作为能源也对环境造成了严重污染。
因此,寻找一种有效和环保的方法来提高煤炭开采效率并减少环境影响是当前能源领域的关键任务之一。
超临界CO2技术便是一种被广泛探索和应用的方法,它利用CO2在超临界状态下的特性来与煤相互作用,并通过压裂增透机理实现对地下储层的有效开采。
1.2 文章结构本文将分为五个主要部分进行讨论和解释。
引言部分将对文章的整体内容进行概述,并介绍CO2与煤相互作用及压裂增透机理这一课题的背景和意义。
其次,在“超临界CO2与煤相互作用”部分,我们将深入探讨超临界CO2及煤的特性以及它们之间的相互作用机制。
随后,在“压裂增透机理”部分,我们将对压裂技术进行概述,并详细介绍CO2压裂增透的原理与实践应用,同时评估其优势和挑战。
在“实验研究及案例分析”部分,我们将介绍相关实验的方法、条件设置以及实验结果的分析和讨论。
最后,在“结论与展望”部分,我们将总结文章的主要发现,并提供后续研究方向和展望。
1.3 目的本文旨在全面概述超临界CO2与煤相互作用及其压裂增透机理这一课题,并解释其原理和应用。
通过对超临界CO2与煤相互作用特性、压裂技术以及相关实验研究的探讨,旨在揭示CO2压裂增透技术的工程应用前景,并为进一步深入开展相关研究提供指导。
通过本文的阐述,读者能够了解到这一领域中近年来取得的重要成果和存在的挑战,提高对超临界CO2技术在能源领域中的认识并促进其更广泛地应用于工程实践中。
2. 超临界CO2与煤相互作用:2.1 超临界CO2的特性:超临界CO2是指当温度和压力接近或超过其临界点时,呈现出介于气态和液态之间的状态。
其主要特性包括高扩散能力、低粘度、可变密度以及溶解性强等。
这些特性使得超临界CO2具有在材料中穿透和溶解的能力。
2.2 煤的组成和结构:煤是一种含碳量较高的化学物质,其主要成分是碳、氢、氧以及少量的硫、氮等元素。
中国煤层气压裂技术应用现状及发展方向一、引言煤层气压裂技术是煤炭开采中的一项重要技术,其应用可以有效地提高煤层的渗透性,增加煤炭的产量,提高开采效率。
本文将就中国煤层气压裂技术的应用现状及发展方向进行探讨。
二、高效增产技术1.水力压裂技术水力压裂技术是一种常用的煤层气压裂技术,其基本原理是通过高压泵将压裂液注入煤层,利用压裂液的流动压力使煤层产生裂缝,再通过支撑剂的填充,提高煤层的渗透性。
在中国,此技术已广泛应用于煤炭开采,并取得了良好的增产效果。
2.气体压裂技术气体压裂技术是一种新型的煤层气压裂技术,其基本原理是通过注入气体(如二氧化碳、氮气等)在煤层中形成高压,从而产生裂缝。
此技术的优点是可以有效降低对地层的伤害,提高采收率。
目前,此技术在中国的应用尚处于试验阶段,但未来有望得到广泛应用。
三、排采技术1.自动排采技术自动排采技术是一种先进的煤层气压裂技术,其基本原理是通过自动化设备进行排采,实现连续、自动的开采。
此技术的优点是可以提高开采效率,降低人工成本。
目前,此技术在中国的应用尚处于探索阶段,但未来有望得到广泛应用。
2.智能排采技术智能排采技术是一种基于物联网技术的煤层气压裂技术,其基本原理是通过传感器对煤层进行实时监测,根据监测数据调整排采参数,实现高效、安全的排采。
此技术的优点是可以提高开采效率,减少人工干预,降低事故发生率。
目前,此技术在中国的应用尚处于起步阶段,但未来有望得到快速发展。
四、发展方向1.高效增产技术的进一步发展随着煤炭开采技术的不断提高,高效增产技术将成为未来煤层气压裂技术的重要发展方向。
对于水力压裂技术,需要进一步研究新型的压裂液和支撑剂,提高压裂效果和采收率;对于气体压裂技术,需要进一步研究气体的注入方式和压力控制,实现更好的裂缝诱导和采收率提高。
2.排采技术的智能化和自动化随着自动化和智能化技术的不断发展,排采技术的智能化和自动化将成为未来煤层气压裂技术的重要发展方向。
超临界二氧化碳压裂
超临界二氧化碳压裂,是一种新型的压裂技术。
它具有对环境的友好性,对裂缝的侵蚀较小,同时能够保证压裂效果的提高。
该技术逐渐被广泛应用于页岩气、煤层气等天然气开采中,为国家能源产业的发展带来新的机遇。
超临界二氧化碳是一种特殊的物质,当其处于临界条件下时,体积小、密度大、温度高,且具有极强的溶解能力。
在压裂作业中,超临界二氧化碳能够穿透岩石裂缝,与其中的油、气等有机物质迅速反应,加速产生压裂效果,从而提高了采收率。
与传统的水力压裂技术相比,超临界二氧化碳压裂具有以下几个优势:首先,这种技术对环境的影响很小,不需要大量用水,不会产生二氧化碳等污染物;其次,压裂液中含有的二氧化碳可以在岩石裂缝中形成气体泡沫,从而进一步增强压裂效果;最后,该技术适用于各种岩石类型,能够满足不同地质条件下的特定需求。
然而,超临界二氧化碳压裂技术的应用还存在一些问题。
例如,压裂液中的二氧化碳可能会泄漏到地表或大气中,对环境产生负面影响;此外,该技术对设备性能和操作要求较高,需要有资深的工程师和技术人才参与。
总的来说,超临界二氧化碳压裂技术是当前天然气开采领域中的一种创新技术。
通过进一步完善技术路线,优化操作流程,在确保安全的前提下,该技术有望持续发展,并为我国的能源产业做出贡献。
CO2流体性质及压裂应用CONTENS CONTENTS一、CO2流体性质二、CO2干法压裂三、CO2泡沫流体结构四、CO2泡沫流体特征1)概述是一种无色、无臭略带酸性的气体,分子量为在标准状况下,CO244.01,非极性分子;不能燃烧,易被液化;CO2具有氧化性:钠、镁、铝燃烧,粉尘爆炸。
二氧化碳在油田上应用于采油,是基于它的临界温度和临界压力低,易于压缩,可以超临界态或液态输送,较其它气体如氮气、甲烷易于膨胀、降粘、萃取石油,从而获得较高的石油采收率,因而得到油田上的广泛应用。
2)相态临界点(31℃,7.38MPa),三相点(-56℃,0.52MPa);液态:常规液态、过冷液态;超临界状态CO2:密度接近液态CO2,可压性增强,扩散性增强7~24倍,粘度降低,溶质有较强的溶解能力,表现出气态物性。
CO2流体性质及压裂应用1 CO2基本流体性质3)密度常温常压下密度约为空气密度的1.53倍;1m3液态CO2=546m3气态CO2;液态、超临界CO2密度大约为常温常压清水的0.9~1.2倍;CO2压裂注入过程中5%体积增加。
1 CO2基本流体性质2 4)粘度CO2粘度在储层环境下约0.03~0.10cP;滤失高、携砂性能差。
CO 2流体性质及压裂应用1 CO 2基本流体性质4)粘度exp(0.45979 3.1613)exp(0.01214 3.32542)0.000910115cr crT PT P 温度升高提升CO 2分子动能,降低分子间作用力的约束,液体流动性增强;压力增强则会降低液体的流动性;温度的影响比压力的要更为明显。
5)溶解性标况下的水中溶解度体积比大约1:1;CO2在水中的溶解度随温度的升高而减小,随压力的增大而增大;CO2在水中的溶解度随矿化度的增大而降低。
5)溶解性高压CO 2饱和水溶液pH大约为3~4;调节酸碱度。
CO 2水溶液pH5)溶解性压力越大对CO2在饱和烷烃中的溶解度提高越明显;CO2在饱和烷烃中溶解度随烃链长的增加而减小;CO2能有效降低表皮系数,减小钻完井对地层井口附近渗透率的影响。
二氧化碳泡沫压裂技术在苏里格气田的应用摘要:苏里格气田地层条件复杂、储层物性差、非均质性较强,水锁伤害严重、地层压力低。
二氧化碳泡沫压裂技术具有入井水冻胶量减少、滤失量小、压裂液体系pH 值较低、降低入井液界面张力、缩短了液体在地层中的滞留时间等特点,能够有效降低压裂液对储层的伤害,因此对苏里格气田具有较强的针对性和适用性。
针对苏里格气田低压、低渗、水锁伤害严重的特点,开展了二氧化碳泡沫压裂技术应用研究及现场试验。
通过对比分析苏里格气田二氧化碳泡沫压裂井和液氮伴注水力压裂邻井的压裂试气及生产情况,分析研究了二氧化碳泡沫压裂技术在苏里格气田的应用情况。
从对比结果来看,二氧化碳泡沫压裂技术能够提高压裂液返排率、缩短排液周期,提高气井生产能力、具有较好的稳产效果,能够有效的改善苏里格气田天然气井改造效果。
关键词:苏里格气田;二氧化碳泡沫压裂;水力压裂;产量目录1苏里格气田储层压裂改造地质特征概况 (3)2二氧化碳泡沫压裂在苏里格气田的适应性 (3)3长庆二氧化碳泡沫压裂研究成果 (2)3.1二氧化碳泡沫压裂设计优化 (2)3.2二氧化碳泡沫压裂液体系研究 (3)4二氧化碳泡沫压裂在苏里格气田的应用情况 (3)5苏里格气田二氧化碳泡沫压裂工艺应用效果 (5)5.1压后液体返排情况分析 (6)5.2压后试气情况分析 (7)5.3压后生产情况分析 (8)5.3.1日产气量对比情况分析 (8)5.3.2单位压降下累计产气量对比情况分析 (10)5.3.3采气指数对比情况分析 (11)5.3.4压后生产情况分析小结 (13)6下一步设想及思路 (13)1苏里格气田储层压裂改造地质特征概况苏里格气田储层物性差,岩心分析结果表明:盒8储层孔隙度为3.0-21.8%,平均8.95%。
渗透率在0.0148-561×10-3μm2之间,平均0.73×10-3μm2,主要分布范围0.1-0.9×10-3μm2。