基因芯片差异表达和聚类分析
- 格式:pdf
- 大小:2.70 MB
- 文档页数:90
基因表达谱芯片的数据分析基因芯片数据分析就是对从基因芯片高密度杂交点阵图中提取的杂交点荧光强度信号进行的定量分析,通过有效数据的筛选和相关基因表达谱的聚类,最终整合杂交点的生物学信息,发现基因的表达谱与功能可能存在的联系。
然而每次实验都产生海量数据,如何解读芯片上成千上万个基因点的杂交信息,将无机的信息数据与有机的生命活动联系起来,阐释生命特征和规律以及基因的功能,是生物信息学研究的重要课题[1]。
基因芯片的数据分析方法从机器学习的角度可分为监督分析和非监督分析,假如分类还没有形成,非监督分析和聚类方法是恰当的分析方法;假如分类已经存在,则监督分析和判别方法就比非监督分析和聚类方法更有效率。
根据研究目的的不同[2,3],我们对基因芯片数据分析方法分类如下。
(1)差异基因表达分析:基因芯片可用于监测基因在不同组织样品中的表达差异,例如在正常细胞和肿瘤细胞中;(2)聚类分析:分析基因或样本之间的相互关系,使用的统计方法主要是聚类分析;(3)判别分析:以某些在不同样品中表达差异显著的基因作为模版,通过判别分析就可建立有效的疾病诊断方法。
1 差异基因表达分析(difference expression, DE)对于使用参照实验设计进行的重复实验,可以对2样本的基因表达数据进行差异基因表达分析,具体方法包括倍数分析、t检验、方差分析等。
1.1倍数变化(fold change, FC)倍数分析是最早应用于基因芯片数据分析的方法[4],该方法是通过对基因芯片的ratio值从大到小排序,ratio 是cy3/cy5的比值,又称R/G值。
一般0.5-2.0范围内的基因不存在显著表达差异,该范围之外则认为基因的表达出现显著改变。
由于实验条件的不同,此阈值范围会根据可信区间应有所调整[5,6]。
处理后得到的信息再根据不同要求以各种形式输出,如柱形图、饼形图、点图等。
该方法的优点是需要的芯片少,节约研究成本;缺点是结论过于简单,很难发现更高层次功能的线索;除了有非常显著的倍数变化的基因外,其它变化小的基因的可靠性就值得怀疑了;这种方法对于预实验或实验初筛是可行的[7]。
基因芯片数据挖掘分析表达差异基因基因芯片(genechip)(又称DNA芯片、生物芯片)的原型是80年代中期提出的。
基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法,在一块基片表面固定了序列已知的靶核苷酸的探针。
当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与基因芯片上对应位置的核酸探针产生互补匹配时,通过确定荧光强度最强的探针位置,获得一组序列完全互补的探针序列。
据此可重组出靶核酸的序列。
目前已有许多数据库,包括NCBI的GEO数据库(/geo/),ArrayExpress数据库(/arrayexpress/),和TCGA数据库(/)等等,记录和储存着大量芯片相关的数据,其中GEO数据库是目前最大最全的数据库,可供科研人员查询和下载相关数据。
下面和大家分享一下基因芯片数据的预处理方法。
1)分析前需要对数据进行背景信号处理:背景处理即过滤芯片杂交信号中属于非特异性的背景噪音部分。
一般以图像处理软件对芯片划格后,每个杂交点周围区域各像素吸光度的平均值作为背景,但此法存在芯片不同区域背景扣减不均匀的缺点。
也可利用芯片最低信号强度的点(代表非特异性的样本与探针结合值)或综合整个芯片非杂交点背景所得的平均吸光值做为背景。
其中,各字母的意义如下:N:条件数;G:基因数目(一般情况下,G>>N);行向量mi=(mi1,mi2,…,miN)表示基因i在N个条件下的表达水平(这里指绝对表达水平,亦即荧光强度值);列向量mj=(m1j,m2j,…,mGj)表示在第j个条件下各基因的表达水平(即一张芯片的数据);元素mij表示第基因i在第j个条件下(绝对)基因表达数据。
m可以是R(红色,Cy5,代表样品组)。
也可以是G(绿色,Cy3,代表对照组)。
2)芯片数据清理:经过背景校正后的芯片数据中可能会产生负值,还有一些单个异常大(或小)的峰(谷)信号(随机噪声)。
基因表达数据分析及相关统计算法研究随着生物技术的飞速发展,越来越多的基因表达数据被生成和积累。
这些数据提供了宝贵的信息,可以帮助我们更好地了解基因的功能、调控机制以及与疾病相关的变化。
然而,对于海量的基因表达数据如何进行有效的分析和挖掘,仍然是一个具有挑战性的问题。
本文将介绍基因表达数据分析的基本概念和涉及的相关统计算法的研究进展。
基因表达数据是指在细胞或组织中,基因在特定条件下的转录水平的测量值。
常用的基因表达数据包括基因芯片数据和基因测序数据。
基因芯片技术是最早应用于基因表达数据分析的方法之一,它通过测量RNA分子与特定基因探针的配对情况来反映基因的表达水平。
而基因测序技术则可以提供更详细的基因表达信息,可以测量到具体的转录本和外显子的表达。
基因表达数据的分析涉及的主要任务包括差异表达基因分析、基因表达聚类分析以及功能富集分析等。
差异表达基因分析旨在识别在不同条件下表达水平存在显著差异的基因。
这一任务可以帮助我们理解基因在不同生物过程或疾病状态下的特定功能。
基因表达聚类分析是指将基因或样本根据其表达模式进行分类,寻找共同调控或具有相似表达模式的基因。
功能富集分析则是通过比较差异表达基因集合与已知的功能注释数据库中的基因集合,来发现具有富集功能的基因集合。
为了解决这些基因表达数据分析的问题,研究人员提出了许多统计算法和机器学习方法。
其中最常用的方法之一是差异表达分析中的t检验和方差分析。
t检验可以用于比较两组样本间的表达差异,而方差分析可以用于同时比较多组样本间的表达差异。
除了传统的统计方法,还有基于机器学习的方法,如支持向量机(SVM)和随机森林(Random Forest)等。
这些机器学习算法可以通过构建分类模型来预测基因是否差异表达或进行样本分类。
近年来,随着单细胞测序技术的发展,单细胞基因表达数据的分析也成为了热点研究领域。
单细胞测序可以提供单个细胞的基因表达信息,揭示细胞间的表型差异和功能特化。
基因芯片数据分析中的标准化算法和聚类算法北京大学生命科学院 生物信息专业王向峰 学号:10211058摘要:基因芯片技术已经广泛的应用于各种模式生物的功能基因组的研究中,应用芯片技术可以高效,高通量的检测基因表达行为。
芯片数据分析中的标准化主要分为芯片内标准化和芯片间标准化,芯片内标准化根据目的不同可分为消除染色偏差的Lowess Normalization ,消除点样针头引起的空间差异的Print-tip Normalization 。
常用的芯片间标准化有Quantile Normalization ,Global Normalization 。
芯片数据分析中常见的聚类算法有分层聚类(Hierarchical clustering)、K 均值聚类(K-means clustering)、自组织图谱SOM (self organizing map)、PCA (principle component analysis)等等。
所有的聚类方法归结为有监督的学习和无监督的学习两种方法。
第一部分 基因芯片的数据标准化(Normalization)对基因芯片数据的标准化处理,主要目的是消除由于实验技术所导致的表达量(Intensity)的变化,并且使各个样本(sample)和平行实验的数据处于相同的水平,从而使我们可以得到具有生物学意义的基因表达量的变化。
标准化的方法根据芯片的种类、数据处理的阶段和目的不同而有所差异。
这里主要讨论一下双荧光染色(Red and Green Chip)的cDNA 微列阵(cDNA microarray)的标准化方法。
一、实验数据的预处理(data transformation )的细胞进行培养(Cultured Cell),以保证绝大部分的基因可以表达。
样本基因是根据试验设计的目的从不同组织,不同发育阶段,不同条件下培养的细胞中提取的cDNA 样本。
通过样本基因对参照基因的比值,而判断不同条件下的基因表达量的变化。
性,即个人遗传基因的特点,在药品选用和用量、配伍等方面必须实行个体化治疗,方可提高用药的准确性,减少毒副作用。
中医经常采用同病异治的法则,中医治疗常需因人、因地制宜,方药不尽相同。
基因组学研究表明,由于基因的多态性,即使同一种癌,如同样为乳癌,其临床症状大不相同,治疗方案及用量亦就酌情变化。
中药的化学实体是活性物质群,具有多靶点、多效性的特点,作用的基本形式是调整,而肿瘤是多因素、多阶段形成的,药病相合,能抑制其发生、发展,尤其是在改变机体生癌环境,抗肿瘤复发、转移中可发挥化疗药物不可替代的作用。
其具体表现在,可诱导癌细胞向正常细胞逆转;促进癌细胞凋亡;调节信息传递,抑制肿瘤的生长与发展;可抗多药耐药,从而增加癌细胞对阿霉素、长春花碱、长春新碱等抗癌药物的敏感性;调节生物反应,活化巨噬细胞,促使B细胞产生抗体,调节T细胞亚群,提高NK、L A K细胞的活性,诱导IL-2、IN F,抑杀靶细胞;并可直接攻击、杀伤癌细胞。
针刺介导下基因表达的研究进展吴学飞上海市针灸经络研究所 200030 近年来有关针刺对基因表达的影响几乎完全集中于动物实验方面,主要涉及疼痛、癫痫、老年性痴呆、神经系统再生与修复、免疫系统及内分泌系统等一些疑难及重大疾病,并且研究方向已触及到凋亡、信号转导及神经再生及发育等热门领域,所采用的方法有免疫组化、P CR、原位杂交、点杂交、No rt hem blot.So ut hem blot等分子生物学技术。
应该说所有这些研究都为我们在目前正发生的基因革命时代进一步深入研究经络腧穴及针刺感传和效应打下了良好的基础。
但是在这些研究中仍然存在这一些不可忽视的问题,如在观察结果与结论之间往往缺乏可靠的依据,也就是说在有些研究中还存在如下的模式,A指标在针刺下发生变化而出现效应,B就可以推导出效应,B的出现就是在针刺诱导下,A指标的变化所致;但是,我们应该承认针刺具有广泛的生理调节效应,也许效应B的出现主要是由于针刺介导下C、D或者E等指标发生变化所致,而指标A在针刺下发生变化也许主要与效应F、G或者H等有关。
基因表达数据分析方法及其应用研究共3篇基因表达数据分析方法及其应用研究1随着技术的不断发展,基因表达数据分析在生命科学研究中扮演着越来越重要的角色。
基因表达数据分析是研究基因功能的关键一步,它使得科学家可以了解基因在特定情况下的表达水平。
在本文中,我们将讨论基因表达数据分析的方法及其应用。
1.基因表达数据的来源和类型基因表达数据是通过分析转录组和基因芯片等数据获得的。
转录组技术通过测量RNA浓度,包括RNA-seq和microarray。
而基因芯片就是一种将成千上万的基因测量并呈现的芯片。
基因表达数据存在多种类型,包括原始数据、表达矩阵、差异表达矩阵、注释文件和元数据等等。
2. 基因表达数据分析的方法(1)数据清理数据清理是数据分析过程中的第一步。
它包括数据预处理、去除冗余数据、去除噪声和填补数据空缺等操作。
(2)正则化正则化的目的是调整不同基因表达数据之间的差异,消除数据中的计量误差和探测效率的误差。
几种正则化方法包括平滑、归一化和标准化。
(3)差异分析差异分析是研究基因表达数据中各基因在不同样品之间差异的方法。
常用的差异分析方法包括t-test、ANOVA、FDR和q值等。
(4)聚类分析聚类分析是将数据根据观察指标相似度进行分类的方法。
在基因表达数据上,它通常用于发现不同条件下的基因表达模式。
(5)变异分析变异分析是一种寻找表达值变异的基因的方法。
通常,基因的变异程度与其在癌症和其他疾病中的作用有关。
(6)功能注释功能注释是将基因表达数据与已知基因功能相结合的方法,从而获得数据更深层次的信息。
它通常用于解释基因表达数据的生物学意义,如基因表达数据和肿瘤发展的相关性等。
3.应用研究基因表达数据分析可应用于许多研究领域,包括基因表达和调控、单细胞分析和肿瘤生物学等。
(1)基因表达和调控基因表达数据分析可用于挖掘基因之间的相互关系以及调控通路。
这些信息可以在理解细胞生物学、发育及疾病发生机制的过程中发挥重要作用。
基因芯片数据分析中的标准化算法和聚类算法北京大学生命科学院 生物信息专业王向峰 学号:10211058摘要:基因芯片技术已经广泛的应用于各种模式生物的功能基因组的研究中,应用芯片技术可以高效,高通量的检测基因表达行为。
芯片数据分析中的标准化主要分为芯片内标准化和芯片间标准化,芯片内标准化根据目的不同可分为消除染色偏差的Lowess Normalization ,消除点样针头引起的空间差异的Print-tip Normalization 。
常用的芯片间标准化有Quantile Normalization ,Global Normalization 。
芯片数据分析中常见的聚类算法有分层聚类(Hierarchical clustering)、K 均值聚类(K-means clustering)、自组织图谱SOM (self organizing map)、PCA (principle component analysis)等等。
所有的聚类方法归结为有监督的学习和无监督的学习两种方法。
第一部分 基因芯片的数据标准化(Normalization)对基因芯片数据的标准化处理,主要目的是消除由于实验技术所导致的表达量(Intensity)的变化,并且使各个样本(sample)和平行实验的数据处于相同的水平,从而使我们可以得到具有生物学意义的基因表达量的变化。
标准化的方法根据芯片的种类、数据处理的阶段和目的不同而有所差异。
这里主要讨论一下双荧光染色(Red and Green Chip)的cDNA 微列阵(cDNA microarray)的标准化方法。
一、实验数据的预处理(data transformation )双色cDNA 芯片(two-color cDNA microarray),指对参照基因(reference gene)和样本基 因(sample gene)标上绿色和红色荧光标记。
参照基因的制备主要是提取不同组织的不同时期的细胞进行培养(Cultured Cell),以保证绝大部分的基因可以表达。