2017-2018学年华师大版初中八年级下册数学教案(全册)【精品推荐】
- 格式:docx
- 大小:1.15 MB
- 文档页数:76
第17章函数及其图象
教材简析
本章的内容包括:变量与函数、函数的图象、一次函数、反比例函数、实践与探索.本章在认识常量和变量的基础上,引出函数,进一步学习与函数有关的平面直角坐标系和函数图象,为学习一次函数作铺垫,然后在学习了一次函数的基础上,进一步学习反比例函数,最后探究并解决与一次函数有关的问题.
本章是中考中的必考内容,主要考查用待定系数法求一次函数或反比例函数的表达式,结合函数图象对简单的实际问题进行信息分析,通过分析函数关系式对变量的变化规律进行预测等,题型多样.
教学指导
【本章重点】
平面直角坐标系、函数的图象、一次函数及反比例函数.
【本章难点】
结合函数图象,解决与一次函数、反比例函数有关的实际问题.
【本章思想方法】
1.掌握数形结合思想.如:结合函数图象,研究一次函数、反比例函数的性质;根据图象解决与一次函数、反比例函数有关的实际问题.
2.掌握类比思想.如:类比一次函数学习反比例函数.
3.掌握转化思想.如:把解二元一次方程组转化为求解两个相应一次函数图象的交点坐标.
4.体会数学建模思想.如:在利用一次函数解决实际问题时,需根据实际问题建立数学模型,从而列出一次函数求解.
课时计划
17.1变量与函数1课时
17.2函数的图象2课时
17.3一次函数4课时
17.4反比例函数2课时
17.5实践与探索1课时。
课题 17.3 一次函数(二) 课 型 新授课 设 计人教学 目标 知识目标 :1.理解一次函数和正比例函数的图象是一条直线; 2.熟练地作出一次函数和正比例函数的图象能力目标 : 1.经历一次函数的作图过程,探索某些一次函数图象的异同点; 2.体会用类比的思想研究一由特殊到一般,由简单到复杂.情感目标 :1.经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力。
2.加强新旧知识重点 能熟练地作出一次函数的图象。
难点 理解一次函数的代数表达式与图象之间的对应关系。
教 学 过 程差 异 个创设情境:前面我们学习了用描点法画函数的图象的方法,下面请同学们根据画图象的步骤:列表、描点、连线,在同一平面直角坐标系中画出下列函数的图象.(1)x y 21=; (2)221+=x y ; (3) y =3x ; (4) y =3x +2. 探究归纳观察上面四个函数的图象,发现它们都是直线.一次函数y =kx +b (k ≠0)的图象是一条直线,这条直线通常又称为直线y =kx +b (k ≠0).特别地,正比例函数y =kx (k ≠0)是经过原点的一条直线.请同学们在同一平面直角坐标系中画出下列函数的图象. (1)y =-x 、y =-x +1与y =-x -2;(2)y =2x 、y =2x +1与y =2x -2.通过观察发现:两个一次函数,当k 一样,b 不一样时(如y =-x 、y =-x +1与y =-x -2;y =2x 、y =2x +1与y =2x -2),有共同点:直线平行,都是由直线y =kx (k ≠0)向上或向下移动得到;不同点:它们与y 轴的交点不同.而当两个一次函数,b 一样,k 不一样时(如y =-x 与 y =2x 、y =-x +1与y =2x +1、y =-x -2与y =2x -2),有 共同点:它们与y 轴交于同一点(0,b );。
华师大版数学八年级下册17.3《一次函数》(第5课时)教学设计一. 教材分析《一次函数》是华师大版数学八年级下册第17.3节的内容,本节主要让学生了解一次函数的定义、性质及图像,能运用一次函数解决实际问题。
教材通过丰富的实例,引导学生探究一次函数的规律,培养学生的动手操作能力和抽象思维能力。
二. 学情分析八年级的学生已经学习了代数和几何的基础知识,具备一定的逻辑思维和抽象思维能力。
但对于一次函数的图像和实际应用,可能还有一定的困惑。
因此,在教学过程中,要注重引导学生通过实例去发现一次函数的规律,提高他们解决实际问题的能力。
三. 教学目标1.了解一次函数的定义、性质及图像;2.学会运用一次函数解决实际问题;3.培养学生的动手操作能力和抽象思维能力。
四. 教学重难点1.一次函数的定义和性质;2.一次函数图像的特点;3.运用一次函数解决实际问题。
五. 教学方法1.实例教学:通过丰富的实例,让学生直观地感受一次函数的图像和性质;2.小组讨论:引导学生分组讨论,发现一次函数的规律,提高学生的合作能力;3.问题驱动:设置问题引导学生思考,培养学生的抽象思维能力;4.实践操作:让学生动手绘制一次函数的图像,提高学生的动手操作能力。
六. 教学准备1.教学PPT:制作包含一次函数定义、性质、图像及实际应用的PPT;2.实例:准备一些与生活息息相关的一次函数实例;3.练习题:准备一些针对一次函数的练习题,以便课后巩固。
七. 教学过程1.导入(5分钟)利用生活实例引入一次函数的概念,如“某商品的原价是80元,打8折后的价格是多少?”引导学生思考,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT展示一次函数的定义、性质和图像,让学生直观地了解一次函数的基本知识。
3.操练(10分钟)让学生动手绘制一次函数的图像,观察图像的特点,加深对一次函数的理解。
同时,引导学生发现一次函数与实际问题的联系。
4.巩固(10分钟)分组讨论一次函数的性质,让学生通过合作交流,进一步掌握一次函数的知识。
华师大版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!华师大初中数学和你一起共同进步学业有成!17.3.2 一次函数的图象(1)(一)本课目标1.经历探究画一次函数图象的过程,了解一次函数、正比例函数的图象特征.2.会画一次函数、正比例函数的图象.3.了解直线y=kx+b(k≠0)中k、b的几何意义.(二)教学流程1.情境导入如图17-3-2所示,已知A、B两人在一次百米赛跑中,路程s(米)与赛跑的时间t( 秒)的关系如图所示,你知道A、B两人所跑的路程s(米)与时间t(秒)之间属于哪种函数关系吗?图17-3-2t(秒)s(米)100 OBA图17-3-22.课前热身回顾:在未知函数图象的具体形状的情况下,怎样画出一个给定的函数的图象? 一般可以分为哪几个步骤?答案:用“描点法”画函数图象,可以分成“列表、描点、连线”三个步骤.3.合作探究(1)整体感知上节课我们主要学习了一次函数、正比例函数的概念, 这节课我们将着重探讨一次函数与正比例函数图象的主要特征及其图象的画法.(2)四边互动互动1师:利用多媒体演示幻灯片“做一做”内容.做一做:在同一个平面直角坐标系中画出下列函数的图象. (1)y=x; (2)y=x+2; (3)y=3x; (4)y=3x+2. 1212通过画图,你发现一次函数、正比例函数的图象的形状分别是什么?生:动手操作,在几何练习簿上建立坐标系,用描点法画出上述函数的图象,在小组之间展开交流讨论,推选代表表达小组归纳的结论.明确 师生共同概括:根据以上实践、观察与讨论,我们发现一次函数y=kx+ b (k≠0)的图象是一条直线.通常也称为直线y=kx+b.特别地,正比例函数y=kx(k≠0) 的图象是经过原点(0,0)的一条直线.值得注意的是: 一次函数的图象不可能与坐标轴平行.互动2师:利用多媒体演示幻灯片.认真观察上述画出的四个函数图象的特点, 比较下列各对函数图象的相同点和不同点:(1)y=3x 与y=3x+2; (2)y=x 与y=x+2; (3)y=3x+2与y=x+2. 121212由此你发现什么规律?生:在小组之间展开交流与讨论,各组推选代表发言.师:利用多媒体演示“一次函数图象的平移”课件(华东师范大学出版社教学光盘),验证同学们的猜想.明确 在第(1)组和第(2)组中的两个函数图象平行,但位置不同,可以通过相互平移得到;在第(3)组的两个函数图象相交,且交点在y 轴上.概括归纳可知:对于一次函数y=kx+b 和y=k 1x+b1,(1)当k=k 1,b≠b 1时,两条直线平行, 可以通过平移其中一条直线得到另一条直线;(2)当k≠k 1,b=b 1时,两条直线相交,且交点在y 轴上,是(0,b).互动3师:利用多媒体演示幻灯片.(1)直线y=2x-3可以由直线y=2x 经过 向下平移3个单位 而得到;直线y=-3x+2可以由直线y=-3x 经过 向上平移2个单位 而得到;直线y=x+2可以由直线y=x-3经过 向下平移5个单位 而得到.(2)直线y=2x+5与直线y=x+5都经过y 轴上的同一点( 0, 5 ). 12(3)将直线y=-2x-1向上平移3个单位,得到的直线是 y=-2x+2.生:动手尝试,在4人小组中交流结果,然后举手回答解题思路和结果.明确 教师利用多媒体逐个点击答案,验证同学们操作结果的正确性.互动4师:利用多媒体演示幻灯片.【例1】在同一平面直角坐标系中画下列函数的图象.(1)y=2x 与y=2x+3; (2)y=2x+1与y=x+1. 12师:(点拨)画一次函数和正比例函数的图象,我们还需要用描点法吗? 只要在图象上分别找到几点就可以确定其图象的位置?生:动手操作,并交流操作的结果.明确 教师利用多媒体演示操作的过程和结果.归纳:由于一次函数是直线,因此在画其图象时,只要在图象上找到两点,便可以画出它的图象,通常所取的两点是图象与坐标轴的两个交点;特别地, 由于正比例函数的图象是经过原点的一条直线,因此画其图象时,只要找到异于原点(0,0) 的一点的坐标即可,通常所取的点是(1,k).互动5师:请同学们完成课本第47页的练习.生:动手操作,在小组之间展开交流和互评.明确 教师利用多媒体演示练习的答案,并口述解题过程和应注意的事项.把练习的第1题与例1作出的图象比较可知:对于直线y=kx+b(k≠0),当k>0时,图象可形象说成“撇”;当k<0时,图象可想像地说成“捺”;当b>0时,直线与y轴的交点位于x轴的上方;当b<0时,直线与y轴的交点位于x轴的下方;当b=0时,直线经过坐标系原点.4.达标反馈(多媒体演示)(1)正比例函数y=kx(k≠0)的图象是经过( 0,0 )和点(1,k)的一条直线.(2)一次函数y=kx+b(k≠0)的图象是经过点(0,b)且与直线y=kx 平行的直线.(3)画出下列各组一次函数的图象,并说出它们有什么关系.①y=-2x-1与y=-2x+6. ②y=x+3与y=-3x+3.答案:①平行,位置不同②相交,交点在y轴上.相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。
华师大版数学八年级下册17.5《实践与探索》(第3课时)教学设计一. 教材分析华师大版数学八年级下册17.5《实践与探索》(第3课时)的内容主要包括:实际问题与二元一次方程组的建立、求解及应用。
这部分内容是对前面学习的二元一次方程组的拓展和应用,旨在培养学生解决实际问题的能力。
教材通过引入实际问题,引导学生运用二元一次方程组的知识进行解答,从而提高学生的数学应用能力。
二. 学情分析学生在学习本课时,已经掌握了二元一次方程组的基本知识,具备了一定的解题技巧。
但学生在解决实际问题时,往往不能将数学知识与实际问题有效地结合起来,对于如何建立方程组和求解方程组解决实际问题还有一定的困难。
因此,在教学过程中,教师需要引导学生将实际问题转化为数学问题,并指导学生如何建立和求解方程组。
三. 教学目标1.知识与技能:使学生能够理解实际问题与二元一次方程组的关系,能够运用二元一次方程组的知识解决实际问题。
2.过程与方法:通过解决实际问题,培养学生将实际问题转化为数学问题的能力,提高学生的数学应用能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和解决问题的能力。
四. 教学重难点1.教学重点:实际问题与二元一次方程组的建立、求解及应用。
2.教学难点:如何将实际问题转化为二元一次方程组,并求解。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过引入实际问题,引导学生自主探究,合作交流,从而达到教学目标。
六. 教学准备1.教师准备:准备好相关的实际问题,制作好课件。
2.学生准备:预习相关知识,了解二元一次方程组的基本概念。
七. 教学过程1.导入(5分钟)教师通过引入一个实际问题,激发学生的学习兴趣,引导学生思考如何运用数学知识解决实际问题。
2.呈现(10分钟)教师呈现准备好的实际问题,引导学生进行分析,思考如何将实际问题转化为数学问题。
3.操练(15分钟)教师指导学生如何建立和求解二元一次方程组,学生进行实际操作,解决实际问题。
第二课时变量与函数教学目标:1、知识与技能:使学生进一步理解函数的定义,熟练地列出实际问题的函数关系式,理解自变量取值范围的含义,能求函数关系式中自变量的取值范围。
2、过程与方法:会由自变量的值求函数值。
3、情感态度与价值观:经历从具体实例中抽象出函数的过程,发展抽象思维的能力,感悟运动变化的观点。
教学重、难点:1、重点:在具体情景中分清哪个是变量,哪个是自变量,谁是谁的函数。
2、难点:会由自变量的值求出函数的值。
教学过程一、复习1.填写如右图(一)所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂黑的格子横向的加数用x表示,纵向加数用y表示,试写出y关于x的函数关系式。
2.如图(二),请写出等腰三角形的顶角y与底角x之间的函数关系式.3.如图(三),等腰直角三角形ABC边长与正方形MNPQ的边长均为l0cm,AC 与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N 点重合。
试写出重叠部分面积y与长度x之间的函数关系式.二、求函数自变量的取值范围1.实际问题中的自变量取值范围问题1:在上面的联系中所出现的各个函数中,自变量的取值有限制吗?如果有.各是什么样的限制?问题2:某剧场共有30排座位,第l排有18个座位,后面每排比前一排多1个座位,写出每排的座位数与这排的排数的函数关系式,自变量的取值有什么限制。
从右边的分析可以看出,第n排的排数座位数座位 l 18一方面可以用18+(n-1)表 2 18+13 18+2示,另一方面可以用m表示,所以……m=18+(n-1) n 18+(n-1)n的取值怎么限制呢?显然这个n也应该取正整数,所以n取1≤n≤30的整数或0<n<31的整数。
请同学们试着写出上面第2、3两个问题中自变量的取值范围。
2.用数学式子表示的函数的自变量取值范围例1.求下列函数中自变量x的取值范围(1)y=3x-l (2)y=2x2+7 (3)y=1x+2(4)y=x-2分析:用数学表示的函数,一般来说,自变量的取值范围是使式子有意义的值,对于上述的第(1)(2)两题,x取任意实数,这两个式子都有意义,而对于第(3)题,(x+2)必须不等于0式子才有意义,对于第(4)题,(x-2)必须是非负数式子才有意义.3.函数值例2.在上面的练习(3)中,当MA=1cm时,重叠部分的面积是多少?请同学们求一求在例1中当x=5时各个函数的函数值.三、课堂练习课本第28页练习的第1、2、3题四、小结五、作业课本第29页的第3、4、5、6题.六、教后反思:通过本节课的学习,一方面,我们进一步认识了如何列函数关系式,对于几何问题中列函数关系式比较困难,有的题目的自变量的取值范围也很难确定,只有通过一定量的练习才能做到熟练地解决这个问题;另一方面,对于用数学式子表示的函数关系式的自变量的取值范围,考虑两个方面,其一是分母不能等于0,其二是开偶次方的被开方数是非负数.。
17、1 变量与函数第一课时变量与函数教学目标:1、知识与技能:使学生会发现、提出函数的实例,并能分清实例中的常量和变量、自变量与函数,理解函数的定义。
2、过程与方法:能应用方程思想列出实例中的等量关系。
3、情感态度与价值观:培养学生用字母表示数的思想,和变量思想。
教学重点、难点:因变量和自变量的概念,函数的概念,既是重点也是难点。
教学过程一、由下列问题导入新课问题l、右图(一)是某日的气温的变化图看图回答:1.这天的6时、10时和14时的气温分别是多少?任意给出这天中的某一时刻,你能否说出这一时刻的气温是多少吗?2.这一天中,最高气温是多少?最低气温是多少?3.这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?从图中我们可以看出,随着时间t(时)的变化,相应的气温T(℃)也随之变化。
问题2 一辆汽车以30千米/时的速度行驶,行驶的路程为s千米,行驶的时间为t小时,那么,s与t具有什么关系呢?问题3 设圆柱的底面直径与高h相等,求圆柱体积V的底面半径R的关系.问题 4 收音机上的刻度盘的波长和频率分别是用(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数:波长l(m)300 500 600 1000 1500频率f(kHz) 1000 600 500 300 200同学们是否会从表格中找出波长l与频率f的关系呢?二、讲解新课1.常量和变量在上述两个问题中有几个量?分别指出两个问题中的各个量?第1个问题中,有两个变量,一个是时间,另一个是温度,温度随着时间的变化而变化.第2个问题中有路程s,时间t和速度v,这三个量中s和t可以取不同的数值是变量,而速度30千米/时,是保持不变的量是常量.路程随着时间的变化而变化。
第3个问题中的体积V和R是变量,而是常量,体积随着底面半径的变化而变化.第4个问题中的l与频率f是变量.而它们的积等于300000,是常量.常量:在某一变化过程中始终保持不变的量,称为常量.变量:在某一变化过程中可以取不同数值的量叫做变量.2.函数的概念上面的各个问题中,都出现了两个变量,它们相互依赖,密切相关,例如:在上述的第1个问题中,一天内任意选择一个时刻,都有惟一的温度与之对应,t 是自变量,T 因变量(T 是t 的函数).在上述的2个问题中,s =30t ,给出变量t 的一个值,就可以得到变量s 惟一值与之对应,t 是自变量,s 因变量(s 是t 的函数)。
华师大版数学八年级下册17.3《一次函数》(第4课时)教学设计一. 教材分析《一次函数》是华师大版数学八年级下册第17.3节的内容,本节主要让学生了解一次函数的定义、性质和图象,学会用一次函数解决实际问题。
教材通过生活中的实例引入一次函数,使学生感受数学与生活的联系,培养学生的应用意识。
同时,教材注重引导学生通过观察、操作、思考、交流、归纳等过程,掌握一次函数的知识,提高学生的思维能力和动手能力。
二. 学情分析学生在八年级上册已经学习了直线、射线、线段等基础知识,对图象有一定的认识。
但部分学生对实际问题转化为数学问题的能力较弱,对一次函数的图象和性质的理解还不够深入。
因此,在教学过程中,要关注学生的个体差异,引导他们积极参与课堂活动,提高他们的数学素养。
三. 教学目标1.理解一次函数的定义,掌握一次函数的性质和图象。
2.学会用一次函数解决实际问题,提高学生的应用能力。
3.培养学生的观察、思考、交流、归纳等能力,提高学生的数学素养。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数图象的特点和绘制方法。
3.将实际问题转化为一次函数问题,解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入一次函数,让学生感受数学与生活的联系。
2.启发式教学法:引导学生观察、操作、思考、交流,培养学生的自主学习能力。
3.实践教学法:让学生动手绘制一次函数图象,提高学生的动手能力。
六. 教学准备1.教学课件:制作一次函数的定义、性质、图象等内容的教学课件。
2.教学素材:准备一些实际问题,用于引导学生解决实际问题。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例引入一次函数,如:某商品的售价与销售数量之间的关系。
引导学生感受数学与生活的联系,激发学生的学习兴趣。
2.呈现(10分钟)介绍一次函数的定义、性质和图象。
通过课件展示一次函数的图象,让学生观察并总结一次函数的特点。
第17章函数及其图象17.1变量与函数第2课时变量与函数(2)【知识与技能】1.学会求函数自变量的取值范围,了解实际情境中对函数自变量取值的限制.2.理解函数自变量与函数值的对应关系,会求指定条件下的函数值.3.进一步会求具体问题中的函数关系式.【过程与方法】联系求代数式的值的知识,探索求函数值的方法.【情感态度】增强数学建模意识.【教学重点】在具体的问题情境中,求函数自变量的取值范围.【教学难点】求函数自变量的取值范围一、情境导入,初步认识填写如图所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂黑的格子横向的加数用x表示,纵向加数用y表示,试写出y 关于x的函数关系式.【教学说明】通过游戏,提高学生的学习兴趣,引入本节课的教学内容.二、思考探究,获取新知等腰三角形中顶角的度数y是底角的度数x的函数,试写出这个函数关系式,并求出x的取值范围.解:根据等腰三角形性质和三角形的内角和定理可知:y与x的函数关系式:y=180-2x因为等腰三角形的底角只能是锐角,所以等腰三角形的底角的度数x不可能大于或等于90°所以,自变量x的取值范围是:0<x<90【教学说明】通过实际问题的探究过程,让学生明白,自变量的取值必须符合实际情况.【归纳结论】在用解析式表示函数时,要考虑自变量的取值必须使解析式有意义.在确定函数中自变量的取值范围时,如果遇到实际问题,则必须使实际问题有意义.三、运用新知,深化理解1.见教材P32“例2”2.求下列函数中自变量x的取值范围(1)y=3x-1 (2)y=2x2+7(3)y=(4)y=解析:用数学表示的函数,一般来说,自变量的取值范围是使式子有意义的值,对于上述的第(1)(2)两题,x取任意实数,这两个式子都有意义,而对于第(3)题,x+2必须不等于0式子才有意义,对于第(4)题,x-2必须是非负数式子才有意义.解:(1)x取值范围是任意实数;(2)x取值范围是任意实数;(3)x的取值范围是x≠-2;(4)x的取值范围是x≥2.3.分别写出下列各问题中的函数关系式及自变量的取值范围:(1)某市民用电费标准为每度0.50元,求电费y(元)关于用电度数x的函数关系式;(2)已知等腰三角形的面积为20cm2,设它的底边长为x(cm),求底边上的高y(cm)关于x的函数关系式;(3)在一个半径为10cm的圆形纸片中剪去一个半径为r(cm)的同心圆,得到一个圆环.设圆环的面积为S(cm2),求S关于r的函数关系式.解:(1)y=0.50x,x可取任意正数;(2)y=40/x,x可取任意正数;(3)S=100π-πr2,r的取值范围是0<r<10.4.某剧场共有30排座位,第l排有18个座位,后面每排比前一排多1个座位,写出每排的座位数m与这排的排数n之间的函数关系式,自变量的取值有什么限制.解:m=18+(n-1)(1≤n≤30的整数或0<n<31的整数)【教学说明】通过练习与实际问题的探究过程对学生在求自变量取值范围进行巩固提高更加深刻理解,在求自变量取值范围时,必须使函数解析式有意义;遇到实际问题,必须使实际问题有意义.四、师生互动,课堂小结1.求函数自变量取值范围的两个依据:(1)要使函数的解析式有意义.①函数的解析式是整式时,自变量可取全体实数;②函数的解析式分母中含有字母时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.(2)对于反映实际问题的函数关系,应使实际问题有意义.2.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相应的函数值.1.布置作业:教材“习题17.1”中第1、2题.2.完成本课时对应练习.通过本节课的学习,一方面,我们进一步认识了如何列函数关系式,对于几何问题中列函数关系式比较困难,有的题目的自变量的取值范围也很难确定,只有通过一定量的练习才能做到熟练地解决这个问题;另一方面,对于用数学式子表示的函数关系式的自变量的取值范围,考虑两个方面,其一是分母不能等于0,其二是开偶次方的被开方数是非负数.。
华师大版数学八年级下册17.3《一次函数》(第3课时)教学设计一. 教材分析华师大版数学八年级下册17.3《一次函数》是学生在学习了平面直角坐标系、函数概念等知识的基础上,进一步研究一次函数的性质和图象。
本节课的内容包括一次函数的定义、一次函数的图象和性质,以及一次函数的应用。
通过本节课的学习,学生能够掌握一次函数的基本知识,理解一次函数的图象和性质,并能运用一次函数解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了平面直角坐标系、函数概念等知识,具备了一定的数学基础。
但是,对于一次函数的图象和性质的理解,以及如何运用一次函数解决实际问题,对学生来说可能存在一定的困难。
因此,在教学过程中,需要注重引导学生理解和掌握一次函数的图象和性质,以及通过例题和练习题,让学生学会如何运用一次函数解决实际问题。
三. 教学目标1.理解一次函数的定义,掌握一次函数的图象和性质。
2.能够运用一次函数解决实际问题,提高学生的应用能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.一次函数的定义和图象性质。
2.一次函数在实际问题中的应用。
五. 教学方法1.讲授法:讲解一次函数的定义、图象和性质,引导学生理解和掌握。
2.案例分析法:通过例题和练习题,让学生学会如何运用一次函数解决实际问题。
3.小组讨论法:分组讨论,培养学生的团队合作能力和逻辑思维能力。
六. 教学准备1.教学课件:制作一次函数的图象和性质的课件,辅助讲解。
2.例题和练习题:准备一些相关的一次函数的例题和练习题,用于巩固和拓展学生的知识。
3.教学器材:准备一些坐标纸和直尺,方便学生画图和观察。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾平面直角坐标系和函数的概念,为新课的学习做好铺垫。
2.呈现(10分钟)讲解一次函数的定义,让学生掌握一次函数的基本知识。
通过展示一次函数的图象,引导学生了解一次函数的性质。
3.操练(10分钟)让学生分组讨论,分析一次函数的图象和性质,并完成一些相关的练习题,加深对一次函数的理解。
第16章 分式16.1分式及其基本性质16.1.1分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,as ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 ,209y +, 54-m , 238y y -,91-x2.当x 取何值时,下列分式有意义?1-m m32+-m m 112+-m m 4522--x x xx 235-+23+x(1) (2) (3)3.当x 为何值时,分式的值为0? (1) (2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式? (1)甲每小时做x 个零件,则他8小时做零件个,做80个零件需小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是千米/时.(3)x 与y 的差于4的商是.2.当x 取何值时,分式 无意义?3.当x 为何值时,分式的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b,b a s +,4y x -; 整式:8x,a+b, 4y x -;分式:x 80,ba s + 2. X = 3. x=-1课后反思:x x 57+xx 3217-x x x --221x 802332xx x --212312-+x x16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.4320152498343201524983a b 56--, yx 3-, nm --2, nm 67--, yx 43---。
[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.解:a b 56--= a b 56, yx 3-=y x3-,n m --2=n m 2, n m 67--=n m 67 , y x 43---=yx43。
六、随堂练习1.填空:(1) x x x 3222+= ()3+x (2) 32386b b a =()33a(3) c a b ++1=()cn an + (4) ()222y x y x +-=()y x -2.约分:(1)c ab b a 2263 (2)2228m n n m (3)532164xyz yz x - (4)x y y x --3)(23.通分: (1)321ab 和c b a 2252 (2)xy a2和23xb (3)223ab c 和28bc a - (4)11-y 和11+y4.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) 233ab y x -- (2) 2317b a --- (3) 2135x a -- (4)m b a 2)(--七、课后练习1.判断下列约分是否正确: (1)c b c a ++=b a (2)22y x yx --=y x +1 (3)nm nm ++=0 2.通分: (1)231ab 和b a 272 (2)x x x --21和x x x +-21 3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号. (1)b a b a +---2 (2)yx yx -+--32八、答案:六、1.(1)2x (2) 4b (3)bn+n (4)x+y2.(1)bc a 2 (2)n m 4 (3)24zx - (4)-2(x-y)23.通分:(1)321ab = cb a ac 32105, c b a 2252= c b a b 32104(2)xy a 2= y x ax 263, 23x b = yx by262(3)223ab c = 223812c ab c 28bc a -= 228c ab ab (4)11-y =)1)(1(1+-+y y y 11+y =)1)(1(1+--y y y4.(1) 233ab y x (2) 2317b a - (3) 2135x a (4)m b a 2)(--课后反思:16.2分式的运算 16.2.1分式的乘除(1)一、教学目标:理解分式乘除法的法则,会进行分式乘除运算. 二、重点、难点1.重点:会用分式乘除的法则进行运算. 2.难点:灵活运用分式乘除的法则进行运算 . 三、例、习题的意图分析1.P13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是nmab v ⋅,大拖拉机的工作效率是小拖拉机的工作效率的⎪⎭⎫⎝⎛÷n b m a 倍.引出了分式的乘除法的实际存在的意义,进一步引出P14[观察]从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.2.P14例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简.3.P14例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.4.P14例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知a>1,因此(a-1)2=a 2-2a+1<a 2-2+1,即(a-1)2<a 2-1.这一点要给学生讲清楚,才能分析清楚“丰收2号”单位面积产量高.(或用求差法比较两代数式的大小)四、课堂引入1.出示P13本节的引入的问题1求容积的高nmab v ⋅,问题2求大拖拉机的工作效率是小拖拉机的工作效率的⎪⎭⎫⎝⎛÷n b m a 倍. [引入]从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.1. P14[观察] 从上面的算式可以看到分式的乘除法法则.3.[提问] P14[思考]类比分数的乘除法法则,你能说出分式的乘除法法则? 类似分数的乘除法法则得到分式的乘除法法则的结论. 五、例题讲解P14例1.[分析]这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果.P15例2.[分析] 这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.P15例.[分析]这道应用题有两问,第一问是:哪一种小麦的单位面积产量最高?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是15002-a 、()21500-a ,还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a>1,因此(a-1)2=a 2-2a+1<a 2-2+1,即(a-1)2<a 2-1,可得出“丰收2号”单位面积产量高. 六、随堂练习计算(1)ab c 2c b a 22⋅ (2)322542n m m n ⋅- (3)⎪⎭⎫ ⎝⎛-÷x x y 27 (4)-8xy x y 52÷ (5)4411242222++-⋅+--a a a a a a (6))3(2962y y y y -÷++-七、课后练习计算(1)⎪⎪⎭⎫ ⎝⎛-⋅y xy x 132 (2)⎪⎭⎫ ⎝⎛-÷a bc ac b 2110352(3)()y x axy 28512-÷ (4)b a ab ab b a 234222-⋅- (5))4(12x x xx -÷-- (6)3222)(35)(42x y x x y x --⋅- 八、答案:六、(1)ab (2)n m 52- (3)14y - (4)-20x 2(5))2)(1()2)(1(+--+a a a a(6)23+-y y七、(1)x1- (2)227c b - (3)ax 103- (4)bb a 32+(5)xx -1 (6)2)(5)(6y x y x x -+课后反思:16.2.1分式的乘除(2)一、教学目标:熟练地进行分式乘除法的混合运算. 二、重点、难点1.重点:熟练地进行分式乘除法的混合运算. 2.难点:熟练地进行分式乘除法的混合运算. 三、例、习题的意图分析1. P17页例4是分式乘除法的混合运算. 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.教材P17例4只把运算统一乘法,而没有把25x 2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.2, P17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题. 四、课堂引入计算(1))(x y y x x y -⋅÷ (2) )21()3(43x y x y x -⋅-÷五、例题讲解(P17)例4.计算[分析] 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算(1))4(3)98(23232b x b a xy y x ab -÷-⋅=x b b a xy y x ab 34)98(23232-⋅-⋅ (先把除法统一成乘法运算) =xb b a xy y x ab 349823232⋅⋅ (判断运算的符号) =32916ax b (约分到最简分式)(2)x x x x x x x --+⋅+÷+--3)2)(3()3(444622=x x x x x x x --+⋅+⋅+--3)2)(3(31444622 (先把除法统一成乘法运算)=x x x x x x --+⋅+⋅--3)2)(3(31)2()3(22 (分子、分母中的多项式分解因式)=)3()2)(3(31)2()3(22---+⋅+⋅--x x x x x x =22--x六、随堂练习计算(1))2(216322b a a bc a b -⋅÷ (2)103326423020)6(25ba c c ab b ac ÷-÷ (3)x y y x x y y x -÷-⋅--9)()()(3432 (4)22222)(x y x xy y xy x x xy -⋅+-÷-七、课后练习计算(1))6(4382642z yx yx y x -÷⋅- (2)9323496222-⋅+-÷-+-a a b a b a a (3)229612316244y y y y y y --÷+⋅-+- (4)xyy xyy x xy x xy x -÷+÷-+222)(八、答案:六.(1)c a 432- (2)485c - (3)3)(4y x - (4)-y七. (1)336yxz(2) 22-b a (3)122y - (4)x 1-课后反思:16.2.1分式的乘除(3)一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算. 二、重点、难点1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算. 三、例、习题的意图分析1. P17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除..2.教材P17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好.分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点. 四、课堂引入计算下列各题:(1)2)(b a =⋅b ab a =( ) (2)3)(b a =⋅b a ⋅b a b a=( ) (3)4)(b a =⋅ba ⋅b a b a ba⋅=( ) [提问]由以上计算的结果你能推出nba )((n 为正整数)的结果吗?五、例题讲解 (P17)例5.计算[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除. 六、随堂练习1.判断下列各式是否成立,并改正.(1)23)2(a b =252a b (2)2)23(a b -=2249ab - (3)3)32(x y -=3398x y (4)2)3(b x x -=2229b x x - 2.计算(1) 22)35(y x (2)332)23(c b a - (3)32223)2()3(x ay xy a -÷ (4)23322)()(z x z y x -÷- 5))()()(422xy xy y x -÷-⋅-(6)232)23()23()2(ayx y x x y -÷-⋅-七、课后练习计算(1)332)2(a b - (2) 212)(+-n ba(3)4234223)()()(c a ba cb ac ÷÷ (4))()()(2232b a a b a ab b a -⋅--⋅- 八、答案:六、1. (1)不成立,23)2(a b =264a b (2)不成立,2)23(a b -=2249ab (3)不成立,3)32(x y -=33278xy - (4)不成立,2)3(b x x -=22229b bx x x +-2. (1)24925y x (2)936827c b a - (3)24398yx a - (4)43z y - (5)21x (6)2234xy a七、(1)968a b -- (2)224+n b a (3)22ac (4)b b a +课后反思:16.2.2分式的加减(1)一、教学目标:(1)熟练地进行同分母的分式加减法的运算.(2)会把异分母的分式通分,转化成同分母的分式相加减. 二、重点、难点1.重点:熟练地进行异分母的分式加减法的运算. 2.难点:熟练地进行异分母的分式加减法的运算. 三、例、习题的意图分析1. P18问题3是一个工程问题,题意比较简单,只是用字母n 天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的311++n n .这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2. P19[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.3.P20例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R 与各支路电阻R 1, R 2, …, R n 的关系为nR R R R111121+⋅⋅⋅++=.若知道这个公式,就比较容易地用含有R 1的式子表示R 2,列出5011111++=R R R,下面的计算就是异分母的分式加法的运算了,得到)50(5021111++=R R R R ,再利用倒数的概念得到R 的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.四、课堂堂引入1.出示P18问题3、问题4,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗? 3. 分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则? 4.请同学们说出2243291,31,21xyy x y x 的最简公分母是什么?你能说出最简公分母的确定方法吗? 五、例题讲解(P20)例6.计算[分析] 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算 (1)2222223223y x yx y x y x y x y x --+-+--+[分析] 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式. 解:2222223223yx yx y x y x y x y x --+-+--+ =22)32()2()3(yx y x y x y x --++-+ =2222y x yx -- =))(()(2y x y x y x +--=yx +2(2)96261312--+-+-x x x x [分析] 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式. 解:96261312--+-+-x x x x =)3)(3(6)3(2131-+-+-+-x x x x x =)3)(3(212)3)(1()3(2-+---++x x x x x=)3)(3(2)96(2-++--x x x x =)3)(3(2)3(2-+--x x x =623+--x x六、随堂练习计算 (1)ba ab b a b a b a b a 22255523--+++ (2)m n mn m n m n n m -+---+22(3)96312-++a a (4)ba ba b a b a b a b a b a b a ---+-----+-87546563七、课后练习计算 (1)22233343365cba ba c ba ab bc a b a +--++ (2)2222224323ab ba b a b a b a a b ----+--- (3)122+++-+-b a a b a b a b (4)22643461461x y xy x y x ----- 八、答案:四.(1)ba b a 2525+ (2)m n n m -+33 (3)31-a (4)1 五.(1)b a 22 (2) 223b a b a -- (3)1 (4)yx 231-课后反思:16.2.2分式的加减(2)一、教学目标:明确分式混合运算的顺序,熟练地进行分式的混合运算. 二、重点、难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 三、例、习题的意图分析1. P21例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.例8只有一道题,训练的力度不够,所以应补充一些练习题,使学生熟练掌握分式的混合运算.2. P22页练习1:写出第18页问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.四、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 五、例题讲解(P21)例8.计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(补充)计算 (1)x xx x x x x x -÷+----+4)44122(22[分析] 这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边.. 解:x xx x x x x x -÷+----+4)44122(22 =)4(])2(1)2(2[2--⋅----+x x x x x x x =)4(])2()1()2()2)(2([22--⋅-----+x xx x x x x x x x =)4()2(4222--⋅-+--x xx x x x x =4412+--x x(2)2224442yx x y x y x y x y y x x +÷--+⋅-[分析] 这道题先做乘除,再做减法,把分子的“-”号提到分式本身的前边.解:2224442yx x y x y x y x y y x x +÷--+⋅- =22222224))((2x y x y x y x y x y x y y x x +⋅-+-+⋅- =2222))((yx y x y x y x xy --⋅+- =))(()(y x y x x y xy +--=yx xy+-六、随堂练习 计算(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a七、课后练习 1.计算 (1) )1)(1(yx xy x y +--+ (2) 22242)44122(aaa a a a a a a a -÷-⋅+----+ (3) zxyz xy xy z y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值. 八、答案:六、(1)2x (2)ba ab- (3)3 七、1.(1)22yx xy- (2)21-a (3)z 1 2.422--a a ,-31课后反思:16.3.1可以化为一元一次方程的分式方程(1)一、教学目标:1.了解分式方程的概念, 和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检 验一个数是不是原方程的增根. 二、重点、难点1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.三、例、习题的意图分析1. P31思考提出问题,引发学生的思考,从而引出解分式方程的解法以及产生增根的原因.2.P32的归纳明确地总结了解分式方程的基本思路和做法.3.P33思考提出问题,为什么有的分式方程去分母后得到的整式方程的解就是原方程的解,而有的分式方程去分母后得到的整式方程的解就不是原方程的解,引出分析产生增根的原因,及P33的归纳出检验增根的方法.4. P34讨论提出P33的归纳出检验增根的方法的理论根据是什么?5. 教材P38习题第2题是含有字母系数的分式方程,对于学有余力的学生,教师可以点拨一下解题的思路与解数字系数的方程相似,只是在系数化1时,要考虑字母系数不为0,才能除以这个系数. 这种方程的解必须验根.四、课堂引入1.回忆一元一次方程的解法,并且解方程163242=--+x x 2.提出本章引言的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程vv -=+206020100.像这样分母中含未知数的方程叫做分式方程.五、例题讲解(P34)例1.解方程[分析]找对最简公分母x(x-3),方程两边同乘x(x-3),把分式方程转化 为整式方程,整式方程的解必须验根这道题还有解法二:利用比例的性质“内项积等于外项积”,这样做也比较简便. (P34)例2.解方程[分析]找对最简公分母(x-1)(x+2),方程两边同乘(x-1)(x+2)时,学生容易把整数1漏乘最简公分母(x-1)(x+2),整式方程的解必须验根. 六、随堂练习解方程(1)623-=x x (2)1613122-=-++x x x (3)114112=---+x x x (4)22122=-+-x xx x 七、课后练习1.解方程(1)01152=+-+x x (2) x x x 38741836---=- (3)01432222=---++x x x x x (4)4322511-=+-+x x 2.X 为何值时,代数式xx x x 231392---++的值等于2? 八、答案:六、(1)x=18 (2)原方程无解 (3)x=1 (4)x=54 七、1.(1)x=3 (2) x=3 (3)原方程无解 (4)x=1 2. x=23课后反思:16.3.2可化为一元一次方程的分式方程(2)一、教学目标:1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决实际问题. 二、重点、难点1.重点:利用分式方程组解决实际问题.2.难点:列分式方程表示实际问题中的等量关系. 三、例、习题的意图分析本节的P35例3不同于旧教材的应用题有两点:(1)是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,需要学生根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程(2)教材的分析是填空的形式,为学生分析题意、设未知数搭好了平台,有助于学生找出题目中等量关系,列出方程.P36例4是一道行程问题的应用题也与旧教材的这类题有所不同(1)本题中涉及到的列车平均提速v 千米/时,提速前行驶的路程为s 千米,完成. 用字母表示已知数(量)在过去的例题里并不多见,题目的难度也增加了;(2)例题中的分析用填空的形式提示学生用已知量v 、s 和未知数x ,表示提速前列车行驶s 千米所用的时间,提速后列车的平均速度设为未知数x 千米/时,以及提速后列车行驶(x+50)千米所用的时间.这两道例题都设置了带有探究性的分析,应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,让学生经过自己的努力,在克服困难后体会如何探究,教师不要替代他们思考,不要过早给出答案.教材中为学生自己动手、动脑解题搭建了一些提示的平台,给了设未知数、解题思路和解题格式,但教学目标要求学生还是要独立地分析、解决实际问题,所以教师还要给学生一些问题,让学生发挥他们的才能,找到解题的思路,能够独立地完成任务.特别是题目中的数量关系清晰,教师就放手让学生做,以提高学生分析问解决问题的能力. 四、例题讲解P35例3分析:本题是一道工程问题应用题,基本关系是:工作量=工作效率³工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.等量关系是:甲队单独做的工作量+两队共同做的工作量=1 P36例4分析:是一道行程问题的应用题, 基本关系是:速度=时间路程.这题用字母表示已知数(量).等量关系是:提速前所用的时间=提速后所用的时间 五、随堂练习1. 学校要举行跳绳比赛,同学们都积极练习.甲同学跳180个所用的时间,乙同学可以跳240个;又已知甲每分钟比乙少跳5个,求每人每分钟各跳多少个.2. 一项工程要在限期内完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?3. 甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度. 六、课后练习1.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快51,结果于下午4时到达,求原计划行军的速度。