(完整版)七年级下数学第3章整式的乘除经典易错题带答案可直接打印2013浙教版新教材
- 格式:doc
- 大小:260.12 KB
- 文档页数:11
第三章:整式的乘除能力提升测试试题答案一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.答案:A 解析:()()()103433223248323y y y y y y y -=-⨯⨯=-⋅-⋅故选择A2.答案:C解析:∵22222,2,2,2b b a a n n mm=∴==∴= ,∴222222222b a n m nm =⨯=+,故选择C3.答案:B解析:∵()b a M ab b a 57152122+-=÷-∴()ab ba b a ab b a ab b a M 35757357152122-=+-+--=+--=故选择:B4.答案:D解析:∵()222223636126y kxy x y xy x y x ++=+±=±∴12±=k ,故选择D5.解析:∴nx 21+=,ny -+=21,∴12-=x n ,112-=y n, ∴11=-x ,∴=x y6,答案:C解析:如果(x +6)x +1=1成立,则x +1=0或x +6=1或﹣1, 即x =﹣1或x =﹣5或x =﹣7, 当x =﹣1时,(x +6)0=1, 当x =﹣5时,1﹣4=1,当x =﹣7时,(﹣1)﹣6=1,故选:C .7.答案:B解析:∵()()517652156521322++=+++=++x x x x x x x ,故选择:B8.答案:D解析:∵()()()()()p x pq x q p x q x qx x p x x 4123434323422+-+-++-+=+-++乘积中不含2x 与3x 项, ∴⎩⎨⎧=-+=-03403q p q 解得:⎩⎨⎧==35q p ,∴835=+=+q p ,故选择D9.答案:D解析:根据题意得:(2a+b )(a+b )=2a 2+2ab+ab+b 2=2a 2+3ab+b 2; ∵A 、B 、C 三类卡片的面积分别为ab 、b 2、a 2 , ∴所以A 、B 、C 三类卡片分别为3张,1张,2张. 故答案为:D.解析:①(–12a 3b –6ab )÷(6ab )=122--a ,故错误;②(–2020)01==(2–103)0,故正确;③()166623=÷=÷---x x x x ,故正确;④0.0000168=1.68×510-,故错误;⑤1)71(--=-7,故正确;⑥5a -2=≠25a251a ,故错误。
浙教新版七年级下学期《第3章整式的乘除》单元测试卷一.选择题(共10小题)1.计算(﹣2b)3的结果是()A.﹣8b3B.8b3C.﹣6b3D.6b32.下列计算中正确的是()A.a6÷a2=a3B.a6•a2=a8C.a9+a=a10D.(﹣a)9=a93.已知:2m=a,2n=b,则22m+2n用a,b可以表示为()A.a2+b3B.2a+3b C.a2b2D.6ab4.下列等式成立的是()A.(﹣1)0=﹣1 B.(﹣1)0=1 C.0﹣1=﹣1 D.0﹣1=15.如果x2+kxy+36y2是完全平方式,则k的值是()A.6 B.6或﹣6 C.12 D.12或﹣126.如图,边长为(m+3)的正方形纸片剪去一个边长为m的正方形之后,余下部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则此长方形的周长是()A.2m+6 B.4m+6 C.4m+12 D.2m+127.计算:=()A.B.C.D.8.若等式(x+6)x+1=1成立,那么满足等式成立的x的值的个数有()A.5个B.4个C.3个D.2个9.将图1中阴影部分的小长方形变换到图2位置,根据两个图形的面积关系可以得到一个关于a,b的恒等式为()A.a2﹣2ab+b2=(a﹣b)2B.a2+2ab+b2=(a+b)2C.2a2+2ab=2a(a+b)D.a2﹣b2=(a+b)(a﹣b)10.若a+b=6,ab=4,则a2+4ab+b2的值为()A.40 B.44 C.48 D.52二.填空题(共10小题)11.已知2a=5,2b=3,求2a+b的值为.12.计算:(4x2y﹣2xy2)÷2xy=.13.已知m+2n+2=0,则2m•4n的值为.14.若(x+p)与(x+5)的乘积中不含x的一次项,则p=.15.一个正方形的边长增加了2cm,它的面积就增加44cm2,这个正方形的边长是:.16.一个三角形的底边长为(2a+6b),高是(3a﹣5b),则这个三角形的面积是.17.已知6x=192,32y=192,则(﹣2017)(x﹣1)(y﹣1)﹣2=.18.我们知道,同底数幂的乘法法则为:a m•a n=a m+n(其中a≠0,m,n为正整数),类似地我们规定关于任意正整数m,n的一种新运算:h(m+n)=h(m)•h(n),请根据这种新运算填空:(1)若h(1)=,则h(2)=;(2)若h(1)=k(k≠0),那么h(n)•h(2017)=(用含n和k的代数式表示,其中n 为正整数)19.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如下图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8;…根据以上规律,解答下列问题:(1)(a+b)4展开式共有项,系数分别为;(2)(a+b)n展开式共有项,系数和为.20.一块长方形铁皮,长为(5a2+4b2)m,宽为6a4m,在它的四个角上都剪去一个长为a3m的小正方形,然后折成一个无盖的盒子,这个无盖盒子的表面积是m2.三.解答题(共6小题)21.计算:3a2b•(﹣a4b2)+(a2b)322.计算:(a+1)2﹣a(a﹣1)23.先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.24.甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x﹣10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣9x+10.请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果.25.乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:;方法2:.(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.;(3)类似的,请你用图1中的三种纸片拼一个图形验证:(a+b)(a+2b)=a2+3ab+2b2(4)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(x﹣2016)2+(x﹣2018)2=34,求(x﹣2017)2的值.26.阅读下面的材料并填空:①(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=②(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=×③(1﹣)(1+)=1﹣,反过来,得1﹣==利用上面的材料中的方法和结论计算下题:(1﹣)(1﹣)(1﹣)……(1﹣)(1﹣)(1﹣)浙教新版七年级下学期《第3章整式的乘除》单元测试卷参考答案与试题解析一.选择题(共10小题)1.A.2\B.3.已知:2m=a,2n=b,则22m+2n用a,b可以表示为()A.a2+b3B.2a+3b C.a2b2D.6ab ∵2m=a,2n=b,∴22m+2n=(2m)2×(2n)2=a2b2.4.故选:B.5.如果x2+kxy+36y2是完全平方式,则k的值是()A.6 B.6或﹣6 C.12 D.12或﹣12【解答】解:∵x2+kxy+36y2是一个完全平方式,∴k=±2×6,即k=±12,故选:D.6.如图,边长为(m+3)的正方形纸片剪去一个边长为m的正方形之后,余下部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则此长方形的周长是()A.2m+6 B.4m+6 C.4m+12 D.2m+12【分析】根据面积的和差,可得长方形的面积,根据长方形的面积公式,可得长方形的长,根据长方形的周长公式,可得答案.【解答】解:由面积的和差,得长方形的面积为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3).由长方形的宽为3,可得长方形的长是(2m+3).长方形的周长是2[(2m+3)+3]=4m+12.故选:C.7.计算:=()A.B.C.D.故选:A.8.若等式(x+6)x+1=1成立,那么满足等式成立的x的值的个数有()A.5个B.4个C.3个D.2个【分析】分情况讨论:当x+1=0时;当x+6=1时,分别讨论求解.还有﹣1的偶次幂都等于1.【解答】解:如果(x+6)x+1=1成立,则x+1=0或x+6=1或﹣1,即x=﹣1或x=﹣5或x=﹣7,当x=﹣1时,(x+6)0=1,当x=﹣5时,1﹣4=1,当x=﹣7时,(﹣1)﹣6=1,故选:C.9.将图1中阴影部分的小长方形变换到图2位置,根据两个图形的面积关系可以得到一个关于a,b的恒等式为()A.a2﹣2ab+b2=(a﹣b)2B.a2+2ab+b2=(a+b)2C.2a2+2ab=2a(a+b)D.a2﹣b2=(a+b)(a﹣b)【分析】分别计算这两个图形阴影部分的面积,根据面积相等即可得到关于a,b的恒等式.【解答】解:第一个图形的阴影部分的面积=a2﹣b2;第二个图形是长方形,则面积=(a+b)(a﹣b).∴a2﹣b2=(a+b)(a﹣b).故选:D.10.若a+b=6,ab=4,则a2+4ab+b2的值为()A.40 B.44 C.48 D.52故选:B.11.已知2a=5,2b=3,求2a+b的值为15.12.计算:(4x2y﹣2xy2)÷2xy=2x﹣y.故答案为:2x﹣y.13.已知m+2n+2=0,则2m•4n的值为.【解答】解:∵m+2n+2=0,∴m+2n=﹣2,∴2m•4n=2m•22n=2m+2n=2﹣2=.故答案为:.14.若(x+p)与(x+5)的乘积中不含x的一次项,则p=﹣5.【解答】解:(x+p)(x+5)=x2+5x+px+5p=x2+(5+p)x+5p,∵乘积中不含x的一次项,∴5+p=0,解得p=﹣5,15.一个正方形的边长增加了2cm,它的面积就增加44cm2,这个正方形的边长是:10cm.【分析】设正方形的边长是xcm,根据面积相应地增加了44cm2,即可列方程求解.【解答】解:设正方形的边长是xcm,根据题意得:(x+2)2﹣x2=44,解得:x=10.故答案为:10cm.16.一个三角形的底边长为(2a+6b),高是(3a﹣5b),则这个三角形的面积是3a2+4ab﹣15b2.【分析】根据×底×高,求出三角形面积即可.【解答】解:三角形面积S=(2a+6b)(3a﹣5b)=(a+3b)(3a﹣5b)=3a2﹣5ab+9ab﹣15b2=3a2+4ab﹣15b2,故答案为:3a2+4ab﹣15b217.已知6x=192,32y=192,则(﹣2017)(x﹣1)(y﹣1)﹣2=﹣.【分析】由6x=192,32y=192,推出6x=192=32×6,32y=192=32×6,推出6x﹣1=32,32y﹣1=6,可得(6x﹣1)y﹣1=6,推出(x﹣1)(y﹣1)=1,由此即可解决问.【解答】解:∵6x=192,32y=192,∴6x=192=32×6,32y=192=32×6,∴6x﹣1=32,32y﹣1=6,∴(6x﹣1)y﹣1=6,∴(x﹣1)(y﹣1)=1,∴(﹣2017)(x﹣1)(y﹣1)﹣2=(﹣2017)﹣1=﹣【点评】本题考查幂的乘方与积的乘方,解题的关键是灵活运用知识解决问题,属于中考填空题中的压轴题.18.我们知道,同底数幂的乘法法则为:a m•a n=a m+n(其中a≠0,m,n为正整数),类似地我们规定关于任意正整数m,n的一种新运算:h(m+n)=h(m)•h(n),请根据这种新运算填空:(1)若h(1)=,则h(2)=;(2)若h(1)=k(k≠0),那么h(n)•h(2017)=k n+2017(用含n和k的代数式表示,其中n为正整数)【分析】(1)将h(2)变形为h(1+1),再根据定义新运算:h(m+n)=h(m)•h(n)计算即可求解;(2)根据h(1)=k(k≠0),以及定义新运算:h(m+n)=h(m)•h(n)将原式变形为k n•k2017,再根据同底数幂的乘法法则计算即可求解.【解答】解:(1)∵h(1)=,h(m+n)=h(m)•h(n),∴h(2)=h(1+1)=×=;(2)∵h(1)=k(k≠0),h(m+n)=h(m)•h(n),∴h(n)•h(2017)=k n•k2017=k n+2017.故答案为:;k n+2017.【点评】考查了同底数幂的乘法,定义新运算,熟练掌握运算性质和法则是解题的关键.19.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如下图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8;…根据以上规律,解答下列问题:(1)(a+b)4展开式共有5项,系数分别为1,4,6,4,1;(2)(a+b)n展开式共有n+1项,系数和为2n.【分析】经过观察发现,这些数字组成的三角形是等腰三角形,两腰上的数都是1,从第3行开始,中间的每一个数都等于它肩上两个数字之和,展开式的项数比它的指数多1.根据上面观察的规律很容易解答问题.【解答】解:(1)展开式共有5项,展开式的各项系数分别为1,4,6,4,1,(2)展开式共有n+1项,系数和为2n.故答案为:(1)5;1,4,6,4,1;(2)n+1,2n.【点评】本题考查完全平方式.本题主要是根据已知与图形,让学生探究,观察规律,锻炼学生的思维,属于一种开放性题目.20.一块长方形铁皮,长为(5a2+4b2)m,宽为6a4m,在它的四个角上都剪去一个长为a3m的小正方形,然后折成一个无盖的盒子,这个无盖盒子的表面积是21a6+24a4b2m2.【分析】这块铁皮的面积减去4个角上的小正方形的面积,就是无盖盒子的表面积.【解答】解:(5a2+4b2)•6a4﹣4(a3)2,=30a6+24a4b2﹣4×a6,=30a6+24a4b2﹣9a6,=21a6+24a4b2m2.【点评】本题考查了单项式乘以多项式的法则,在实际问题中,应灵活运用整式的乘法运算.三.解答题(共6小题)21.计算:3a2b•(﹣a4b2)+(a2b)3【分析】先算乘方,再算乘法,最后合并即可.【解答】解:原式=﹣2a6b3+a6b3=﹣a6b3.【点评】本题考查了整式的混合运算,能熟练地运用法则进行计算是解此题的关键.22.计算:(a+1)2﹣a(a﹣1)【分析】直接利用完全平方公式以及单项式乘以多项式运算法则计算进而合并同类项即可.【解答】解:原式=a2+2a+1﹣a2+a=3a+1.【点评】此题主要考查了完全平方公式以及单项式乘以多项式运算,正确掌握相关运算法则是解题关键.23.先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.【分析】原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y的值代入计算即可求出值.【解答】解:原式=x2﹣4xy+4y2+x2﹣4xy+xy﹣4y2=2x2﹣7xy,当x=5,y=时,原式=50﹣7=43.24.甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x﹣10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣9x+10.请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果.【分析】先按甲乙错误的说法得出的系数的数值求出a,b的值,再把a,b的值代入原式求出整式乘法的正确结果.【解答】解:∵甲正确得到的算式:(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2+11x﹣10 对应的系数相等,2b﹣3a=11,ab=10,乙错误的算式:(2x+a)(x+b)=2x2+(2b+a)x+ab=2x2﹣9x+10对应的系数相等,2b+a=﹣9,ab=10,∴,解得:.∴正确的式子:(2x﹣5)(3x﹣2)=6x2﹣19x+10.25.乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:(a+b)2;方法2:a2+b2+2ab.(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(a+b)2=a2+2ab+b2;(3)类似的,请你用图1中的三种纸片拼一个图形验证:(a+b)(a+2b)=a2+3ab+2b2(4)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(x﹣2016)2+(x﹣2018)2=34,求(x﹣2017)2的值.【分析】(1)依据正方形的面积计算方式,即可得到结论;(2)依据(1)中的代数式,即可得出(a+b)2,a2+b2,ab之间的等量关系;(3)画出长为a+2b,宽为a+b的长方形,即可验证:(a+b)(a+2b)=a2+3ab+2b2;(4)①依据a+b=5,可得(a+b)2=25,进而得出a2+b2+2ab=25,再根据a2+b2=11,即可得到ab=7;②设x﹣2017=a,则x﹣2016=a+1,x﹣2018=a﹣1,依据(x﹣2016)2+(x﹣2018)2=34,即可得到(x﹣2017)2的值.【解答】解:(1)图2大正方形的面积=(a+b)2;图2大正方形的面积=a2+b2+2ab;故答案为:(a+b)2,a2+b2+2ab;(2)由题可得(a+b)2,a2+b2,ab之间的等量关系为:(a+b)2=a2+2ab+b2;故答案为:(a+b)2=a2+2ab+b2;(3)如图所示,(4)①∵a+b=5,∴(a+b)2=25,即a2+b2+2ab=25,又∵a2+b2=11,∴ab=7;②设x﹣2017=a,则x﹣2016=a+1,x﹣2018=a﹣1,∵(x﹣2016)2+(x﹣2018)2=34,∴(a+1)2+(a﹣1)2=34,∴a2+2a+1+a2﹣2a+1=34,∴2a2+2=34,∴2a2=32,∴a2=16,即(x﹣2017)2=16.26.阅读下面的材料并填空:①(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=②(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=×③(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=利用上面的材料中的方法和结论计算下题:(1﹣)(1﹣)(1﹣)……(1﹣)(1﹣)(1﹣)【分析】直接利用平方差公式计算进而结合已知规律得出答案.【解答】解:①(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=,②(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=×,③(1﹣)(1+)=1﹣,反过来,得1﹣=(1﹣)(1+)=利用上面的材料中的方法和结论计算下题:(1﹣)(1﹣)(1﹣)……(1﹣)(1﹣)(1﹣)=××××…××=.故答案为:,,(1﹣)(1+),.【点评】此题主要考查了平方差公式,正确应用平方差公式是解题关键.。
浙教版七年级数学下册《第3章整式的乘除》单元达标测试题(附答案)一、选择题(本题共计10小题,每题3分,共计30分,)1.下列计算正确的是()A.(2a﹣1)2=4a2﹣1B.3a6÷3a3=a2C.(﹣ab2)4=﹣a4b6D.﹣2a+(2a﹣1)=﹣12.若m、n、p是正整数,则(x m•x n)p=()A.x m•x np B.x mnp C.x mp+np D.x mp•np3.下列各式运算正确的是()A.5a2﹣3a2=2B.a2⋅a3=a6C.(a10)2=a20D.x(a﹣b+1)=ax﹣bx4.若5x=a,5y=b,则52x﹣y=()A.B.a2b C.D.2ab5.计算(ab2)3的结果,正确的是()A.a3b6B.a3b5C.ab6D.ab56.下列四个算式:①63+63;②(2×63)×(3×63);③(22×32)3;④(33)2×(22)3中,结果等于66的是()A.①②③B.②③④C.②③D.③④7.若x2+2mx+16是完全平方式,则(m﹣1)2+2的值是()A.11B.3C.11或27D.3或118.若2a=3,2b=5,2c=15,则()A.a+b=c B.a+b+1=c C.2a+b=c D.2a+2b=c9.若x+m与x+乘积的值不含x项,则m的值为()A.B.4C.﹣D.﹣410.下列计算中,正确的是()A.(﹣2a﹣5)(2a﹣5)=25﹣4a2B.(a﹣b)2=a2﹣b2C.(x+3)(x﹣2)=x2﹣6D.﹣a(2a2﹣1)=﹣2a3﹣a二、填空题(本题共计7小题,每题3分,共计21分,)11.已知2a2+2b2=10,a+b=3,则ab=.12.已知x+y=﹣4,x﹣y=2,则x2﹣y2=.13.已知(x﹣a)(x+a)=x2﹣9,那么a=.14.若n为正整数,且x2n=5,则(3x3n)2﹣45(x2)2n的值为.15.已知x﹣y=5,xy=3,则(x+y)2=.16.有9张边长为a的正方形纸片,9张边长分别为a,b(a<b)的长方形纸片,10张边长为b 的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长为.17.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式.三、解答题(本题共计8小题,共计69分,)18.若(x﹣2)x+1=1,求x的值.19.若5x﹣3y+2=0,求(102x)3÷(10x•103y)的值.20.计算:(3x3y2z﹣1)﹣2•(5xy﹣2z3)2.21.计算(1)(﹣a2b3)3•(﹣2a2b)3;(2)(a2)5+(﹣a2•a3)2+(﹣a2)5﹣a•a9;(3)2(x+1)+x(x+2)﹣(x﹣1)(x+5)22.先化简,再求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=﹣1,y=﹣2023.23.计算(×××…××1)10•(10×9×8×7×…×3×2×1)10.24.乘法公式的探究及应用.(1)如图1,是将图2阴影部分裁剪下来,重新拼成的一个长方形,面积是;如图2,阴影部分的面积是;比较图1,图2阴影部分的面积,可以得到乘法公式;(2)运用你所得到的公式,计算下列各题:①103×97;②(2x+y﹣3)(2x﹣y+3).25.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.参考答案一、选择题(本题共计10小题,每题3分,共计30分,)1.解:A、原式=4a2﹣4a+1,不符合题意;B、原式=a3,不符合题意;C、原式=a4b8,不符合题意;D、原式=﹣2a+2a﹣1=﹣1,符合题意,故选:D.2.解:(x m•x n)p=(x m+n)p=x(m+n)p=x mp+np,故选:C.3.解:∵5a2﹣3a2=2a2≠2,故选项A错误;a2⋅a3=a5≠a6,故选项B错误;(a10)2=a20,故选项C正确;x(a﹣b+1)=ax﹣bx+x≠ax﹣bx,故选项D错误;故选:C.4.解:52x﹣y=52x÷5y=5x×5x÷5y已知5x=a,5y=b,所以上式=.故选:A.5.解:(ab2)3=a3b6.故选:A.6.解:①63+63=2×63;②(2×63)×(3×63)=6×66=67;③(22×32)3=(62)3=66;④(33)2×(22)3=36×26=66.所以③④两项的结果是66.故选:D.7.解:∵x2+2mx+16是完全平方式.∴m2=16.∴m=±4.当m=4时,(m﹣1)2+2=9+2=11.当m=﹣4时(m﹣1)2+2=25+2=27.故答案为:C.故选:C.8.解:∵2a×2b=2a+b=3×5=15=2c,∴a+b=c,故选:A.9.解:(x+m)(x+)=x2+(m+)x+m,∵乘积中不含x项,∴m+=0,即m=﹣.故选:C.10.解:A、(﹣2a﹣5)(2a﹣5)=25﹣4a2,正确;B、(a﹣b)2=a2﹣2ab+b2,错误;C、(x+3)(x﹣2)=x2+x﹣6,错误;D、﹣a(2a2﹣1)=﹣2a3+a,错误,故选:A.二、填空题(本题共计7小题,每题3分,共计21分,)11.解:∵2a2+2b2=10,∴a2+b2=5,∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∴5+2ab=9,∴2ab=4,∴ab=2,故答案为:2.12.解:当x+y=﹣4,x﹣y=2时,原式=(x+y)(x﹣y)=﹣4×2=﹣8.故答案为:﹣8.13.解:根据平方差公式,(x﹣a)(x+a)=x2﹣a2,由已知可得,a2=9,所以,a=±=±3.故答案为:±3.14.解:当x2n=5时,原式=9x6n﹣45x4n=9(x2n)3﹣45(x2n)2=9×53﹣45×52=9×53﹣9×53=0.故答案为:0.15.解:将x﹣y=5两边平方得:(x﹣y)2=25,即(x+y)2=x2+y2+2xy=x2+y2﹣2xy+4xy=(x﹣y)2+4xy,把xy=3代入得:(x+y)2=(x﹣y)2+4xy=25+4×3=37.故答案为:37.16.解:假设正方形的边长为xa+yb,其中x、y为正整数.则(xa+yb)2≤9a2+9b2+10ab,x2a2+2xyab+y2b2≤9a2+9b2+10ab,即(9﹣x2)a2+(9﹣y2)b2+(10﹣2xy)ab≥0.∵a<b,∴9﹣y2≥0,y≤3.当y取最大值3时,由10﹣2xy≥0,得x≤1,即x取最大值1.∴拼成得正方形边长最长为:3b+a.故答案为:3b+a.17.解:a2﹣b2=(a+b)(a﹣b).三、解答题(本题共计9小题,共计69分,)18.解:①依题意得:x+1=0,且x﹣2≠0解得x=﹣1.②依题意得:x﹣2=1,即x=3时,也符合题意;③依题意得:当x﹣2=﹣1即x=1时,也符合题意.综上所述,x的值是﹣1或3或1.19.解:5x﹣3y+2=0则5x﹣3y=﹣2.原式=106x÷10x+3y=106x﹣x﹣3y=105x﹣3y=10﹣2=.20.解:原式=3﹣2x﹣6y﹣4z2•25x2y﹣4z6=(×25)•x﹣6+2•y﹣4﹣4•z2+6=.21.解:(1)(﹣a2b3)3•(﹣2a2b)3=﹣a6b9•(﹣8a6b3)=a12b12;(2)(a2)5+(﹣a2•a3)2+(﹣a2)5﹣a•a9=a10+a10﹣a10﹣a10=0;(3)2(x+1)+x(x+2)﹣(x﹣1)(x+5)=2x+2+x2+2x﹣x2﹣5x+x+5=7.22.解:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x =(x2﹣4xy+4y2+x2﹣4y2﹣4x2+2xy)÷2x=(﹣2x2﹣2xy)÷2x=﹣x﹣y,当x=﹣1,y=﹣2023时,原式=1+2023=2022.23.解:(×××…××1)10•(10×9×8×7×…×3×2×1)10=(×××…××1×10×9×8×7×…×3×2×1)10=110=1;24.解:(1)由拼图可知,图形1的长为(a+b),宽为(a﹣b),因此面积为(a+b)(a﹣b),图形2的阴影部分的面积为两个正方形的面积差,即a2﹣b2,由图形1,图形2的面积相等可得,(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b),a2﹣b2,(a+b)(a﹣b)=a2﹣b2;(2)①103×97=(100+3)(100﹣3)=1002﹣32=10000﹣9=9991;②原式=(2x+y﹣3)=(2x)2﹣(y﹣3)2=4x2﹣(y2﹣6y+9)=4x2﹣y2+6y﹣9.25.解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab,故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=,∴m+n=5,m2+n2=20时,mn===,(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023,可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022),由(2)题结论a2+b2=(a+b)2﹣2ab可得,(a+b)2=a2+2ab+b2,又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4,且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30,∴(x﹣2022)2=()2====16.。
章节测试题1.【答题】在下列计算中,不能用平方差公式计算的是()A. (m-n)(-m+n)B.C. (-a-b)(a-b)D.【答案】A【分析】根据平方差公式解答即可.【解答】A中m和-m符号相反,-n和n符号相反,而平方差公式中需要有一项是相同的,另一项互为相反数,故不能用平方差公式计算;B. =x6-y6, 故能用平方差公式计算;C. (-a-b)(a-b)=(-b)2-a2=b2-a2, 故能用平方差公式计算;D. =c4-d4, 故能用平方差公式计算;选A.方法总结:本题考查了平方差公式的特征,形如(a+b)(a-b)=a2-b2的式子叫平方差公式,即两个数的和与这两个数差的积,等于这两个数的平方差.其特点是:一个项相同,另一个项互为相反数,结果等于相同项的平方减去相反项的平方.2.【答题】下列运算不能用平方差公式的是()A. (4a2-1)(1+4a2)B. (x-y)(-x-y)C. (2x-3y)(2x+3y)D. (3a-2b)(2b-3a)【答案】D【分析】根据平方差公式解答即可.【解答】A、(4a2-1)(1+4a2)=(4a2)2-12,能用,故不符合题意;B、(x-y)(-x-y)=(-y)2-x2,能用,故不符合题意;C、(2x-3y)(2x+3y)=(2x)2-(3y)2,能用,故不符合题意;D、(3a-2b)(2b-3a)不能用,故符合题意,选D.3.【答题】计算20122﹣2011×2013的结果是()A. 1B. ﹣1C. 2D. ﹣2【答案】A【分析】根据平方差公式解答即可.【解答】原式=20122﹣(2012﹣1)×(2012+1)=20122﹣20122+1=1,故选A.4.【答题】下列运用平方差公式计算,错误的是().A.B.C.D.【答案】C【分析】根据平方差公式解答即可.【解答】根据“平方差公式:”分析可知,四个选项中,计算正确的是A、B、D,错误的是C.选C.5.【答题】计算的结果是().A.B.C.D. 以上答案都不对【答案】A【分析】根据平方差公式解答即可.【解答】原式===.选A.6.【答题】下列多项式的乘法中,可以用平方差公式计算的是().A.B.C.D.【答案】C【分析】根据平方差公式解答即可.【解答】根据平方差公式:的结构特征分析可知,上述式子中,A、B、D三个选项中的式子均不能用“平方差公式”计算,只有选项C中的式子可用用“平方差公式”计算.选C.7.【答题】(d+f)·(d-f)等于()A. d3 -f3B. d2 -f 2C. d5 -f5D. d6 -f6【答案】B【分析】根据平方差公式解答即可.【解答】根据平方差公式可得:(d+f)·(d-f)=d2 -f 2,选B.8.【答题】[(c·c2)+(a·a2)][(c·c2)-(a·a2)]等于()A. c3 -a3B. c2 -a8C. c5 -a5【答案】D【分析】根据平方差公式解答即可.【解答】根据平方差公式和同底数幂的乘法法则可得:[(c·c2)+(a·a2)][(c·c2)-(a·a2)]= =c6 -a6,选D.9.【答题】[(c2)2+(a2)2][(c2)2-(a2)2]等于()A. c -a2B. 4c2 -a8C. c8 -a8D. c2 -a4【答案】C【分析】根据平方差公式解答即可.【解答】根据平方差公式和幂的乘方法则可得:[(c2)2+(a2)2][(c2)2-(a2)2]= =c8 -a8,选C.10.【答题】[c+(a2)2][c-(a2)2]等于()A. c -a2C. c2 -a2D. c2 -a4【答案】B【分析】根据平方差公式解答即可.【解答】根据平方差公式和幂的乘方法则可得:[c+(a2)2][c-(a2)2]= =c2 -a8,选B.11.【答题】(c+a2b2)(c-a2b2)等于()A. c -ab2B. c2 -a4b4C. c2 -ab2D. c2 -a2b2【答案】B【分析】根据平方差公式解答即可.【解答】根据平方差公式可得:(c+a2b2)(c-a2b2)=c2 -a4b4,选B. 12.【答题】(x+3ab)(x-3ab)等于()A. x2 -9a2b2B. x2 -9ab2C. x2 -ab2D. x2 -a2b2【答案】A【分析】根据平方差公式解答即可.【解答】根据平方差公式可得:(x+3ab)(x-3ab)=x2 -9a2b2,选A.13.【答题】(y+3z)(3z-y)等于()A. y2-z2B. y2-9z2C. 9z2-y2D. y2-z2【答案】C【分析】根据平方差公式解答即可.【解答】根据平方差公式可得:(y+3z)(3z-y)=9z2-y2,选C.14.【答题】(2y-3z)(2y+3z)等于()B. 2y2-3z2C. 4y2-9z2D. y2-z2【答案】C【分析】根据平方差公式解答即可.【解答】根据平方差公式可得:(2y-3z)(2y+3z)=4y2-9z2,选C.15.【答题】(2x+y2 )(2x-y2 )等于()A. x2-y4B. x2-y2C. 4x2-y4D. 4x2-y2【答案】C【分析】根据平方差公式解答即可.【解答】根据平方差公式可得:(2x+y2 )(2x-y2 )=4x2-y4 ,选C.16.【答题】(x+6y)(x-6y)等于()B. x2-y2C. x2-36y2D. 36x2-y2【答案】C【分析】根据平方差公式解答即可.【解答】根据平方差公式可得:(x+6y)(x-6y)=x2-36y2 ,选C.17.【答题】(m+5)(m-5)等于()A. m2-5B. m2-y2C. m2-25D. 25m2-5【答案】C【分析】根据平方差公式解答即可.【解答】根据平方差公式可得:(m+5)(m-5)=m2-25,选C. 18.【答题】(x+5y)(x-5y)等于()B. x2-y2C. x2-25y2D. 25x2-y2【答案】C【分析】根据平方差公式解答即可.【解答】根据平方差公式可得:(x+5y)(x-5y)=x2-25y2 ,选C.19.【答题】(2x+1)(2x-1)等于()A. 4x2-1B. 2x2-1C. x2-1D. 2x2+1【答案】A【分析】根据平方差公式解答即可.【解答】根据平方差公式可得:(2x+1)(2x-1)=4x2-1,选A.20.【答题】(x+3ab)(x-3ab)等于()B. x2 -9ab2C. x2 -ab2D. x2 -a2b2【答案】A【分析】根据平方差公式解答即可.【解答】根据平方差公式可得:(x+3ab)(x-3ab)=x2 -9a2b2,选A.。
浙教版七年级下册数学第三章整式的乘除含答案一、单选题(共15题,共计45分)1、下列运算正确的是()A. B. C. D.2、下列计算正确的是()A. (﹣3a)2=﹣9a2B. =﹣1C. 2a2﹣1=(2a+1)(2a﹣1)D. a3﹣4a3=﹣3a33、下列运算正确的是()A.a 2•a 3=a 6B.(﹣a+b)(a+b)=b 2﹣a 2C.(a 3)4=a7 D.a 3+a 5=a 84、把方程2x2﹣4x﹣1=0化为(x+m)2=n的形式,则m,n的值是()A.m=2,n=B.m=﹣1,n=C.m=1,n=4 D.m=n=25、下列等式成立的是A. B. C. D.6、下列计算正确的是()A.b 3•b 3=2b 3B.C.D.7、如果将 a8写成下列形式正确的共有()①a4 + b4;② (a2) 4;③a16÷b2;④ (a4 ) 2;⑤ (a4 )4 ;⑥ a4· a4;⑦ a20÷a12;⑧2a8 - a8A.6个B.5个C.4个D.3个8、计算的结果是()A. B. C.c D.9、下列算式正确的是()A. B. C. D.10、将一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②中阴影部分的面积(用a、b的代数式表示)是()A.a 2﹣b 2B.abC.D.(a﹣b)211、下列各式计算正确的是()A.x 2+x 3=x 5B.(mn 3) 2=mn 6C.(a-b) 2=a 2-b 2D.p 6÷p 2=p 4(p≠0)12、下列多项式乘法中不能用平方差公式计算的是()A.(a 3+b 3)(a 3﹣b 3)B.(a 2+b 2)(b 2﹣a 2)C.(2x 2y+1)(2x 2y﹣1) D.(x 2﹣2y)(2x+y 2)13、若a+b=-1,则a2+b2+2ab的值为()A.-1B.1C.2D.-214、下列各式计算正确的是()A. B. C. D.15、下列计算正确的是()A.x﹣2x=xB.x 6÷x 3=x 2C.(﹣x 2)3=﹣x 6D.(x+y)2=x 2+y 2二、填空题(共10题,共计30分)16、已知,则的值为________.17、若a2+b2=19,a+b=5,则ab=________.18、计算:|﹣3|﹣(﹣1)2016×(π﹣3)0﹣+()﹣2=________.19、计算:+ =________.20、已知可以被10到20之间某两个整数整除,则这两个数是________.21、用科学记数法表示0.000021为________.22、已知,则________,________.23、已知a﹣=3,那么a2+ =________.24、若m=2n+3,则m2﹣4mn+4n2的值是________.25、计算:=________,=________.三、解答题(共5题,共计25分)26、已知2a=3,2b=6,2c=12,求证:2b=a+c.27、一个单项式加上多项式9(x﹣1)2﹣2x﹣5后等于一个整式的平方,试求所有这样的单项式.28、(1)解方程:3x2﹣27=0(2)已知22x+1+4x=48,求x的值.29、a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.30、一个长方体的长为8×105cm,宽为5×106cm,高为9×108cm,求长方体的体积.参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、B6、D7、B8、B9、D10、B11、D12、D13、B14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
浙教版七年级下册数学第三章整式的乘除含答案一、单选题(共15题,共计45分)1、计算3y3•(﹣y2)2•(﹣2y)3的结果是()A.﹣24y 10B.﹣6y 10C.﹣18y 10D.54y 102、下列各式计算正确的是()A.5a 2+a 2=5a 4B.(﹣3a) 5=﹣3a 5C.a 12÷a 4=a 3D.﹣a 3•a 2=﹣a 53、下列运算正确的是()A.a 2 +a 3=a 5B.m 8÷m 4=m 4C.D.4、在边长为a的正方形的左下角剪去一个边长为b的小正方形(a>b)(如图甲),把余下部分沿虚线剪开拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证因式分解的平方差公式a2-b2=(a+b)(a-b),这种验证方法体现的数学思想是()A.转化思想B.函数思想C.数形结合思想D.方程思想5、若(x+4)(x-2)=x2+px+q,则p、q的值是()A.2、-8B.-2、8C.-2、-8D.2、86、下列运算正确的是()A. B. C. D.7、若多项式a2+kab+4b2是完全平方式,则常数k的值为().A.2B.4C.±2D.±48、若102y=25,则10﹣y等于()A. B. C.﹣或 D.9、下列计算正确的是()A.a 3+a 4=a 7B.a 3•a 4=a 7C.a 6÷a 3=a 2D.(a 3)4=a 710、计算下列各式① ② ③④ 正确有()题A. B. C. D.11、计算2x2•(﹣3x3)的结果是()A.6x 5B.2x 6C.﹣2x 6D.﹣6x 512、下列运算正确的是()A.a 3•a 3=a 6B.(﹣a 2)3=a 5C.(﹣2a 3b)2=﹣8a 6b 3D.(2a+1)2=4a 2+2a+113、下列计算结果正确的是( )A.2+ =2B. ÷ =C.(-2a 2)3=-6a6 D.(x-1)2=x 2-114、0.0000238用科学记数法表示正确的是()A.2.38×10 ﹣5B.238×10 ﹣7 C.13.8×10 ﹣6 D.2.38×10 ﹣615、下列运算正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、若关于x的二次三项式x2﹣ax+2a﹣3是一个完全平方式,则a的值是________ .17、若在实数范围内有意义,则x的取值范围是________.18、若3m=2,3n=5,则32m﹣n=________.19、若2x=3,4y=5,则2x﹣2y的值为________.20、计算:________.21、计算:(x﹣2)(2+x)=________.22、若a x=2,a y=3,则a3x﹣2y=________.23、已知x+ =2,则=________.24、若a-b=1,则的值为________.25、化简:(a+1)2﹣(a+1)(a﹣1)=________.三、解答题(共5题,共计25分)26、已知3x﹣2y﹣2=0,求8x÷4y÷22的值.27、将4个数a b c d排成两行,两列,两边各加一条竖直线记成,定义=ad﹣bc.上述记号叫做2阶行列式,若=7x.求x的值.28、已知二次三项式与的积不含项,也不含项,求系数的值.29、有这样一道题:“化简求值:[(a﹣2)2﹣(a﹣1)2](2a+3)+4a2,其中a=﹣25.”王辉同学在解题时错误地把“a=﹣25”抄成了“a=25”,但显示计算的结果也是正确的,你能解释一下这是怎么回事吗?30、利用我们学过的知识,可以导出下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(c﹣a)2],请你检验这个等式的正确性.参考答案一、单选题(共15题,共计45分)1、A2、D3、B4、C5、A6、C7、8、A9、B10、B11、D12、A13、B14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
浙教版七年级下册 第3章 整式的乘除 章节综合测试一、单选题1.下列计算正确的是( )A .B .444326b b b⋅=53155315a a a⋅=C .D .224347a a a+=993322a a ÷=2.计算的结果是( ).20212020133⎛⎫-⨯ ⎪⎝⎭A .B .3C .D .3-13-133.下列运算正确的是( )A .B .C .D .325a a a⋅=235()a a =336a a a+=222()a b a b +=+4.下列运算不正确的是( )A .ab•a 2b =a 3bB .(a 2b 3)2=a 4b 5C .(ab )2=a 2b 2D .3a 2b 3÷ab =3ab 25.计算的符合题意结果是( )()234x -A .B .C .D .616x516x516x-68x6.下列式子,计算结果为的是( )2421x x +-A .B .()()73x x +-()()73x x -+C .D .()()73x x ++()()73x x --7.墨迹覆盖了等式“”中的运算符号,则覆盖的是( )3a()360a a a =≠A .+B .-C .×D .÷8.如图,在边长为a 的正方形中挖掉一个边长为b的小正方形(a >b ).把余下的部分剪拼成一个矩形;验证了一个等式,则这个等式是( )A .a 2﹣b 2=(a+b )(a﹣b )B .(a+b )2=a 2+2ab+b 2C .(a﹣b )2=a 2﹣2ab+b 2D .a 2﹣ab =a (a﹣b )9.已知,则( )1a aa a -÷=a =A .3B .1C .D .3或±11-10.如图,用不同的代数式表示图中阴影部分的面积,可得等式( )A .(a +b )2=a 2+2ab +b 2B .(a﹣b )2=a 2+2ab﹣b 2C .(a +b )(a﹣b )=a 2﹣b 2D .(a﹣b )2=a 2﹣2ab +b 2二、填空题11.计算(-2a 2)3÷a 3的结果是 .12.若,则 , .()()2530x x a x bx -+=-+a =b =13.若的乘积中不含项,则a 的值为 .()()215x x ax a +-+2x 14.已知,,则的值为 .3m x =9n x =3m nx-三、计算题15.直接写出计算结果:(1)x 2•x 5;(2)(x 3)2;(3)(a+b )(a﹣b ).16.()()222226633m n m n m m --÷-17.先化简,再求值:,其中,.()()3224843x y x y xy x x y -÷--2x =3y =四、解答题18.证明是13的倍数.2491-19.已知,求的值.21a b -=()()()()214a b a b b a a +-+---20.先化简,再求值:,其中,.21(2)4()()2x y x y x y y ⎛⎫⎡⎤+--+÷ ⎪⎣⎦⎝⎭2x =3y =五、综合题21.若且,m 、n 是正整数,则.利用上面结论解决下面的问题:(0m na a a =>1a ≠)m n =(1)如果,求x 的值;528162x x ÷⋅=(2)如果,求x 的值;212224x x +++=22.已知,.()24nm =()23m n a a a ÷=(1)求和的值;mn 2m n -(2)已知,求的值.22415m n -=m n +23.“平方差公式”和“完全平方公式”应用非常广泛,灵活利用公式往往能化繁为简,巧妙解题.请阅读并解决下列问题:(1)问题一:,()()()()x y z x y z A B A B +--+=+-则 , ;A =B =(2)计算:;()()2323a b a b -+-+(3)问题二:已知,()()2222x y x y P x y Q+=+-=-+则 , ;P =Q =(4)已知长和宽分别为,的长方形,它的周长为14,面积为10,如图所示,求a b 的值.22a b ab ++答案解析部分1.【答案】D【解析】【解答】解:A 、,故A 不符合题意;448326b b b ⋅=B 、,故B 不符合题意;5385315a a a ⋅=C 、,故C 不符合题意;222347a a a +=D 、,故D 符合题意;993322a a ÷=故答案为:D .【分析】利用单项式乘单项式、合并同类项及单项式除以单项式计算方法逐项判断即可。
精品文档第三章整式的乘除单元测试卷236A . 2x • 3x =6x2.下列各式中,能用平方差公式计算的是A 、(-a -b)(a b)4.已知 x • y = -5, xy = 3,则 x 25.已知 x a =3,x b =5,则 x 3a 'b 二你认为其中正确的有A 、①②B 、③④C 、①②③D ①②③④()7.如(x+m)与(x+3)的乘积中不含 x 的一次项,则 m 的值为()A 、 £B 3C 、0D 13&已知.(a+b) 2=9, ab=—,贝U a2+b 2 的值等于()2A 、84B 、78C 、12D 、69.计算(a — b ) ( a+b ) (a 2+b 2) (a 4— b 4)的结果是()84 488448—161688A . a +2a b +bB . a — 2a b +bC . a — bD . a — b、选择题(共10小题,每小题3分,共 30分)1 •下列计算正确的是()•2 2C .(— 3x ) • (— 3x ) 4=9x5 n 2 m 1 mn x • x = x45 227 B 、2 25 10 6..如图,甲、乙、丙、丁四位同学给出了四 、52种表示该长方形面积的多项式: ①(2 a +b )( m +n ); ② 2a (m +n )+b (m +n );③ m (2 a +b )+ n (2a +b );④ 2an +2a n +bn r b n .b aa m n2 3 52x +3x =5x(_a 「b)(a 「b) C 、(a + b _c)( —a _b + c)(_a b)(a _ b)3.设(5a +3b 2 =(5a —3b 丫 十 A ,A=( A. 30 ab B. 60ab C. 15abD. 12abA. 25.-25C 19、一 1910. 已知P =(m_l,Q =m 2 - — m (m 为任意实数),则P 、Q 的大小关系为()15 15A P QB 、P =QC 、P QD 、不能确定二、填空题(共6小题,每小题4分,共24分)11. 设4x 2+mx+121是一个完全平方式,则 m= _________ 。
浙教版七下数学第三单元测试卷(含答案)一、单选题1.下列计算中,不正确的是()A.5x5-x5=4x5B.x3÷x=x2C.(-2ab)3=-6a3b3D.2a•3a=6a22.下列运算正确的是()A.x2+x2=x4B.(a﹣b)2=a2﹣b2C.(﹣a2)3=﹣a6D.3a2•2a3=6a63.三个连续奇数,若中间的一个为n,则这三个连续奇数之积为()A.4n3﹣nB.n3﹣4nC.8n2﹣8nD.4n3﹣2n4.下列计算正确的是()A.x(x2﹣x﹣1)=x3﹣x﹣1B.ab(a+b)=a2+b2C.3x(x2﹣2x﹣1)=3x3﹣6x2﹣3xD.﹣2x(x2﹣x﹣1)=﹣2x3﹣2x2+2x5.下列能用平方差公式计算的是()A.(-x+y)(x-y)B.(x-1)(-1-x)C.(2x+y)(2y-x)D.(x-2)(x+1)6.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是()A.4xB.-4xC.4x4D.-4x47.已知P=m−1,Q=m2−m(m为任意实数),则P、Q的大小关系为()A.P>QB.P=QC.P<QD.不能确定8.长度单位1纳米=10-9米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是()A.2.51×10-5米B.25.1×10-6米C.0.251×10-4米D.2.51×10-4米9.计算4a6÷(﹣a2)的结果是()A.4a4B.﹣4a4C.﹣4a3D.4a310.在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是100,小正方形的面积为20,那么每个直角三角形的周长为()A.10+6B.10+10C.10+4D.24二、填空题11.计算:a2•a3=________.12.若4x2•□=8x3y,则“□”中应填入的代数式是________ .13.若a+b=6,ab=4,则a2+b2=________ .14.夏老师发现,两位同学将一个二次三项式分解因式时,聪聪同学因看错了一次项而分解成3(x﹣1)(x ﹣9),江江同学因看错了常数项而分解成3(x﹣2)(x﹣4),那么,聪明的你,通过以上信息可以知道,原多项式应该是被因式分解为________ .15.若9x2﹣kxy+4y2是一个完全平方式,则k的值是________.16.若2m=3,4n=8,则23m﹣2n+3的值是________17.已知A=2x,B是多项式,在计算B+A时,小马虎同学把B+A看成B÷A,结果得x+,则B+A=________18.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6= ________三、解答题19.计算:(1)(+﹣)×|﹣12|;(2)2(x2)3+3(﹣x3)2.20.已知x n=2,y n=3,求(x2y)2n的值.21.若(x﹣1)(x+2)(x﹣3)(x+4)+a是一个完全平方式,求a的值.22.把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.(1)如图1,是将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的方法计算这个图形的面积,你能发现什么结论,请写出来.(2)如图2,是将两个边长分别为a和b的正方形拼在一起,B、C、G三点在同一直线上,连接BD和BF,若两正方形的边长满足a+b=10,ab=20,你能求出阴影部分的面积吗?答案部分第 1 题:【答案】C第 2 题:【答案】C第 3 题:【答案】B第 4 题:【答案】C第 5 题:【答案】B第 6 题:【答案】 D第7 题:【答案】C第8 题:【答案】A第9 题:【答案】B第10 题:【答案】A第11 题:【答案】a5第12 题:【答案】2xy第13 题:【答案】28第14 题:【答案】3(x﹣3)2第15 题:【答案】k=±12第16 题:【答案】27第17 题:【答案】2x2+3x第18 题:【答案】a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6 第19 题:【答案】解:(1)原式=6+8﹣3=11;(2)原式=2x6+3x6=5x6.第20 题:【答案】解:∵x n=2,y n=3,∴(x2y)2n=x4n y2n=(x n)4(y n)2=24×32=144.第21 题:【答案】解:原式=(x2+x﹣2)(x2+x﹣12)+a=(x2+x)2﹣14(x2+x)+a+24,由结合为完全平方式,得到a+24=49,解得:a=25.第22 题:【答案】解(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac(2)∵a+b=10,ab=20,∴S阴影=a2+b2﹣(a+b)•b﹣a2=a2+b2﹣ab=(a+b)2﹣ab=×102﹣×20=50﹣30=20.。
第3章整式的乘除测试卷时间:100分钟满分:120分班级:________姓名:________一、选择题(每小题3分,共30分)1.计算a3·(-a)的结果是( )A.a2B.-a2C.a4D.-a42.下列计算正确的是( )A.3a+2b=5ab B.(a3)2=a6C.a6÷a3=a2D.(a+b)2=a2+b23.以下计算正确的是( )A.(-2ab2)3=8a3b6B.3ab+2b=5abC.(-x2)·(-2x)3=-8x5D.2m(mn2-3m2)=2m2n2-6m3 4.生活在海洋中的蓝鲸,又叫长须鲸或剃刀鲸,它的体重达到150吨,它体重的万亿分之一用科学记数法可表示为( )A.1.5×10-10B.1.5×10-11C.1.5×10-12D.1.5×10-95.若2a-3b=-1,则代数式4a2-6ab+3b的值为( ) A.-1 B.1 C.2 D.36.下列运算正确的是( )A.a2·a2=2a2B.a2+a2=a4C.(1+2a)2=1+2a+4a2D.(-a+1)(a+1)=1-a27.如果(x+4)(x-5)=x2+px+q,那么p,q的值为( )A.p=1,q=20 B.p=1,q=-20C.p=-1,q=-20 D.p=-1,q=208.已知多项式ax+b与2x2-x+2的乘积展开式中不含x的一次项,且常数项为-4,则ab的值为( )A.-2 B.2 C.-1 D.19.如图,长方形ABCD的两边之差为4,以长方形的四条边分别为边向外作四个正方形,且这四个正方形的面积和为80,则长方形ABCD的面积是( )A.12 B.21C.24 D.3210.已知P=2x2+4y+13,Q=x2-y2+6x-1,则代数式P,Q的大小关系是( )A.P≥Q B.P≤Q C.P>Q D.P<Q二、填空题(每小题4分,共24分)11.若(1-x)1-3x=1,则满足条件的x值为____.12.(1)若M÷(-4ab)=2ab2,则代数式M=____;(2)若3ab2×□=-a2b5c,则□内应填的代数式为__ __.13.阅读理解:引入新数i,新数i满足分配律、结合律、交换律.已知i2=-1,那么(1+i)(1-i)=_____.14.若(a+b)2=9,(a-b)2=4,则ab=______.15.已知2a=5,18b=20,则(a+3b-1)3的值为____.16.如图,两个正方形的边长分别为a和b,如果a-b=2,ab=26,那么阴影部分的面积是_____.三、解答题(共66分)17.(6分)计算:(1)(3.14-π)0+(13 )-2; (2)(2x 2)3-x 2·x 4.18.(6分)计算:(1)(6a 3b 3-4a 2b 2c +2ab 2)÷(2ab 2); (2)(x -1)2-x (x -2).19.(6分)用简便方法计算:(1)299×301;(2)2 0202-2×2 020+1-2 018×2 020.20.(6分)已知x 6=2,求(3x 9)2-4(x 4)6的值.21.(10分)先化简,再求值:(1)(x -2)(x +2)-x (x -1),其中x =3;(2)[(3x-2y)2-9x2]÷(-2y),其中x=1,y=-2.22.(10分)(1)解方程:3(x+5)2-2(x-3)2-(x+9)(x-9)=180.(2)已知x2-2x-1=0,求代数式(2x-1)2-(x+6)(x-2)-(x+2)(2-x)的值.23.(10分)周末,小强常常到城郊爷爷家的花圃去玩.有一次爷爷给小强出了道数学题,爷爷家的花圃呈长方形,宽为x m,长比宽多2 m.爷爷想将花圃的长和宽分别增加a m.(1)用x,a表示这个花圃的面积将增加多少平方米?(2)当x=5,a=2时,求花圃的面积将增加多少平方米?(3)当a=3时,花圃的面积将增加39 m2,求花圃原来的长和宽各是多少米?24.(12分)图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为________;(2)观察图②,三个代数式(m+n)2,(m-n)2,mn之间的等量关系是________________;(3)观察图③,你能得到怎样的等式呢?(4)试画出一个几何图形,使它的面积能表示(m+n)(m+3n).参考答案一、选择题(每小题3分,共30分)1.D2. B3. D4. A5. B6. D7. C8. B9. A10. C二、填空题(每小题4分,共24分)11. 1312.-8a 2b 3(2)-13 ab 3c13. 214. 5415.-2716. 30三、解答题(共66分)17.(6分)计算:(1) 解:原式=10; (2) 解:原式=7x 6.18.(6分)计算:(1)解:原式=3a2b-2ac+1; (2) 解:原式=1.19.(6分)用简便方法计算:(1) 解:原式=(300-1)(300+1)=90 000-1=89 999;(2)解:原式=(2 020-1)2-(2 019-1)(2 019+1)=2 0192-(2 0192-1)=2 0192-2 0192+1=1.20.解:∵x6=2,∴(3x9)2-4(x4)6=9x18-4x24=9(x6)3-4(x6)4=9×23-4×24=9×8-4×16=72-64=8.21.(1) 解:原式=x2-4-x2+x=-4+x,当x=3时,原式=-4+3=-1;(2)解:原式=(9x2-12xy+4y2-9x2)÷(-2y)=(-12xy+4y2)÷(-2y)=6x-2y,当x=1,y=-2时,原式=6×1-2×(-2)=10.22.解:去括号,得3x2+30x+75-2x2+12x-18-x2+81=180,化简,得42x=42,解得x=1.(2) 解:原式=4x2-4x+1-(x2+4x-12)-(4-x2)=4x2-4x+1-x2-4x+12-4+x2=4x2-8x+9,∵x2-2x-1=0,∴x2-2x=1,则4x2-8x=4,∴原式=4+9=13.23.解:(1)根据题意,面积将增加:(x+a)(x+2+a)-x(x+2)=x2+2x+ax+ax+2a+a2-x2-2x=2ax+2a+a2.答:花圃的面积将增加(2ax+2a+a2)m2.(2)当x=5,a=2时,2ax+2a+a2=2×2×5+2×2+22=28(m2).答:花圃面积将增加28 m2.(3)根据题意,得6x+6+9=39,解得x=4,∴x+2=6.答:花圃原来的长是6 m,宽是4 m.24.解:(1)(m-n)2;(2)(m+n)2-(m-n)2=4mn;(3)(m+n)(2m+n)=2m2+3mn+n2;(4)∵(m+n)(m+3n)=m2+3mn+mn+3n2=m2+4mn+3n2.由此可画出几何图形,答案不唯一,如图所示.。
浙教版本初中七年级的下数学第三章整式的乘除单元总结复习检测试卷习题包括答案.docx浙教版七年级下数学《第三章整式的乘除》单元检测试卷含答案第三章整式的乘除单元检测卷姓名: __________ 班级: __________题号一二三评分一、选择题(共9 题;每小题 4 分,共36 分)1.若( x2+px﹣ q)( x2+3x+1)的结果中不含x2和x3项,则p﹣ q 的值为()A. 11B. 5C. -11D. -142.下列计算正确的是()A. (﹣2)3=8B. ()﹣1=3C. a4?a2=a8D. a6÷a3=a23.(mx+8)( 2﹣ 3x)展开后不含x 的一次项,则m 为()A. 3B.C. 12D. 244.下列关系式中,正确的是()A. B. C. D.5.下列运算正确的是()2365510623326A. a ?a =aB. a +a =aC. a÷a=aD. ( a)=a6.22)若 a+b=﹣ 3, ab=1,则 a +b =(A. -11B. 11C. -7D. 77.如图中,利用面积的等量关系验证的公式是()22222 A. a﹣ b =(a+b)( a﹣ b) B. ( a﹣ b) =a ﹣ 2ab+bC. ( a+2b)( a﹣ b) =a2+ab﹣ 2b2D. ( a+b)2=a2+2ab+b28.算(23的果正确的是()a b )A. a4b2B. a6b3C.a6b3D.a5b 39.已知,的是()A. 5B. 6C. 8D. 9二、填空题(共10 题;共 30 分)10.算: a n ?a n?a n =________;( x)( x2)( x3)( x4)=________.11.你能化( x 1)( x99+x98+? +x+1)?遇到的复,我可以先从的情形入手,然后出一些方法,分化下列各式并填空:(2231;( x x 1)( x+1)=x 1;( x 1)( x+x+1) =x1)( x3+x2+x+1)=x4 1根据上述律,可得(9998x 1)( x +x +? +x+1) =________你利用上面的,完成下面:算: 299+298+297+? +2+1,并判断末位数字是________12.如果( x+q)( x+)的果中不含x ,那么 q=________.13.若 5x=12,5y=4,5x-y=________.14.若 x n=4, y n =9,( xy)n =________15.m ( a b+c) =ma mb+mc. ________.2的是 ________.16.若 x +kx+25 是完全平方式,那么 k17.若 x+2y 3=0, 2x?4y的 ________.0﹣ 218.算:(π) +2 =________.19.(22.________ )÷ 7st=3s+2t;( ________ )( x 3)=x 5x+6三、解答题(共 3 题;共 34 分)20.解不等式:(x 6)( x 9)( x 7)( x 1)< 7( 2x 5)21.当 a=3, b= 1(1)求代数式 a2 b2和( a+b)( a b)的;(2)猜想两个代数式的有何关系?( 3)根据( 1)( 2),你能用便方法算出a=2008, b=2007 ,a2 b 2的?22.已知: 2x+3y 4=0,求 4x?8y的.参考答案一、选择题B BC BD D D C B二、填空题10. a3n; x1011. x100﹣ 1; 512. ﹣13. 314. 3615. 正确16. ±1017. 818.19. 21s2t2+14st3; x﹣ 2三、解答题20.解:原不等可化为: x2﹣ 15x+54﹣ x2+8x﹣ 7< 14x﹣ 35,整理得:﹣ 21x<﹣ 82,解得: x>,则原不等式的解集是x>.222﹣(﹣221. 解:( 1)a﹣ b=31) =9﹣ 1=8( a+b)( a﹣ b) =(3﹣ 1)( 3+1) =8;( 2) a2﹣ b2=( a+b)( a﹣b );( 3) a2﹣ b2=( a+b)( a﹣b )=( 2008+2007 )( 2008﹣ 2007 ) =4015.22. 解:∵ 2x+3y﹣ 4=0,∴ 2x+3y=4,∴4x?8y=22x?23y=22x+3y=24=16,∴4x?8y的值是 16。
章节测试题1.【题文】已知|2m-5|+(2m-5n+20)2=0,求(-2m2)-2m(5n-2m)+3n(6m-5n)-3n(4m-5n)的值.【答案】-【分析】首先根据非负数之和为零则每一个非负数都是零求出m和n的值,将所求代数式根据多项式的乘法计算法则和合并同类项法则将多项式进行合并同类项,最后将m和n的值代入化简后的式子进行计算得出答案.【解答】由题意得2m-5=0,2m-5n+20=0,∴m=,n=5,∴原式=2m2-4mn,当m=,n=5时,原式=.2.【题文】如图,小思同学用A,B,C三类卡片若干张拼出了一个长为2a+b,宽为a+b 的长方形图形.请你通过计算求出小思同学拼这个长方形所用A,B,C三类卡片各几张(要求:所拼图形中,卡片之间不能重叠,不能有空隙),并画出他的拼图示意图.【答案】A卡片3张,B卡片1张,C卡片2张.【分析】根据长方形的面积公式求出拼接后的长方形的面积,再利用多项式的乘法运算法则进行计算,然后根据系数即可得解.【解答】解:根据题意得:(2a+b)(a+b)=2a2+2ab+ab+b2=2a2+3ab+b2;∵A、B、C三类卡片的面积分别为ab、b2、a2,∴所以A、B、C三类卡片分别为3张,1张,2张;3.【题文】在一次测试中,甲、乙两同学计算同一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中的符号,得到的结果为6x2+11x-10;由于乙漏抄了第二个多项式中的系数,得到的结果为2x2-9x+10.(1)试求出式子中a,b的值;(2)请你计算出这道整式乘法的正确结果.【答案】(1)a=-5,b=-2.;(2)6x2-19x+10.【分析】(1)先按甲、乙错误的说法得出的系数的数值求出a,b的值;(2)把a,b的值代入原式求出整式乘法的正确结果.【解答】解:(1)由题意得:(2x-a)(3x+b)=6x2+(2b-3a)x-ab,(2x+a)(x+b)=2x2+(a+2b)x+ab,所以2b-3a=11①,a+2b=-9②,由②得2b=-9-a,代入①得-9-a-3a=11,所以a=-5,2b=-4,b=-2.(2)由(1)得(2x+a)(3x+b)=(2x-5)(3x-2)=6x2-19x+10.4.【题文】已知(x3+mx+n)(x2-3x+4)的展开式中不含x3和x2项.(1)求m,n的值;(2)当m,n取第(1)小题的值时,求(m+n)(m2-mn+n2)的值.【答案】(1)m=-4,n=-12;(2)-1 792.【分析】(1)利用多项式乘以多项式法则计算得到结果,根据展开式中不含x2和x3项得出关于m与n的方程组,求出方程组的解即可得到m与n的值;(2)先利用多项式乘以多项式的法则将(m+n)(m2-mn+n2)展开,再合并同类项化为最简形式,然后将(1)中所求m、n的值代入计算即可.【解答】解:(1)(x3+mx+n)(x2-3x+4)=x5-3x4+(m+4)x3+(n-3m)x2+(4m-3n)x+4n,根据展开式中不含x3和x2项得:m+4=0,n-3m=0,解得:m=-4,n=-12.(2)因为(m+n)(m2-mn+n2)=m3-m2n+mn2+m2n-mn2+n3=m3+n3,当m=-4,n=-12时,原式=(-4)3+(-12)3=-64-1 728=-1 792.5.【题文】已知(x+ay)(x+by)=x2-11xy+6y2,求整式3(a+b)-2ab的值.【答案】-45【分析】直接利用多项式乘法运算法则计算进而合并同类项得出a+b,ab的值,即可得出答案.【解答】解:因为(x+ay)(x+by)=x2+(a+b)xy+aby2=x2-11xy+6y2,所以a+b=-11,ab=6.所以3(a+b)-2ab=3×(-11)-2×6=-33-12=-45.6.【题文】计算:3(2x-1)(x+6)-5(x-3)(x+6).【答案】x2+18x+72【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.【解答】解:原式=3(2x2+12x-x-6)-5(x2+6x-3x-18)=6x2+33x-18-5x2-15x+90=x2+18x+72.7.【题文】先化简,再求值:4x·x+(2x-1)(1-2x).其中x=.【答案】4x-1,-【分析】直接利用整式乘法运算法则计算,再去括号,进而合并同类项,把已知代入求出答案即可.【解答】解:原式=4x2+(2x-4x2-1+2x)=4x2+4x-4x2-1=4x-1.当x=时,原式=4×-1=8.【题文】计算:(1)(3x+2y)(9x2-6xy+4y2);(2)(3x-2y)(y-3x)-(2x-y)(3x+y).【答案】(1)27x3+8y3;(2)-15x2-y2+10xy【分析】用多项式乘多项式法则计算即可.【解答】解:(1)原式=27x3-18x2y+12xy2+18x2y-12xy2+8y3=27x3+8y3;(2)原式=3xy-9x2-2y2+6xy-(6x2+2xy-3xy-y2)=-9x2-2y2+9xy-6x2+xy+y2=-15x2-y2+10xy.9.【题文】化简求值:(x-y)(x-2y)- (2x-3y)(x+2y),其中x=2,y=【答案】-xy+5y2,-2【分析】先去括号,再合并同类项,最后代入x,y的值计算即可.【解答】解:原式===当x=2,y=时,原式==-2.点睛:本题考查了整式的混合运算,掌握运算法则是解题的关键.10.【题文】计算:(1)x(x+3)(x+5);(2)(5x+2y)(5x-2y)-5x(5x-3y)【答案】(1) x3+8x2+15x;(2)-4y2+15xy【分析】(1)先算多项式乘多项式,再算单项式乘多项式;(2)先用平方差公式和单项式乘多项式法则计算,再合并同类项.【解答】解:(1)原式= ;(2)原式==.11.【题文】先化简,再求值:,其中.【答案】5【分析】利用平方差公式和单项式乘多项式将原式展开,再合并同类项即可化简,把x的值代入计算即可.【解答】解:原式=当x=2时,原式=-1+3×2=5.12.【题文】你会求的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:(1)由上面的规律我们可以大胆猜想,得到=________利用上面的结论,求(2)的值;(3)求的值.【答案】(1);(2);(3)【分析】(1)根据已知算式得出规律,即可得出答案;(2)先变形,再根据规律得出答案即可;(3)先变形,再根据算式得出即可.【解答】解:(1)(a﹣1)(a2018+a2017+a2016+…+a2+a+1) =a2019﹣1.故答案为:a2019﹣1;(2)22018+22017+22016+…+22+2+1=(2﹣1)×(22018+22017+22016+…+22+2+1)=22019﹣1故答案为:22019﹣1;(3)∵∴∴.13.【题文】若的积中不含与项.(1)求p、q的值;(2)求代数式的值.【答案】(1)p=3 ,q=;(2)【分析】(1)用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加,再令x2与x3项的系数为0,即可得p、q的值;(2)先将p、q的指数作适当变形便于计算,再将p、q的值代入代数式中计算即可.【解答】解:(1)=x4-3x3+qx2+px3-3px2+pqx+x2-28x+q=x4+(p-3)x3+(q-3p+)x2+(pq-28)x+q,因为它的积中不含有x2与x3项,则有,p-3=0,q-3p+=0解得,p=3,q=;(2)===-8×=-8×=216=.14.【题文】计算:(2x﹣3)(x+4)﹣(x﹣1)(x+1)【答案】x2+5x﹣11.【分析】按多项式乘多项式计算即可;【解答】解:原式=2x2+8x﹣3x﹣12﹣(x2﹣1),=2x2+8x﹣3x﹣12﹣x2+1,=x2+5x﹣11.15.【题文】有许多代数恒等式可以用图形的面积来表示,如图①,它表示了(2m +n)(m+n)=2m2+3mn+n2.(1)图②是将一个长2m、宽2n的长方形,沿图中虚线平方为四块小长方形,然后再拼成一个正方形,请你观察图形,写出三个代数式(m+n)2、(m-n)2、mn关系的等式:______;(2)若已知x+y=7、xy=10,则(x-y) 2=______;(3)小明用8个一样大的长方形(长acm,宽bcm)拼图,拼出了如图甲、乙的两种图案,图案甲是一个正方形,图案乙是一个大的长方形,图案甲的中间留下了边长是2cm的正方形小洞,则(a+2b)2-8ab的值为______.【答案】(1);(2)9;(3)4.【分析】(1)利用图形面积关系得出等式即可;(2)利用图形面积之间关系得出(x﹣y)2=(x+y)2﹣4xy即可求出;(3)利用图形面积之间关系得出(a+2b)2﹣8ab=(a﹣2b)2即可求出.【解答】解:(1)由图形的面积可得出:(m+n)2=(m﹣n)2+4mn;故答案为:(m+n)2=(m﹣n)2+4mn;(2)∵x+y=7、xy=10,则(x﹣y)2=(x+y)2﹣4xy=72﹣4×10=9.故答案为:9;(3)∵(a+2b)2﹣8ab=(a﹣2b)2=22=4(cm2),∴(a+2b)2﹣8ab的值为4cm2.故答案为:4cm2.16.【题文】计算:(1);(2);(3).【答案】(1);(2);(3).【分析】根据整式的混合运算法则计算即可.【解答】解:(1)原式=;(2)原式==;(3)原式==.17.【题文】计算:(1) (2)(3) (4)【答案】(1);(2);(3);(4)【分析】(1)(2)(4)根据幂的混合运算法则计算即可;(3)根据整式的混合运算法则计算即可.【解答】解:(1)原式==;(2)原式==;(3)原式= ==0;(4)原式==.18.【题文】如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如4=22﹣02,12=42﹣22,20=62﹣42,因此,4,12,20这三个数都是“和谐数”.(1)28和2016这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?【答案】(1)2016不是“和谐数”;(2)由这两个连续偶数构成的“和谐数”是4的倍数.【分析】(1)28=82-62, 28是“和谐数”,2016不能表示成两个连续偶数的平方差, 2016不是“和谐数”;(2)计算出(2k+2)2-(2k)2得4(2k+1),由k为非负整数,可得2k+1一定为正整数,即4(2k+1)一定能被4整除,故由这两个连续偶数构成的“和谐数”是4的倍数.【解答】解:(1)∵28=82-62,∴28是“和谐数”,∵2016不能表示成两个连续偶数的平方差,∴2016不是“和谐数”;(2)(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=2(4k+2)=4(2k+1),∵k为非负整数,∴2k+1一定为正整数,∴4(2k+1)一定能被4整除,即由这两个连续偶数构成的“和谐数”是4的倍数.19.【题文】计算:().().().【答案】(1) ;(2) ;(3)【分析】按照整式的乘法和除法法则进行运算即可.【解答】解:(),.(),,.(),.20.【题文】阅读后作答:我们知道,有些代数恒等式可以用平面图形的面积来表示,例如(2a+b)(a+b)=2a2+3ab+b2,就可以用图1所示的面积关系来说明.(1)根据图2写出一个等式;(2)已知等式(x+p)(x+q)=x2+(p+q)x+pq,请画出一个相应的几何图形加以说明.【答案】(1) 2a2+5ab+2b2;(2)见解析【分析】根据图2写出等式即可;根据已知等式画出相应图形即可.【解答】解:(1)(2a+b)(a+2b)=2a2+5ab+2b2.(2)等式(x+p)(x+q)=x2+(p+q)x+pq可以用以下图形面积关系说明:。
3.3 多项式的乘法(第2课时)课堂笔记较复杂多项式相乘,仍然遵循“先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加”的法则.注意:(1)多项式相乘要注意多项式每一项的符号;(2)多项式相乘的结果要最简. 分层训练A 组 基础训练1. 计算(x +y )(x 2-xy +y 2)的结果是( )A. x 3-y 3B. x 3+y 3C. x 3+2xy +y 3D. x 3-2xy +y 32. 若长方形的长为(4a 2-2a +1),宽为(2a +1),则这个长方形的面积为( )A. 8a 2-4a 2+2a -1B. 8a 3+4a 2-2a -1C. 8a 3-1D. 8a 3+13. 计算(2x 2-4)(2x -1-23x )的结果是( ) A. -x 2+2 B. x 3+4 C. x 3-4x +4D. x 3-2x 2-2x +4 4. 化简:(x 2+3)(2x -5)= .5. 四个连续自然数,中间的两个数的积比前后两个数的积大 .6. 如果三角形的一边长为2a +4,这条边上的高为2a 2+a +1,则三角形的面积为 .7. 已知(x +2)(x 2+ax +b )展开后不含x 的二次项和一次项,则a = ,b = .8. 计算:(1)(2x +1)(2-x 2);(2)(a 2+1)(a 2-5);(3)3a (a 2+4a +4)-a (a -3)(3a +4);(4)3y (y -4)(2y +1)-(2y -3)(4y 2+6y -9).9. 解方程:(2x +3)(x -4)-(x +2)(x -3)=x 2+6.10. 先化简,再求值:(y -2)(y 2-6y -9)-y (y 2-2y -15),其中y =21.11. 试说明无论x 为何值,代数式(x -1)(x 2+x +1)-(x 2+1)(x +1)+x (x +1)的值与x 无关.B 组 自主提高12. 通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是( )A .(a -b )2=a 2-2ab +b 2B . (a +b )2=a 2+2ab +b 2C . 2a (a +b )=2a 2+2abD . (a +b )(a -b )=a 2-b 213.已知(x+ay)(x+by)=x2-4xy+6y2,求代数式3(a+b)-2ab的值.14. 观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;…请你根据这一规律计算:(1)(x-1)(x n+x n-1+x n-2+…+x+1);(2)213+212+211+…+22+2+1.C组综合运用15. 已知a1,a2,a3,…,a2018都是正整数,设M=(a1+a2+a3+…+a2017)(a2+a3+a4+…+a2018),N=(a1+a2+a3+…+a2018)(a2+a3+a4+…+a2017),试比较M,N的大小关系.参考答案【分层训练】1—3. BDD4. 2x3-5x2+6x-155. 26. 2a3+5a2+3a+27. -2 48. (1)原式=4x-2x3+2-x2=-2x3-x2+4x+2(2)原式=a4-5a2+a2-5=a4-4a2-5(3)原式=3a3+12a2+12a-a(3a2+4a-9a-12)=3a3+12a2+12a-3a3+5a2+12a=17a2+24a(4)原式=-2y3-21y2+24y-279. 去括号,得2x2-8x+3x-12-x2+3x-2x+6=x2+6. 合并同类项,得x2-4x-6=x2+6. 移项、合并同类项,得-4x=12. 解得x=-3.5110. 原式=-6y2+18y+18=211. (x-1)(x2+x+1)-(x2+1)(x+1)+x(x+1)=x3-1-x3-x2-x-1+x2+x=-2,所以代数式的值与x无关.12. C13. 由已知可得x2+(a+b)xy+aby2=x2-4xy+6y2,比较系数可得a+b=-4,ab=6. ∴3(a+b)-2ab=3×(-4)-2×6=-24.14. (1)(x-1)(x n+x n-1+x n-2+…+x+1)=x n+1-1.(2)由(1)中所得规律可知,213+212+211+…+22+2+1=(2-1)(213+212+211+…+22+2+1)=214-1.15. 设x=a1+a2+a3+…+a2017+a2018,则M=(x-a2018)(x-a1)=x2-(a1+a2018)x+a1·a2018,N=x·(x-a1-a2018)=x2-(a1+a2018)x,∴M>N.。
章节测试题1.【题文】已知:a+b=3,ab=2,求的值.【答案】5.【分析】把a+b=3两边平方,再利用完全平方公式展开,再把ab=2代入进行计算即可得解.【解答】解:∵a+b=3,∴(a+b)2=9,即a2+2ab+b2=9,∵ab=2,∴a2+b2=9-2ab=9-2×2=5.2.【题文】考古学家从幼发拉底河附近的一座寺庙里,发掘出数千块泥板书,他们从泥板书中发现美索不达米亚的祭祀已经知道平方表的用法,并能够利用平方表算出任意两个自然数的乘积.例如:计算乘以,祭祀们会按下面的流程操作:第一步:加上,将和除以得;第二步:减去,将差除以得;第三步:查平方表,得的平方是;第四步:查平方表,得的平方是;第五步:减去,得到答案.于是他们便得出.请你利用所学的代数知识,设两个自然数分别为、,对泥板书计算两个自然数乘积的合理性做出解释.【答案】见解析【分析】按照题中所给的步骤进行推导即可.【解答】解:.3.【题文】计算:.【答案】【分析】先利用平方差公式进行计算,然后再利用完全平方公式进行计算即可.【解答】解:原式.4.【题文】已知:a+b=3,ab=2,求的值.【答案】5.【分析】把a+b=3两边平方,再利用完全平方公式展开,再把ab=2代入进行计算即可得解.【解答】解:∵a+b=3,∴(a+b)2=9,即a2+2ab+b2=9,∵ab=2,∴a2+b2=9-2ab=9-2×2=5.5.【题文】计算:(m-n)(m+n)+(m+n)2-2m2.【答案】2mn【分析】原式第一项利用平方差根式化简,第二项利用完全平方公式展开,计算即可得到结果.【解答】解:(m-n)(m+n)+(m+n)2-2m2=m2-n2+m2+2mn+n2-2m2=2mn.6.【题文】用乘法公式计算:99.82.【答案】9960.04.【分析】把99.8写成(100-0.2),然后利用完全平方公式计算即可得解;【解答】解:99.82=(100﹣0.2)2=1002﹣2×100×0.20+22=9960.04.7.【题文】已知(x+y)2=25,xy=,求x﹣y的值.【答案】±4【分析】首先,根据完全平方公式将(x+y)2打开,并根据xy的值求出x2+y2;然后,根据完全平方公式求出(x-y)2的值,开平方即可求解.【解答】解:∵(x+y)2=25,∴x2+2xy+y2=25,又∵xy=94,∴x2+y2=412,∴(x-y)2=x2-2xy+y2=412-2×94=16,∴x-y=±4.8.【题文】现有边长分别为a,b的正方形Ⅰ号和Ⅱ号,以及长为a,宽为b的长方形Ⅲ号卡片足够多,我们可以选取适量的卡片拼接成几何图形.(卡片间不重叠、无缝隙)尝试解决:(1)图1是由1张Ⅰ号卡片、1张Ⅱ号卡片、2张Ⅲ号卡片拼接成的正方形,那么这个几何图形表示的等式是______;(2)小聪想用几何图形表示等式(a+b)(2a+b)=2a2+3ab+b2,图2给出了他所拼接的几何图形的一部分,请你补全图形;(3)小聪选取1张Ⅰ号卡片、3张Ⅱ号卡片、4张Ⅲ号卡片拼接成一个长方形,那么拼接的几何图形表示的等式是______;拓展研究:(4)如图3,大正方形的边长为m,小正方形的边长为n,若用m、n表示四个直角三角形的两直角边边长(b>a),观察图案,以下关系式中正确的有______.(填写序号)①ab=;②a+b=m;③a2+b2=m2;④a2+b2=.【答案】(1)(a+b)2=a2+2ab+b2;(2)答案见解析;(3)(a+b)(a+3b)=a2+4ab+3b2;(4)①③.【分析】(1)根据图形,有直接求和间接求两种方法,列出等式即可;(2)根据已知等式画出相应的图形,如图所示;(3)根据题意列出关系式,分解因式后即可得到结果.根据完全平方公式判断即可.【解答】解:(1)这个几何图形表示的等式是(2)如图:(3)拼接的几何图形表示的等式是根据图③得:∴∵∴∴①③正确,故答案为:①③9.【题文】已知,,求下列代数式的值:(1);(2).【答案】(1)10;(2)±8.【分析】(1)把两边平方,利用完全平方公式化简,再将代入计算即可求出值;(2)利用完全平方公式及平方根定义求出的值,原式利用平方差公式分解后,将各自的值代入计算即可求出值.【解答】解:(1)把x+y=4两边平方得:将xy=3代入得:(2)∵∴∴x−y=2或x−y=−2,则原式=(x+y)(x−y)=8或−8.10.【题文】利用我们学过的知识,可以导出下面这个形式优美的等式:a2+b2+c2-ab-bc-ac= [(a-b)2+(b-c)2+(c-a)2],该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.(1)请你检验这个等式的正确性;(2)若a=2 016,b=2 017,c=2 018,你能很快求出a2+b2+c2-ab-bc-ac的值吗?【答案】(1)详见解析;(2)3.【分析】(1)已知等式右边利用完全平方公式化简,整理即可作出验证;(2)把a,b,c的值代入已知等式右边,求出值即为所求式子的值.解:(1)等式右边= (a2-2ab+b2+b2-2bc+c2+a2-2ac+c2)= (2a2+2b2+2c2-2ab-2bc-2ac)=a2+b2+c2-ab-bc-ac=等式左边,所以等式是成立的.(2)原式= [(2 016-2 017)2+(2 017-2 018)2+(2 018-2 016)2]=3.11.【题文】计算:(2x﹣1)2﹣2(x+3)(x﹣3).【答案】2x2﹣4x+19.【分析】用完全平方公式和平方差公式展开后,再合并同类项.【解答】解:(2x﹣1)2﹣2(x+3)(x﹣3)=4x2﹣4x+1﹣2x2+18=2x2﹣4x+19.12.【题文】已知,,求下列代数式的值.(1);(2).【答案】(1)30;(2)8.【分析】(1)原式提取5,利用完全平方公式变形,将x+y与xy的值代入计算即可求出值;(2)原式利用完全平方公式变形,将x+y与xy的值代入计算即可求出值.【解答】解:(1)∵x+y=2,xy=﹣1,∴5x2+5y2=5(x2+y2)=5[(x+y)2﹣2xy]=5×[22﹣2×(﹣1)]=30;(2)∵x+y=2,xy=﹣1,∴(x﹣y)2=(x+y)2﹣4xy=22﹣4×(﹣1)=4+4=8.13.【题文】已知a-b=5,ab=,求a2+b2和(a+b)2的值.【答案】a2+b2=28,(a+b)2=31【分析】用完全平方公式变形解答即可.【解答】解:,∴=25+3=28,=28+3=31.14.【题文】阅读材料:若,求,的值.解:∵,∴,∴,∴,,∴,.根据你的观察,探究下面的问题:(),则__________,__________.()已知,求的值.()已知的三边长、、都是正整数,且满足,求的周长.(提示:三角形任意两边之和大于第三边,任意两边之差小于第三边)【答案】(1)a=3,b=1;(2)16(3)9【分析】(1) (2)(3) 将已知化为完全平方形式,利用非负性求值.【解答】解:()∵,,,∵,,∴,,,.(),,,∵,,∴,,,,∴,∴.(),,,∵,,∴,,,,∵,∴,,∴,∵、、为正整数,∴,∴周长.15.【题文】(1)计算:x(4x﹣1)﹣(2x﹣3)(2x+3)+(x﹣1)2;(2)已知实数a,b满足(a+b)2=1,(a﹣b)2=25,求a2+b2+ab的值.【答案】(1)原式=x2﹣3x+10;(2)a2+b2+ab=13﹣6=7.【分析】(1)x(4x﹣1)按照单项式乘多项式的法则计算,(2x﹣3)(2x+3)根据平方差公式计算,(x﹣1)2根据完全平方公式计算;(2)把(a+b)2=1,(a ﹣b)2=25的左边按照完全平方公式乘开,然后把两个式子相加可得a2+b2=13,把两个式子相减可得ab=﹣6.【解答】解:(1)原式=4x2﹣x﹣(4x2﹣9)+(x2﹣2x+1)=4x2﹣x﹣4x2+9+x2﹣2x+1=x2﹣3x+10;(2)∵(a+b)2=1,∴a2+2ab+b2=1①,∵(a﹣b)2=25,∴a2﹣2ab+b2=25②,由 ①+‚②得:a2+b2=13,由①•﹣②‚得:ab=﹣6,∴a2+b2+ab=13﹣6=7.16.【题文】我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.例如:由图1可得到(a+b)²=a²+2ab+b².图1 图2 图3(1)写出由图2所表示的数学等式:_____________________;写出由图3所表示的数学等式:_____________________;(2)利用上述结论,解决下面问题:已知a+b+c=11,bc+ac+ab=38,求a²+b²+c²的值.【答案】(a+b+c)2=a2+b2+c2+2ab+2ac+2bc (a-b-c)2=a2+b2+c2-2ab-2ac+2bc 45【分析】(1)根据数据表示出矩形的长与宽,再根据矩形的面积公式写出等式的左边,再表示出每一小部分的矩形的面积,然后根据面积相等即可写出等式.(2)根据利用(1)中所得到的结论,将a+b+c=11,bc+ac+ab=38,作为整式代入即可求出.【解答】解:(1)根据题意,大矩形的面积为:小矩形的面积为:(2)由(1)得17.【题文】已知,求:(1)的值;(2)的值;(3)的值.【答案】(1)-30;(2);(3)【分析】(1)提公因式,然后将a+b=5和ab=-6整体代入求值;(2)将原式利用配方法转化为两根的和与两根的积来解答;(3)将原式利用配方法转化为两根的和与两根的积来解答.【解答】解:(1)∵,∴;(2);(3),故.18.【题文】利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是怎样的?写出得到公式的过程.【答案】(a﹣b)2=a2﹣2ab+b2.【分析】根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.【解答】解:∵大正方形的面积= a2还可以表示为19.【题文】已知a2+b2=1,a-b=,求a2b2与(a+b)4的值.【答案】【分析】把目标代数式化成包含已知代数式的形式. 【解答】解:因为a2+b2=1,a-b=,所以(a-b)2=a2+b2-2ab.所以ab=- [(a-b)2-(a2+b2)]=.所以a2b2=(ab)2=.因为(a+b)2=(a-b)2+4ab.=,所以(a+b)4=[(a+b)2]2=.20.【题文】请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);并由此得到怎样的等量关系?请用等式表示;(2)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a-b 的值.【答案】(1)a2+b2=(a+b)2-2ab;(2)①9;②5.【分析】(1)两个阴影部分的面积可以用阴影部分面积相加和用总面积减去非阴影部分面积来表示。
章节测试题1.【题文】若关于x的多项式(x2+x-n)(mx-3)的展开式中不含x2和常数项,求m,n的值.【答案】m=3,n=0.【分析】本题考查了利用多项式的不含问题求字母的值,先按照多项式与多项式的乘法法则乘开,再合并关于x的同类项,然后令不含项的系数等于零,列方程求解即可.【解答】解:原式=mx3+(m-3)x2-(3+mn)x+3n,由展开式中不含x2和常数项,得到m-3=0,3n=0,解得m=3,n=0.2.【题文】化简:a(3-2a)+2(a+1)(a-1).【答案】3a-2.【分析】先去括号,然后再合并同类项即可.【解答】解:原式=3a-2a2+2(a2-1)=3a-2a2+2a2-2=3a-2.3.【题文】计算:(1)6mn2·(2-mn4)+(-mn3)2;(2)(1+a)(1-a)+(a-2)2(3)(x+2y)2-(x-2y)2-(x+2y)(x-2y)-4y2.【答案】(1)12mn2- 7m2n6;(2)-4a+5;(3)-x2+8xy.【分析】(1)根据单项式乘多项式法则和积的乘方法则计算后,再合并同类项即可;(2)根据乘法公式计算后,再合并同类项即可;(3)根据乘法公式计算后,再合并同类项即可.【解答】解:(1)原式=12mn2- 6m2n6-m2n6=12mn2- 7m2n6(2)原式=1-a2+a2-4a+4=-4a+5(3)原式=x2+4xy+4y2-x2+4xy-4y2-x2+4y2-4y2=-x2+8xy4.【题文】计算:(2m-3)(2m+5) -(4m-1).【答案】【分析】先进行多项式乘法运算,然后再合并同类项即可.【解答】解:原式=.5.【题文】已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.【答案】p=3,q=1.【分析】根据整式的乘法,化简完成后,根据不含项的系数为0求解即可.【解答】解:∵(x2+px+8)(x2﹣3x+q)=x4﹣3x3+qx2+px3﹣3px2+pqx+8x2﹣24x+8q=x4+(p﹣3)x3+(q﹣3p+8)x2+(pq﹣24)x+8q.∵乘积中不含x2与x3项,∴p﹣3=0,q﹣3p+8=0,∴p=3,q=1.6.【题文】化简:(1)(-ab-2a)(-a2b2);(2)(2m-1)(3m-2).【答案】(1) a3b3+a3b2;(2) 6m2-7m+2.【分析】(1)根据单项式乘以多项式的运算法则进行计算即可求得结果;(2)根据多项式乘以多项式的运算法则进行计算即可求得结果.【解答】解:(1)原式=a3b3+a3b2;(2)原式=6m2-4m-3m+2=6m2-7m+2.7.【答题】若的值使得x2+4x+a=(x-5)(x+9)-2成立,则的值为______【答案】-47【分析】先根据整式的运算化简,再根据系数相等解答即可.【解答】∵(x-5)(x+9)-2=x2+9x-5x-45-2= x2+4x-47.∴a=-47.8.【答题】若(x+p)与(x+5)的乘积中,不含x的一次项,则p的值是______.【答案】-5【分析】根据整式的乘法运算解答即可.【解答】利用多项式乘以多项式法则计算得到(x+p)(x+5)=x2+(p+5)x+2p,根据乘积中不含一次项可知p+5=0,即p=-5.故答案为:-5.9.【答题】如果(x―3)(x+a)的乘积不含关于x的一次项,那么a=______.【答案】3【分析】根据整式的乘法运算解答即可.【解答】(x-3)(x+a)=x2+(a-3)-3a,由乘积中不含一次项,得到a-3=0,解得a=3.10.【答题】要使的乘积中不含项,则与的关系是()A. 相等B. 互为相反数C. 互为倒数D. 关系不能确定【答案】A【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把p、q看作常数合并关于x的同类项,令x2系数为0,得出p与q的关系.【解答】解:(x2+px+2)(x﹣q)=x3﹣qx2+px2﹣pqx+2x﹣2q=x3+(p﹣q)x2﹣(pq﹣2)x﹣2q因为乘积中不含x2项,则p﹣q=0,即p=q.选A.11.【答题】M是关于x的三次式,N是关于x的五次式,下列说法正确的是()A. M+N是八次式B. N-M是二次式C. M·N是八次式D. M·N是十五次式【答案】C【分析】根据整式的运算解答即可.【解答】∵M是关于x的三次式,N是关于x的五次式,∴M•N是关于x的八(3+5)次式.选C.12.【答题】(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,则m的值是()A. 0B.C. ﹣D. ﹣【答案】C【分析】根据整式的运算解答即可.【解答】解:(x2﹣mx+6)(3x﹣2)=3x3﹣(2+3m)x2+(2m+18)x﹣12,∵(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,∴2+3m=0,解得,m=,选C.13.【答题】如图,根据计算长方形ABCD的面积,可以说明下列哪个等式成立()A.B.C.D.【答案】D【分析】根据整式的运算解答即可.【解答】长方形ABCD的面积的两种表示方法可得,选D.14.【答题】当a=时,代数式(a-4)(a-3)-a(a+2)的值为()A. 9B. -9C. 3D.【答案】A【分析】先化简,再代入求值即可.【解答】解:(a-4)(a-3)-a(a+2)= =-9a+12当a=时,原式==9选A.15.【答题】如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()A. 2张B. 3张C. 4张D. 5张【答案】B【分析】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.【解答】解:(a+2b)(a+b)=a2+ab+2ab+2b2=a2+3ab+2b2,则需要C类卡片张数为3选B.16.【答题】下列计算正确的是()A. -3x2y·5x2y=2x2yB. -2x2y3·2x3y=-2x5y4C. 35x3y2÷5x2y=7xyD. (-2x-y)(2x+y)=4x2-y2【答案】C【分析】根据整式的运算解答即可.【解答】解:A、-3x2y·5x2y=-15x4y2,故此选项错误;B、-2x2y3·2x3y=-4x5y4,故此选项错误;C、35x3y2÷5x2y=7xy,故此选项正确;D、 (-2x-y)(2x+y)=-4x2-y2+4xy,故此选项错误.选C.17.【答题】已知多项式(x+3)(x+n)=x2+mx-21,则m的值是()A. -4B. 4C. -2D. 2【答案】A【分析】根据整式的运算解答即可.【解答】∵(x+3)(x+n)=x2+nx+3x+3n= x2+(n+3)x+3n,∴x2+(n+3)x+3n =x2+mx-21,∴ ,解之得.选A.18.【答题】如果(x﹣2)(x﹣3)=x2+px+q,那么p、q的值是()A. p=﹣5,q=6B. p=1,q=﹣6C. p=1,q=6D. p=1,q=﹣6【答案】A【分析】先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q的值.【解答】解:∵(x-2)(x-3)=x2-5x+6,又∵(x-2)(x-3)=x2+px+q,∴x2+px+q= x2-5x+6,∴p=﹣5,q= 6选A.19.【答题】下列运算正确的是()A. (x2)3=x5B. (-3x2y)3=-9x6y3C. (a+b)(a+b)=a2+b2D.【答案】D【分析】根据整式的运算判断解答即可.【解答】解:A、(x2)3=x6,故本选项错误;B、(-3x2y)3=-27x6y3,故本选项错误;C、(a+b)(a+b)=a2+2ab+b2,故本选项错误;D、4x3y2•(-xy2)=-2x4y4,故本选项正确.选C.20.【答题】若,,则().A.B.C.D.【答案】A【分析】先根据整式的运算化简,再整体代入求解即可.【解答】∵,,∴原式=选A.。
第三章整式的乘除好题精选一.选择题(共15小题)1.下列运算正确的是()A.(a﹣3)2=a2﹣9 B.a2•a4=a8C.=±3 D.x6÷x3=x32.如图,把6张长为a、宽为b(a>b)的小长方形纸片不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示,设这两个长方形的面积的差为S.当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a、b满足()A.a=1.5b B.a=2.5b C.a=3b D.a=2b3.下列运算正确的是()A.5m+2m=7m2B.﹣2m2•m3=2m5C.(﹣a2b)3=﹣a6b3D.(b+2a)(2a﹣b)=b2﹣4a24.下列运算中正确的是()A.(a2)3=a5B.(2x+1)(2x﹣1)=2x2﹣1C.a8a2=a4D.(a﹣3)2=a2﹣6a+95.如图一个正方形和一个长方形有一部分重叠在一起,重叠部分是边长为3的正方形,则未重叠部分的面积是()A.mn+a2﹣18 B.mn+a2﹣9 C.mn+a2+9 D.mn+a26.如图,是L型钢条截面,则它的面积为()A.ac+bc B.ac+bc﹣c2C.(a﹣c)c+(b﹣c)c D.a+b+2c+(a﹣c)+(b﹣c)7.如图,若将图(1)中的阴影部分剪下来,拼成如图(2)所示的长方形,比较两图阴影部分的面积,可以得到乘法公式()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.a2﹣b2=(a+b)(a﹣b)D.a2﹣b2=(a﹣b)28.化简(x+y+z)2﹣(﹣x+y+z)2+(x﹣y+z)2﹣(x+y﹣z)2的结果是()A.4yz B.8xy C.4xy﹣4yz D.8xz9.如图,甲图是边长为a(a>1)的正方形去掉一个边长为1的正方形,乙图是边长为(a ﹣1)的正方形,则两图形的面积关系是()A.甲>乙B.甲=乙C.甲<乙D.甲≤乙10.根据下图“十”字形的割补,你能得到哪个等式()A.a2﹣x2=x(a+2x)B.a2﹣4x2=2x(a+2x)C.a2﹣x2=(a﹣2x)(a+2x)D.a2﹣4x2=(a﹣2x)(a+2x)11.如图是用4个相同的小长方形与1个小正方形密铺而成的大正方形图案,已知其中大正方形的面积为64,小正方形的面积为9.若用x,y分别表示小长方形的长与宽(其中x >y),则下列关系式中错误的是()A.4xy+9=64 B.x+y=8 C.x﹣y=3 D.x2﹣y2=912.6张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b 满足()A.a=3b B.C.a=4b D.13.如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.a2+ab=a(a+b)14.已知(x﹣m)(x+n)=x2﹣3x﹣4,则m﹣n的值为()A.1 B.﹣3 C.﹣2 D.315.现定义一种运算“⊙”,对任意有理数m、n,规定:m⊙n=mn(m﹣n),如1⊙2=1×2(1﹣2)=﹣2,则(a+b)⊙(a﹣b)的值是()A.2ab2﹣2b2B.2a2b﹣2b3C.2ab2+2b2D.2ab﹣2ab2二.填空题(共10小题)16.已知ab=a+b+1,则(a﹣1)(b﹣1)=.17.将代数式化成不含有分母的形式是.18.如图,从边长为(a+5)的正方形纸片中剪去一个边长为5的正方形,剩余部分沿虚线剪开再拼成一个长方形(不重叠无缝隙),则拼成的长方形的另一边长是.19.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a,b的等式为.20.若100a+64和201a+64均为四位数,且均为完全平方数,则整数a的值是.21.在学习乘法公式的时候,我们可以通过图形解释加深对公式的理解,下面这个图形可以解释的乘法公式是.22.比较大小:﹣142﹣1.(填“>”或“<”).23.已知a2+b2=12,a﹣b=4,则ab=.24.x2﹣(x﹣1)(x+1)=25.如图,两个正方形边长分别为a、b,且满足a+b=10,ab=12,图中阴影部分的面积为.三.解答题(共13小题)26.先化简,再求值:(2a+b)2﹣(2a+3b)(2a﹣3b),其中a=,b=﹣2.27.若实数a,b互为相反数,c,d互为倒数,m的绝对值为2,求a2﹣b2+(cd)﹣1÷(1﹣2m+m2)的值.28.一个长方体的高是8cm,它的底面是边长为3cm的正方形.如果底面正方形的边长增加acm,那么它的体积增加多少?29.乘法公式的探究及应用.(1)如图(1)所示,阴影部分的面积是(写成平方差的形式).(2)若将图(1)中的阴影部分剪下来,拼成如图(2)所示的长方形,此长方形的面积是(写成多项式相乘的形式).(3)比较两图中阴影部分的面积,可以得到乘法公式:.(4)应用所得的公式计算:[(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)+1]÷263.30.阅读材料:若“三角形”表示运算a﹣b+c,表示运算ad﹣bc,求:当x=﹣1,y=2时,×的值.31.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积.方法1:方法2:(2)观察图②请你写出下列三个代数式:(m+n)2,(m﹣n)2,mn之间的等量关系.;(3)根据(2)题中的等量关系,解决如下问题:①已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;②已知:,求:的值.32.已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.33.图1是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀剪下全等的四块小长方形,然后按图2拼成一个正方形.(1)直接写出图2中的阴影部分面积;(2)观察图2,请直接写出下列三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系;(3)根据(2)中的等量关系,解决如下问题:若p+q=9,pq=7,求(p﹣q)2的值,34.如图,某小区规划在一个长30米、宽20米的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.设通道的宽为x米,种植花草的面积为S平方米.(1)用含x的代数式表示S(要求有计算过程,结果化简);(2)当x=2时,求S的值.35.(1)2x(x2﹣1)﹣3x(x2+)(2)4(x+1)2﹣(2x+5)(2x﹣5)36.计算:(1)(﹣2x3y)2•(﹣2xy)+(﹣2x3y)3÷2x2(2)20202﹣2019×2021(3)(﹣2a+b+1)(2a+b﹣1)37.在长为3a+2,宽为2b﹣1的长方形铁片上,挖去长为2a+4,宽为b的小长方形铁片,求剩余部分面积.38.【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z=.【知识迁移】(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:.参考答案与试题解析一.选择题(共15小题)1.下列运算正确的是()A.(a﹣3)2=a2﹣9 B.a2•a4=a8C.=±3 D.x6÷x3=x3【分析】A、运用完全平方公式,少﹣6a;B、同底数幂的乘法,底数不变,批数相加;C、表示9的算术平方根,值为3;D、同底数幂的除法,底数不变,批数相减.【解答】解:A、(a﹣3)2=a2﹣6a+9,所以此选项不正确;B、a2•a4=a6,所以此选项不正确;C、=3,所以此选项不正确;D、x6÷x3=x3,所以此选项正确;故选:D.【点评】本题考查了整式的混合运算、算术平方根,熟练掌握完全平方公式和有关幂的运算法则是关键.2.如图,把6张长为a、宽为b(a>b)的小长方形纸片不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示,设这两个长方形的面积的差为S.当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a、b满足()A.a=1.5b B.a=2.5b C.a=3b D.a=2b【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b 的关系式.【解答】解:左上角阴影部分的长为AE,宽为AF=a,右下角阴影部分的长为PC,宽为2b,∵AD=BC,即AE+ED=AE+4b,BC=BP+PC=a+PC∴AE+4b=a+PC,∴AE=a﹣4b+PC,∴阴影部分面积之差S=AE•AF﹣PC•CG=aAE﹣2bPC=a(a﹣4b+PC)﹣2bPC=(a﹣2b)PC+a2﹣4ab,则a﹣2b=0,即a=2b.故选:D.【点评】本题主要考查整式的混合运算,解题的关键是结合图形列出面积差的代数式,并熟练掌握整式的混合运算顺序和运算法则.3.下列运算正确的是()A.5m+2m=7m2B.﹣2m2•m3=2m5C.(﹣a2b)3=﹣a6b3D.(b+2a)(2a﹣b)=b2﹣4a2【分析】A、依据合并同类项法则计算即可;B、依据单项式乘单项式法则计算即可;C、依据积的乘方法则计算即可;D、依据平方差公式计算即可.【解答】解:A、5m+2m=(5+2)m=7m,故A错误;B、﹣2m2•m3=﹣2m5,故B错误;C、(﹣a2b)3=﹣a6b3,故C正确;D、(b+2a)(2a﹣b)=(2a+b)(2a﹣b)=4a2﹣b2,故D错误.故选:C.【点评】本题主要考查的是整式的计算,掌握合并同类项法则、单项式乘单项式法则、积的乘方法则以及平方差公式是解题的关键.4.下列运算中正确的是()A.(a2)3=a5B.(2x+1)(2x﹣1)=2x2﹣1C.a8a2=a4D.(a﹣3)2=a2﹣6a+9【分析】根据幂的乘方、同底数幂的乘法、平方差公式和完全平方公式分别求出每个式子的值,再判断即可.【解答】解:A、结果是a6,故本选项不符合题意;B、结果是4x2﹣1,故本选项不符合题意;C、结果是a10,故本选项不符合题意;D、结果是a2﹣6a+9,故本选项符合题意;故选:D.【点评】本题考查了幂的乘方、同底数幂的乘法、平方差公式和完全平方公式等知识点,能正确求出每个式子的值是解此题的关键.5.如图一个正方形和一个长方形有一部分重叠在一起,重叠部分是边长为3的正方形,则未重叠部分的面积是()A.mn+a2﹣18 B.mn+a2﹣9 C.mn+a2+9 D.mn+a2【分析】由正方形中空白部分的面积为a2﹣9,长方形中空白部分的面积为mn﹣9,相加即可得.【解答】解:由图形知,正方形中空白部分的面积为a2﹣9,长方形中空白部分的面积为mn﹣9,∴未重叠部分的面积是a2﹣9+mn﹣9=a2+mn﹣18,故选:A.【点评】本题主要考查整式的混合运算,解题的关键是根据图形列出未重叠部分面积的代数式及整式的混合运算顺序和运算法则.6.如图,是L型钢条截面,则它的面积为()A.ac+bc B.ac+bc﹣c2C.(a﹣c)c+(b﹣c)c D.a+b+2c+(a﹣c)+(b﹣c)【分析】将图形分割成如图所示的两个长方形和一个正方形,结合图形列出算式c(a﹣c)+c(b﹣c)+c2,再根据整式的混合运算顺序与运算法则计算可得.【解答】解:如图所示,它的面积为c(a﹣c)+c(b﹣c)+c2=ac﹣c2+bc﹣c2+c2=ac+bc﹣c2,故选:B.【点评】本题主要考查整式的混合运算,解题的关键是将图形分割成几个基本图形和整式的混合运算法则.7.如图,若将图(1)中的阴影部分剪下来,拼成如图(2)所示的长方形,比较两图阴影部分的面积,可以得到乘法公式()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.a2﹣b2=(a+b)(a﹣b)D.a2﹣b2=(a﹣b)2【分析】根据图形可以写出相应的等式,从而可以解答本题.【解答】解:由图可得,a2﹣b2=(a+b)(a﹣b),故选:C.【点评】本题考查平方差公式,解答本题的关键是明确题意,利用数形结合的思想解答.8.化简(x+y+z)2﹣(﹣x+y+z)2+(x﹣y+z)2﹣(x+y﹣z)2的结果是()A.4yz B.8xy C.4xy﹣4yz D.8xz【分析】利用平方差公式,将代数式(x+y+z)2﹣(﹣x+y+z)2+(x﹣y+z)2﹣(x+y﹣z)2化简计算,即可得到结果.【解答】解:(x+y+z)2﹣(﹣x+y+z)2+(x﹣y+z)2﹣(x+y﹣z)2=(x+y+z﹣x+y+z)(x+y+z+x﹣y﹣z)+(x﹣y+z+x+y﹣z)(x﹣y+z﹣x﹣y+z)=2(y+z)×2x+2x×2(z﹣y)=4xy+4xz+4xz﹣4xy=8xz,故选:D.【点评】本题主要考查了平方差公式的运用,解决问题的关键是利用平方差公式进行化简变形.9.如图,甲图是边长为a(a>1)的正方形去掉一个边长为1的正方形,乙图是边长为(a ﹣1)的正方形,则两图形的面积关系是()A.甲>乙B.甲=乙C.甲<乙D.甲≤乙【分析】直接根据题意表示出各部分面积进而得出答案.【解答】解:∵甲图是边长为a(a>1)的正方形去掉一个边长为1的正方形,∴甲图的面积为:a2﹣12=(a+1)(a﹣1),∵乙图是边长为(a﹣1)的正方形,∴乙图的面积为:(a﹣1)2,∵a>1,∴(a+1)(a﹣1)>(a﹣1)2,故甲>乙.故选:A.【点评】此题主要考查了完全平方公式的几何背景,正确表示出各部分面积是解题关键.10.根据下图“十”字形的割补,你能得到哪个等式()A.a2﹣x2=x(a+2x)B.a2﹣4x2=2x(a+2x)C.a2﹣x2=(a﹣2x)(a+2x)D.a2﹣4x2=(a﹣2x)(a+2x)【分析】由题意可得大正方形面积﹣4个小正方形面积=右侧矩形面积,进而得出答案.【解答】解:由图形可得:a2﹣4x2=(a﹣2x)(a+2x),故选:D.【点评】此题主要考查了平方差公式的几何背景,正确表示出图形面积是解题关键.11.如图是用4个相同的小长方形与1个小正方形密铺而成的大正方形图案,已知其中大正方形的面积为64,小正方形的面积为9.若用x,y分别表示小长方形的长与宽(其中x >y),则下列关系式中错误的是()A.4xy+9=64 B.x+y=8 C.x﹣y=3 D.x2﹣y2=9【分析】分别根据大正方形边长、小正方形边长的不同表示可判断A、B,由A、B结论利用平方差公式可判断C,根据大正方形面积的整体与组合的不同表示可判断D.【解答】解:A、因为正方形图案面积从整体看是64,从组合来看,可以是(x+y)2,还可以是(4xy+4),即4xy+4=64,故此选项正确;B、因为正方形图案的边长8,同时还可用(x+y)来表示,故此选项正确;C、中间小正方形的边长为3,同时根据长方形长宽也可表示为x﹣y,故此选项正确;D、根据A、B可知x+y=8,x﹣y=3,则x2﹣y2=(x+y)(x﹣y)=24,故此选项错误;故选:D.【点评】本题主要考查根据数形结合列二元一次方程的能力,解答需结合图形,利用等式的变形来解决问题.12.6张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b 满足()A.a=3b B.C.a=4b D.【分析】表示出左上角和右下角部分的面积,求出它们的差,根据它们的差与BC无关即可求出a与b的关系式.【解答】解:如图,设S1的长为x,则宽为4b,S2的长为y,则宽为a,则AB=4b+a,BC=y+2b,∵x+a=y+2b,∴y﹣x=a﹣2b,S=S1﹣S2=ay﹣4bx=ay﹣4b(y﹣a+2b)=(a﹣4b)y+4ab﹣8b2,∵S始终保持不变,∴a﹣4b=0,则a=4b,故选:C.【点评】本题主要考查整式的混合运算的应用,解题的关键是弄清题意,列出面积差的代数式及整式的混合运算顺序与运算法则.13.如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.a2+ab=a(a+b)【分析】用两种方法正确的表示出阴影部分的面积,再根据图形阴影部分面积的关系,即可直观地得到一个关于a、b的恒等式.【解答】解:方法一阴影部分的面积为:(a﹣b)2,方法二阴影部分的面积为:(a+b)2﹣4ab,所以根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为(a﹣b)2=(a+b)2﹣4ab.故选:C.【点评】本题主要考查了完全平方公式的几何背景,解题的关键是用两种方法正确的表示出阴影部分的面积.14.已知(x﹣m)(x+n)=x2﹣3x﹣4,则m﹣n的值为()A.1 B.﹣3 C.﹣2 D.3【分析】把原式的左边利用多项式乘多项式展开,合并后与右边对照即可得到m﹣n的值.【解答】解:(x﹣m)(x+n)=x2+nx﹣mx﹣mn=x2+(n﹣m)x﹣mn,∵(x﹣m)(x+n)=x2﹣3x﹣4,∴n﹣m=﹣3,则m﹣n=3,故选:D.【点评】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.15.现定义一种运算“⊙”,对任意有理数m、n,规定:m⊙n=mn(m﹣n),如1⊙2=1×2(1﹣2)=﹣2,则(a+b)⊙(a﹣b)的值是()A.2ab2﹣2b2B.2a2b﹣2b3C.2ab2+2b2D.2ab﹣2ab2【分析】根据题目中的新运算可以求得(a+b)⊙(a﹣b)的值,本题得以解决.【解答】解:∵m⊙n=mn(m﹣n),∴(a+b)⊙(a﹣b)=(a+b)(a﹣b)[(a+b)﹣(a﹣b)]=(a2﹣b2)×2b=2a2b﹣2b3,故选:B.【点评】本题考查整式的混合运算、有理数的混合运算,解题的关键是明确它们的计算方法.二.填空题(共10小题)16.已知ab=a+b+1,则(a﹣1)(b﹣1)=2.【分析】将ab=a+b+1代入原式=ab﹣a﹣b+1合并即可得.【解答】解:当ab=a+b+1时,原式=ab﹣a﹣b+1=a+b+1﹣a﹣b+1=2,故答案为:2.【点评】本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用.17.将代数式化成不含有分母的形式是5ax﹣1y﹣2.【分析】原式利用负整数指数幂法则化简即可得到结果.【解答】解:原式=5ax﹣1y﹣2,故答案为:5ax﹣1y﹣2【点评】此题考查了负整数指数幂,熟练掌握运算法则是解本题的关键.18.如图,从边长为(a+5)的正方形纸片中剪去一个边长为5的正方形,剩余部分沿虚线剪开再拼成一个长方形(不重叠无缝隙),则拼成的长方形的另一边长是a+10.【分析】根据拼成的长方形的面积等于大正方形的面积减去小正方形的面积列式整理即可得解.【解答】解:拼成的长方形的面积=(a +5)2﹣52, =(a +5+5)(a +5﹣5), =a (a +10),∵拼成的长方形一边长为a , ∴另一边长是a +10. 故答案为:a +10.【点评】本题考查了平方差公式的几何背景,表示出剩余部分的面积是解题的关键. 19.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a ,b 的等式为 (a +b )2﹣(a ﹣b )2=4ab .【分析】根据长方形面积公式列①式,根据面积差列②式,得出结论. 【解答】解:S 阴影=4S 长方形=4ab ①,S 阴影=S 大正方形﹣S 空白小正方形=(a +b )2﹣(b ﹣a )2②, 由①②得:(a +b )2﹣(a ﹣b )2=4ab . 故答案为:(a +b )2﹣(a ﹣b )2=4ab .【点评】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.20.若100a +64和201a +64均为四位数,且均为完全平方数,则整数a 的值是 17 . 【分析】由于100a +64和201a +64均为完全平方数,可设100a +64=m 2①,201a +64=n 2②,则m 、n 均为正整数,又因为它们都是四位数,则1000≤m 2<10000,1000≤n 2<10000,解得m 、n 的取值范围,再将②﹣①,得101a =n 2﹣m 2=(n +m )(n ﹣m ),因为101是质数,且﹣101<n ﹣m <101,所以n +m =101,故a =n ﹣m =2n ﹣101.把a =2n ﹣101代入201a +64=n 2,得到关于n 的一元二次方程,解方程求出n 的值,从而求出符合条件的a 值.【解答】解:设100a+64=m2①,201a+64=n2②,则m、n均为正整数,且32≤m<100,32≤n<100.②﹣①,得101a=n2﹣m2=(n+m)(n﹣m),因为101是质数,且0<n﹣m<101,所以n+m=101,故a=n﹣m=2n﹣101.把a=2n﹣101代入201a+64=n2,整理得n2﹣402n+20237=0,解得n=59,或n=343(舍去).所以a=2n﹣101=17.故答案为17.【点评】本题主要考查了完全平方数的定义,一元一次不等式组的解法,因式分解,一元二次方程的解法等知识,综合性较强,属于竞赛题型,有一定难度.21.在学习乘法公式的时候,我们可以通过图形解释加深对公式的理解,下面这个图形可以解释的乘法公式是(a+b)(a﹣b)=a2﹣b2.【分析】根据图形确定出平方差公式即可.【解答】解:根据题意得:(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b)=a2﹣b2【点评】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.22.比较大小:﹣14<2﹣1.(填“>”或“<”).【分析】直接利用负指数幂的性质化简,进而比较得出答案.【解答】解:∵﹣14=﹣1,2﹣1=,∴﹣14<2﹣1.故答案为:<.【点评】此题主要考查了负指数幂的性质,正确化简各数是解题关键.23.已知a2+b2=12,a﹣b=4,则ab=﹣2.【分析】将a ﹣b =4两边同时平方,然后将a 2+b 2=12代入所得结果进行计算即可. 【解答】解:∵a ﹣b =4, ∴a 2﹣2ab +b 2=16, ∴12﹣2ab =16, 解得:ab =﹣2. 故答案为:﹣2.【点评】本题主要考查的是完全平方公式的应用,熟练掌握完全平方公式是解题的关键. 24.x 2﹣(x ﹣1)(x +1)= 1【分析】原式利用平方差公式计算,去括号合并即可得到结果. 【解答】解:原式=x 2﹣x 2+1=1, 故答案为:1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.25.如图,两个正方形边长分别为a 、b ,且满足a +b =10,ab =12,图中阴影部分的面积为 32 .【分析】将a +b =10两边平方,利用完全平方公式展开,将ab 的值代入求出a 2+b 2的值,即为两正方形的面积之和;由两个正方形的面积减去两个直角三角形的性质即可求出阴影部分面积.【解答】解:将a +b =10两边平方得:(a +b )2=a 2+b 2+2ab =100, 将ab =12代入得:a 2+b 2+24=100,即a 2+b 2=76, 则两个正方形面积之和为76;∴S阴影=S两正方形﹣S △ABD ﹣S △BFG =a 2+b 2﹣a 2﹣b (a +b )=(a 2+b 2﹣ab )=×(76﹣12)=32. 故答案为:32.【点评】此题考查了整式的混合运算,以及化简求值,熟练掌握完全平方公式是解本题的关键.三.解答题(共13小题)26.先化简,再求值:(2a+b)2﹣(2a+3b)(2a﹣3b),其中a=,b=﹣2.【分析】先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可化简原式,继而将a,b的值代入计算可得.【解答】解:原式=4a2+4ab+b2﹣(4a2﹣9b2)=4a2+4ab+b2﹣4a2+9b2=4ab+10b2,当a=,b=﹣2时,原式=4××(﹣2)+10×(﹣2)2=﹣4+10×4=﹣4+40=36.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.27.若实数a,b互为相反数,c,d互为倒数,m的绝对值为2,求a2﹣b2+(cd)﹣1÷(1﹣2m+m2)的值.【分析】根据相反数,绝对值,倒数,平方的概念及性质,得出未知数,化简原式,代入求值即可.【解答】解:由题意得:a+b=0,cd=1,m=±2,原式=(a+b)(a﹣b)+×=0+1×=当m=2时,原式==1,当m=﹣2时,原式=.∴原式的值为1或.【点评】主要考查相反数,绝对值,倒数,平方的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.28.一个长方体的高是8cm,它的底面是边长为3cm的正方形.如果底面正方形的边长增加acm,那么它的体积增加多少?【分析】长方体变化后的高为8cm,底面边长为(3+a)cm,根据长方体的体积公式进行计算即可.【解答】解:它的体积增加了:8(3+a)2﹣8×32=72+48a+8a2﹣72=8a2+48a.答:它的体积增加8a2+48a.【点评】本题考查了完全平方公式,分别用整式表示两个长方体的体积,再求差,即可得到体积增加的值.29.乘法公式的探究及应用.(1)如图(1)所示,阴影部分的面积是a2﹣b2(写成平方差的形式).(2)若将图(1)中的阴影部分剪下来,拼成如图(2)所示的长方形,此长方形的面积是(a+b)(a﹣b)(写成多项式相乘的形式).(3)比较两图中阴影部分的面积,可以得到乘法公式:a2﹣b2=(a﹣b)(a+b).(4)应用所得的公式计算:[(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)+1]÷263.【分析】(1)根据面积的和差,可得答案;(2)根据矩形的面积公式,可得答案;(3)根据图形割补法,面积不变,可得答案;(4)根据平方差公式计算即可.【解答】解:(1)如图(1)所示,阴影部分的面积是a2﹣b2,故答案为:a2﹣b2;(2)根据题意知该长方形的长为a+b、宽为a﹣b,则其面积为(a+b)(a﹣b),故答案为:(a+b)(a﹣b);(3)由阴影部分面积相等知a2﹣b2=(a﹣b)(a+b),故答案为:a2﹣b2=(a﹣b)(a+b);(4)原式=[(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)+1]÷263=[(22﹣1)(22+1)(24+1)(28+1)(216+1)(232+1)+1]÷263=[(24﹣1)(24+1)(28+1)(216+1)(232+1)+1]÷263=[(264﹣1)+1]÷263=264÷263=2.【点评】本题考查的是平方差公式的推导和运用,灵活运用平方差公式、掌握数形结合思想是解题的关键.30.阅读材料:若“三角形”表示运算a﹣b+c,表示运算ad﹣bc,求:当x=﹣1,y=2时,×的值.【分析】将x,y的值代入原式═(xy2+2xy2)×(﹣+)=3xy2×(﹣)计算可得.【解答】解:由题意知×=(xy2+2xy2)×(﹣+)=3xy2×(﹣)=3×(﹣1)×22×(﹣)=﹣12×(﹣)=1.【点评】本题主要考查整式的混合运算,解题的关键是根据新定义规定的运算法则列出算式,并熟练掌握整式的混合运算顺序与运算法则.31.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积.方法1:(m﹣n)2方法2:(m+n)2﹣4mn(2)观察图②请你写出下列三个代数式:(m+n)2,(m﹣n)2,mn之间的等量关系.(m ﹣n)2=(m+n)2﹣4mn;(3)根据(2)题中的等量关系,解决如下问题:①已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;②已知:,求:的值.【分析】(1)表示出阴影部分的边长,然后利用正方形的面积公式列式;利用大正方形的面积减去四周四个矩形的面积列式;(2)根据不同方法表示的阴影部分的面积相同解答;(3)根据(2)的结论代入进行计算即可得解.【解答】解:(1)方法1:(m﹣n)2;方法2:(m+n)2﹣4mn;(2)(m﹣n)2=(m+n)2﹣4mn;故答案为:(m﹣n)2;(m+n)2﹣4mn;(m﹣n)2=(m+n)2﹣4mn;(3)①解:∵a﹣b=5,ab=﹣6,∴(a+b)2=(a﹣b)2+4ab=52+4×(﹣6)=25﹣24=1;②解:由已知得:(a+)2=(a﹣)2+4•a•=12+8=9,∵a>0,a+>0,∴a+=3.【点评】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形面积展开分析.32.已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.【分析】(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;(2)由原式=(a﹣b)2+2(a+b)可得(a﹣b)2+2×4=17,据此进一步计算可得.【解答】解:(1)原式=ab+a+b+1﹣ab=a+b+1,当a+b=4时,原式=4+1=5;(2)∵a2﹣2ab+b2+2a+2b=(a﹣b)2+2(a+b),∴(a﹣b)2+2×4=17,∴(a﹣b)2=9,则a﹣b=3或﹣3.【点评】本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的运算法则、因式分解的能力及整体思想的运用.33.图1是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀剪下全等的四块小长方形,然后按图2拼成一个正方形.(1)直接写出图2中的阴影部分面积;(2)观察图2,请直接写出下列三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系;(3)根据(2)中的等量关系,解决如下问题:若p+q=9,pq=7,求(p﹣q)2的值,【分析】(1)阴影部分的面积可以看作是边长(m﹣n)的正方形的面积,也可以看作边长(m+n)的正方形的面积减去4个小长方形的面积;(2)由(1)的结论直接写出即可;(3)利用(2)的结论,得(p﹣q)2=(p+q)2﹣4pq,把数值整体代入即可.【解答】解:(1)(m﹣n)2或(m+n)2﹣4mn;(2)(m﹣n)2=(m+n)2﹣4mn;(3)当p+q=9,pq=7时,(p﹣q)2=(p+q)2﹣4pq,=92﹣4×7,=81﹣28,=53.【点评】此题考查根据图形理解完全平方公式,以及利用整体代入的方法求代数式的值.34.如图,某小区规划在一个长30米、宽20米的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.设通道的宽为x米,种植花草的面积为S平方米.(1)用含x的代数式表示S(要求有计算过程,结果化简);(2)当x=2时,求S的值.【分析】(1)六块草坪组合到一起,正好构成一个矩形,根据这个矩形的长是(30﹣2x)米,宽是(20﹣x)米,利用矩形的面积公式列式计算可得;(2)将x=2代入所求整式计算可得.【解答】解:(1)S=(30﹣2x)(20﹣x)=600﹣30x﹣40x+2x2(2)当x=2时,S=2×22﹣70×2+600=468(平方米).【点评】本题主要考查整式的混合运算,解题的关键是结合图形列出面积的代数式,并熟练掌握整式的混合运算顺序和运算法则.35.(1)2x(x2﹣1)﹣3x(x2+)(2)4(x+1)2﹣(2x+5)(2x﹣5)【分析】(1)先根据单项式乘多项式法则计算,再合并同类项即可得;(2)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得.【解答】解:(1)原式=x3﹣2x﹣x3﹣2x=﹣4x;(2)原式=4(x2+2x+1)﹣(4x2﹣25)=4x2+8x+4﹣4x2+25=8x+29.【点评】本题主要考查整式的混合运算,解题的关键是熟练掌握整式的混合运算顺序和运算法则.36.计算:(1)(﹣2x3y)2•(﹣2xy)+(﹣2x3y)3÷2x2(2)20202﹣2019×2021(3)(﹣2a+b+1)(2a+b﹣1)【分析】(1)先算乘方,再算乘法,最后算加减即可;(2)先变形,再根据平方差公式求出即可;(3)先根据平方差公式进行计算,再根据完全平方公式求出即可.【解答】解:(1)原式=4x6y2•(﹣2xy)+(﹣8x9y3)÷2x2=﹣8x7y3+(﹣4x7y3)=﹣12x7y3;(2)20202﹣2019×2021=20202﹣(2020﹣1)×(2020+1)=1;(3)(﹣2a+b+1)(2a+b﹣1)=[b﹣(2a﹣1)][b+(2a﹣1)]=b2﹣(2a﹣1)2=b2﹣4a2+4a﹣1.【点评】本题考查了整式的混合式运算,能正确根据运算法则进行化简是解此题的关键.37.在长为3a+2,宽为2b﹣1的长方形铁片上,挖去长为2a+4,宽为b的小长方形铁片,求剩余部分面积.【分析】剩余部分面积=原来长方形面积﹣挖去的长方形面积;【解答】解:剩余部分面积=(3a+2)(2b﹣1)﹣(2a+4)b=6ab﹣3a+4b﹣2﹣2ab﹣4b=4ab﹣3a﹣2.【点评】本题考查多项式乘多项式,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.38.【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=30.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z=9.【知识迁移】(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:x3﹣x=(x+1)(x﹣1)x..。
浙教版七年级下册数学第三章整式的乘除含答案一、单选题(共15题,共计45分)1、若,,那么值等于()A.5200B.1484C.5804D.99042、下列运算一定正确的是( ).A. B. C. D.3、下列运算正确的是( )A.(m-n)2=m 2-n 2B.m -2= (m≠0)C.m 2n 2=(mn)4 D.(m 2)4=m 64、可以改写成()A. B. C. D.5、下列计算正确的是( )A.3a+4b=7abB.C.D.6、(a﹣3b)2﹣(a+3b)(a﹣3b)的值为()A.﹣6abB.﹣3ab+18b 2C.﹣6ab+18b 2D.﹣18b 27、下列计算正确的是()A. a2+ b2=(a+ b)2B. a2+ a4=a6C. a10÷ a5=a2 D. a2• a3=a58、已知,则为()A. B. C. D.9、下列计算正确的是()A. a3+ a3=a6B. a3• a2=a6C. a3÷ a=a2D.(﹣a3)2=﹣a610、下列计算正确的是()A.2a+5b=5abB.a 6÷a 3=a 2C.a 2•a 3=a 6D.11、下列式子错误的是()A. B. C. D.12、一元二次方程式x2﹣8x=48可表示成(x﹣a)2=48+b的形式,其中a、b为整数,求a+b之值为何()A.20B.12C.﹣12D.﹣2013、纳米是非常小的长度单位,1纳米=10﹣9米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是()A.2.51×10 ﹣5米B.25.1×10 ﹣6米C.0.251×10 ﹣4米 D.2.51×10 ﹣4米14、下列运算正确的是()A. B.C. D.15、下列计算正确的是()A.a 2+a 2=2a 4B.a 5·a 2=a 10C.(a 5)2=a 7D.a 6÷a 3=a 3二、填空题(共10题,共计30分)16、计算:(-3)0+3-1=________.17、已知,则式子________.18、已知实数m,n满足,,则________.19、计算:(﹣4a2b4)(ab﹣4)=________.20、两个正方形的边长和为20cm,它们的面积的差为40cm2,则这两个正方形的边长差为________ cm21、计算下列各数的值:2﹣1=________;5﹣2=________;(π﹣3)0=________.22、若a m=2,a n=3,则a3m﹣2n的值是________.23、已知a m=2,a n=3,则a2m﹣3n=________.24、若,,则________.25、在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别是a,b、c,若a+b-c=4.s表示Rt△ABC的面积,l表示Rt△ABC的周长,则________.三、解答题(共5题,共计25分)26、(用乘法公式计算)27、已知m2﹣m﹣2=0,求代数式m(m﹣1)+(m+1)(m﹣2)的值.28、计算:﹣3(3x+4)29、如图,在边长为(2m+3)的正方形纸片中剪出一个边长为(m+3)的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,求另一边长.30、计算:(-3x2y)2·(-6xy3)÷(-9x4y2).参考答案一、单选题(共15题,共计45分)1、D3、B4、B5、D6、C7、D8、B9、C10、D11、B12、A13、A14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
第3章整式的乘除1.计算:(1)(-2)×(-2)2×(-2)3;(2)(-x)9·x5·(-x)5·(-x)3;(3)a n+4·a2n-1·a;(4)4m-3·45-m·4.解:(1)26(2)-x22(3)a3n+4(4)432.如果x m-3·x n=x2,则n等于(D) A.m-1B.m+5C.4-m D.5-m【解析】x m-3·x n=x m+n-3=x2,∴m+n-3=2,∴n=5-m.选D.3.(1)已知x3·x a·x2a+1=x31,求a的值;(2)已知x3=m,x5=n,试用含m,n的代数式表示x11.解:(1)x3a+4=x31,3a+4=31,a=9.(2)x11=x6·x5=x3·x3·x5=m·m·n=m2n.4.计算-(-3a)2的结果是(B) A.-6a2B.-9a2C.6a2D.9a25.计算:(1)-p2·(-p)4·[(-p)3]5;(2)(m-n)2·[(n-m)3]5;(3)25×84×162.解:(1)原式=-p2·p4·(-p)15=p21;(2)原式=(m-n)2·(n-m)15=-(m-n)17;(3)原式=25×(23)4×(24)2=25×212×28=225.6.已知10m=2,10n=3,求103m+2n的值.解:103m+2n=(10m)3·(10n)2=23×32=8×9=72. 7.计算:(1)(-ab2)2(-a4b3)3(-3a2b);(2)(-x n)2(-y n)3-(x2y3)n;(3)[(a+b)3]4·[(a+b)2]3;(4)(a4)5-(-a2·a3)4+(-a2)10-a·(-a2)5·(-a3)3. 解:(1)原式=a2b4(-a12b9)(-3a2b)=3a16b14;(2)原式=-x2n y3n-x2n y3n=-2x2n y3n;(3)原式=(a+b)12·(a+b)6=(a+b)18;(4)原式=a20-a20+a20-a20=0.8.求值:(1)已知2×8n×16n=222,求n的值;(2)若q m=4,q n=16,求q2m+2n的值;(3)已知x3n=2,求x6n+x4n·x5n的值.解:(1)21×23n×24n=222,27n+1=222,∴7n=21,n=3.(2)q2m+2n=(q m)2×(q n)2=42×162=16×256=4096.(3)x6n+x4n·x5n=x6n+x9n=22+23=4+8=12. 9.计算:(1)4y·(-2xy2);(2)(3x2y)3·(-4x);(3)(-2a)3·(-3a)2;(4)(-3×106)×(4×104)(结果用科学记数法表示).解:(1)原式=-8xy3;(2)原式=27x6y3·(-4x)=-108x7y3;(3)原式=-8a 3·9a 2=-72a 5;(4)原式=-12×1010=-1.2×1011.10.计算:(1)(-4x 2)·(3x +1);(2)⎝ ⎛⎭⎪⎫23ab 2-2ab ·12ab ; (3)a (3+a )-3(a +2).解:(1)原式=(-4x 2)·(3x )+(-4x 2)·1=-12x 3-4x 2;(2)原式=23ab 2·12ab +(-2ab )·12ab =13a 2b 3-a 2b 2; (3)原式=3a +a 2-3a -6=a 2-6.11.[2012·杭州]化简:2[(m -1)m +m (m +1)]·[(m -1)m -m (m +1)].若m 是任意整数,请观察化简后的结果,你发现原式表示一个什么数?解:2[(m -1)m +m (m +1)][(m -1)m -m (m +1)]=2(m 2-m +m 2+m )(m 2-m -m 2-m )=2·2m 2·(-2m )=-8m 3,即原式=(-2m )3,表示任意一个偶数的立方.12.计算:(1)[2012·安徽](a +3)(a -1)+a (a -2);(2)(a 2+3)(a -2)-a (a 2-2a -2).解:(1)(a +3)(a -1)+a (a -2)=a 2+2a -3+a 2-2a =2a 2-3;(2)原式=a 3-2a 2+3a -6-a 3+2a 2+2a=5a -6.13.已知a +b =m ,ab =-4,则计算(a -1)(b -1)的结果是( D ) A .3B.mC.3-mD.-3-m【解析】(a-1)(b-1)=ab-(a+b)+1=-4-m+1=-3-m.选D.14.若M=(a+3)(a-4),N=(a+2)(2a-5),其中a为有理数,则M,N的大小关系是(B) A.M>NB.M<NC.M=ND.无法确定【解析】M-N=(a+3)(a-4)-(a+2)(2a-5)=(a2-a-12)-(2a2-a-10)=a2-a-12-2a2+a+10=-a2-2<0,∴M<N.选B.15.[2012·吉林改编]先化简,再求值:(a+b)(a-b)+2a2,其中a=1,b=2. 解:原式=a2-b2+2a2=3a2-b2.当a=1,b=2时,3a2-b2=3×1-22=-1.16.已知x2-2x=1,求(x-1)(3x+1)-(x+1)2的值.解:原式=3x2+x-3x-1-x2-2x-1=2x2-4x-2.当x2-2x=1时,原式=2(x2-2x)-2=2×1-2=0.16.解方程:(x-2)2-(x+3)(x-3)=4x-1.解:(x-2)2-(x+3)(x-3)=4x-1,去括号,得x2-4x+4-x2+9=4x-1,合并同类项,得8x=14,系数化为1,得x=74.17.李老师刚买了一套2室2厅的新房,其结构如图3-3-5所示(单位:米).施工方已经把卫生间和厨房根据合同约定铺上了地板砖,李老师打算把卧室1铺上地毯,其余铺地板砖.问:(1)他至少需要多少平方米的地板砖?(2)如果这种地砖板每平方米m元,那么李老师至少要花多少钱?图3-3-5解:(1)用总面积减去厨房和卫生间的面积,再减去卧室1的面积即是所铺地板砖的面积.列式为:5b·5a-(5b-3b)·(5a-3a)-(5a-3a)·2b,化简得17ab,即他至少需要17ab平方米的地板砖.(2)所花钱数:17ab×m=17abm(元).18.运用平方差公式计算:(1)31×29;(2)498×502.解:(1)31×29=(30+1)×(30-1)=900-1=899;(2)498×502=(500-2)×(500+2)=5002-22=249996.19.[2012·无锡]计算:3(x2+2)-3(x+1)(x-1).解:原式=3x2+6-3(x2—1) =3x2+6-3x2+3=9.20.(1)[2012·遵义]已知x + y =-5 ,xy =6,则x 2 +y 2=__13__.(2)若x +y =3,xy =1,则x 2+y 2=__7__,x 2-xy +y 2=__6__.(3)[2012·江西]已知(m -n )2=8,(m +n )2=2,则m 2+n 2=__5__.(4)已知ab =-1,a +b =2,则代数式b a +a b 的值为__-6__.(5)已知x +1x =3,则代数式x 2+1x 2的值为__7__.(6)已知a -b =1,ab =6,则a 2+b 2=__13__.21.有两个正方形的边长的和为20 cm ,面积的差为40 cm 2.求这两个正方形的面积分别是多少?解:设这两个正方形的边长分别为x cm ,y cm(x >y ),则⎩⎪⎨⎪⎧x +y =20, ①x 2-y 2=40, ②由②得(x +y )(x -y )=40,∴x -y =2. ③由①③得方程组⎩⎪⎨⎪⎧x +y =20,x -y =2,解得⎩⎪⎨⎪⎧x =11,y =9,故这两个正方形的面积分别为121 cm 2,81 cm 2.22.[2012·泉州]先化简,再求值:(x +3)2+(2+x )(2-x ),其中x =-2. 解:原式=x 2+6x +9+4-x 2 = 6x +13.当x =-2时,原式=6×(-2)+13=1.23.[2011·衡阳]先化简,再求值:(x +1)2+x (x -2),其中x =-12.解:原式=x 2+2x +1+x 2-2x =2x 2+1,当x =-12时,原式=2×⎝ ⎛⎭⎪⎫-122+1=12+1=32.24.[2011·绍兴]先化简,再求值:a (a -2b )+2(a +b )(a -b )+(a +b )2,其中a =-12,b =1.解:a (a -2b )+2(a +b )(a -b )+(a +b )2=4a 2-b 2,当a =-12,b =1时,原式=0.25.如果a -b =5,ab =32,求a 2+b 2和(a +b )2的值.解:a 2+b 2=(a -b )2+2ab =52+2×32=25+3=28;(a +b )2=(a -b )2+4ab=52+4×32=25+6=31. 26.如果a (a -1)+(b -a 2)=-7,求a 2+b 22-ab 的值.解:∵a (a -1)+(b -a 2)=-7,∴a 2-a +b -a 2=-7,∴b -a =-7,∴a -b =7,∴a 2+b 22-ab =(a -b )22=722=492. 27.计算:(1)(x 2y )5÷(x 2y )2;(2)(a 10÷a 2)÷a 3;(3)a 2·a 5÷a 5.解:(1)原式=(x 2y )3=x 6y 3;(2)原式=a 8÷a 3=a 5;(3)原式=a 7÷a 5=a 2.28.求值:(1)已知5m =6,5n =3,求5m -n 的值;(2)若2x =3,4y =5,求2x -2y 的值;(3)若10m =20,10n =15,求9m ÷32n 的值.解:(1)5m -n =5m ÷5n =6÷3=2;(2)2x -2y =2x ÷22y =2x ÷4y=35;(3)∵10m ÷10n =10m -n =20÷15=100, ∴m -n =2.∴9m ÷32n =32(m -n )=34=81.29.[2012·威海]计算:(2-3)0-⎝ ⎛⎭⎪⎫12-1-⎝ ⎛⎭⎪⎫13-12=__-56__. 30.用科学记数法表示下列各数:0.00001;0.00002;0.000000567;0.000000301.解:0.00001=10-5;0.00002=2×10-5;0.000000567=5.67×10-7;0.000000301=3.01×10-7.31.计算:(1)⎪⎪⎪⎪⎪⎪-12+2-1-20130; (2)[2012·义乌]|-2|+(-1)2012-(π-4)0;(3)||-2+(-1)2012×(π-3)0-⎝ ⎛⎭⎪⎫12-1+(-2)-2. 解:(1)原式=12+12-1=0.(2)原式=2+1-1=2.(3)原式=2+1×1-2+14 =54.32.已知x 2-7x +1=0,求x 2+x -2的值.解:因为x 2-7x +1=0,所以x ≠0,则等式两边都除以x ,得x -7+x -1=0,即x +x -1=7,所以(x +x -1)2=x 2+2+x -2=49,所以x 2+x -2=47.33.计算:(1)(-24x 2y 3)÷(-8y 3);(2)⎝ ⎛⎭⎪⎫3x 2y -xy 2+12xy ÷⎝ ⎛⎭⎪⎫-12xy . 解:(1)原式=3x 2;(2)原式=-6x +2y -1.34.计算:(1)16x 3y 3÷12x 2y 3·⎝ ⎛⎭⎪⎫-12xy 3; (2)(-ab )·⎝ ⎛⎭⎪⎫0.25a 2b -12a 3b 2-16a 4b 3÷(-0.5a 2b ); (3)[(x 2+y 2)-(x -y )2+2y (x -y )]÷4y .解:(1)原式=32x ·⎝ ⎛⎭⎪⎫-12xy 3 =-16x 2y 3.(2)原式=⎝ ⎛⎭⎪⎫-0.25a 3b 2+12a 4b 3+16a 5b 4 ÷(-0.5a 2b )=12ab -a 2b 2-13a 3b 3.(3)原式=(x 2+y 2-x 2+2xy -y 2+2xy -2y 2)÷4y=(4xy -2y 2)÷4y=x -12y .35.先化简,再求值:[(x +3y )(x -3y )-(x +3y )2]÷4y ,其中x =6,y =2.解:[(x +3y )(x -3y )-(x +3y )2]÷4y=(x 2-9y 2-x 2-6xy -9y 2)÷4y=(-6xy -18y 2)÷4y=-32x -92y .当x =6,y =2时,原式=-32×6-92×2=-9-9=-18.36.先化简,再求值:(a 2b 2-2ab 3-b 4)÷b 2-(a +b )(a -b ),其中a =12,b =-1.解:原式=a 2-2ab -b 2-(a 2-b 2)=a 2-2ab -b 2-a 2+b 2=-2ab ,当a =12,b =-1时,原式=-2×12×(-1)=1.37.计算:⎝ ⎛⎭⎪⎫12-1-2-2-()π-20130+||-1.解:原式=2-14-1+1=74.38.[2012·南宁]芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约重0.00000201千克,用科学记数法表示为( A ) A .2.01×10-6千克B .0.201×10-5千克C .20.1×10-7千克D .2.01×10-7千克39.已知x +1x =4,求:(1)x 2+1x 2;(2)⎝ ⎛⎭⎪⎫x -1x 2.解:(1)⎝ ⎛⎭⎪⎫x +1x 2=16, 即x 2+1x 2+2·x ·1x =16, ∴x 2+1x 2=14. (2)⎝ ⎛⎭⎪⎫x -1x 2=x 2+1x 2-2=12.。