北师大版八年级数学(上)第六单元测试卷
- 格式:doc
- 大小:55.00 KB
- 文档页数:3
北师大版八年级(上)第二单元达标测试卷(二)数 学(考试时间:100分钟 满分:120分)学校: 班级: 考号: 得分:一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列实数中,属于无理数的是( )A .53B C .3.14D22π,0.其中无理数出现的频率为( ) A .0.2B .0.4C .0.6D .0.83.若Rt ABC 的两边长a ,b 满足()240a -=,则第三边的长是( )A .5B C .5或7D .54.若27a ab m +=+,29b ab m +=-.则a b +的值为( ) A .4±B .4C .2±D .252b +4=4b ,则20152016•a b 的值是( ) A .12B .12-C .2D .﹣26.下列等式正确的是( )A 3=-B 712± C 4= D .32=- 7.下列说法中正确的是( )A .81的平方根是9B 4CD .64的立方根是4±8 ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间91最接近的是( )A .0.4B .0.6C .0.8D .110.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .1411.估计)301182) A .0和1 B .1和2C .2和3D .3和4123236x y z +++=x 、y 、z 为有理数.则xyz =( )A .34B .56 C .712D .1318二、填空题(本大题共6小题,每小题3分,共18分)1311163-⎛⎫-= ⎪⎝⎭__________. 14.一个正数a 的两个平方根是21b -和4b +,则a b +的立方根为_______. 155x +x 53x a没有实数根,那么a 的取值范围是__.16.已知a 、b 是相邻的两个正整数,且a <11﹣1<b ,则a +b 的值是_____. 17.已知:1502222a b c -==ab +c =________. 18.若实数,x y 满足22425x y x y +-=-x yx y+-_________ 三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.把下列各数分别填入相应的集合里.3.14、0.121121112…、2113⎛⎫- ⎪⎝⎭、|6|-、-2011、22-、13π、20% 无理数集合:{}… 负整数集合:{}… 分数集合: {}…正数集合: {}…20.我们规定:a ≥b 时,a ★b =a -b ;当a < b 时,a ★b =a 2-b 2. (1)求5★3的值;(2)若m > 0,化简(m +3)★(2m +3); (3)若x ★3=7,求x 的值; 21.计算:(1)217110.5395⎛⎫-÷⨯- ⎪⎝⎭(2)()()22231532732-+---⨯+-22.对于一个实数m (m 为非负实数),规定其整数部分为a ,小数部分为b ,例如:当3m =时,则3a =,0b =;当 4.5m =时,则4a =,0.5b =.(1)当m π=时,b = ;当11=m 时,a = ; (2)若5a =,630=-b ,则m = ; (3)当97=+m 时,求-a b 的值.23.实数a ,b ,c ,d ,e 在数轴上的位置如图所示.a 是最小的自然数,b 是最大的负整数,c 和d 是互为相反数,e 表示的数是7.(1)用“>”或“<”填空:b 0,c e ,b +c 0; (2)求代数式:|b ﹣e |+|d +c |×2019+2020a的值. 24.已知线段a ,b ,c ,且线段a ,b 满足|a 48+(b 322=0 (1)求a ,b 的值;(2)若a ,b ,c 是某直角三角形的三条边的长度,求c 的值.参考答案三、选择题(本大题共12小题,每小题3分,共36分。
第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转度(< ≤)得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为()A. B.0.5 C.1 D.2、勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,已知∠BAC=90°,AB=6,AC=8,点D、E、F、G、H、I都在矩形KLMJ的边上,则矩形KLMJ的周长为()A.40B.44C.84D.883、“用长分别为5cm、12cm、13cm的三条线段可以围成直角三角形”这一事件是( )A.必然事件B.不可能事件C.随机事件D.以上都不是4、菱形的两条对角线的分别为60cm和80cm,那么边长是()A.100cmB.80cmC.60cmD.50cm5、三角形三边长分别是3,4,5,则它的最短边上的高为()A.3B.2.4C.4D.4.86、一根竹子高9尺,折断后竹子顶端落在离竹子底端3尺处,折断处离地面高度是()A.3尺B.4尺C.5尺D.6尺7、如图,正方形ABCD的对角线交于点O ,以AD为边向外作Rt△ADE ,∠AED=90°,连接OE , DE=6,OE=,则另一直角边AE的长为().A. B.2 C.8 D.108、如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4.5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1.5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米9、如图,由四个全等的直角三角形和一个小正方形拼成一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13.则小正方形的面积为()A.3B.4C.5D.610、如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的半径为()A.8B.10C.16D.2011、下列命题不成立的是A.三个角的度数之比为1:3:4的三角形是直角三角形B.三个角的度数比为1::2的三角形是直角三角形C.三边长度比为1::的三角形是直角三角形D.三边长度之比为::2的三角形是直角三角形12、三角形的三边为a、b、c,由下列条件不能判断它是直角三角形的是()A.a:b:c =13∶5∶12B.a 2-b 2=c 2C.a 2=(b+c)(b-c) D.a:b:c=8∶16∶1713、如图,已知Rt△ABC中,∠C=90°,BC=3, AC=4,则sinA的值为()..A. B. C. D.14、如图,∠ACB=90°,CD是斜边上的高,AC=3,BC=4,则CD的长为()A.1.6B.2.4C.2D.2.115、下列长度的三条线段能组成直角三角形的是( )A.2,3,4B.4,6,8C.6,8,10D.5,11,12二、填空题(共10题,共计30分)16、将等腰直角△ABC按如图方法放置在数轴上,点A和C分别对应的数是﹣2和1.以点A为圆心,AB长为半径画弧,交数轴的正半轴于点D,则点D对应的实数为________.17、一根高9m的旗杆在离地4m高处折断,折断处仍相连,此时在3.9m远处耍的身高为1m的小明________危险.(填有或无)18、如图,正方形ABCD的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线.若BC=6,BD=5,则点D的坐标是________.19、我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知,则的长度是________.20、菱形的面积为24,其中的一条对角线长为6,则此菱形的周长为________.21、已知菱形的周长为,两条对角线的和为6,则菱形的面积为________22、如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为________m223、已知a、b、c是△ABC三边的长,且满足关系式,则△ABC的形状为________24、如图,在高3米,坡面线段AB长为5米的楼梯表面铺地毯,已知楼梯宽1.5米,地毯售价为40元/平方米,若将楼梯表面铺满地毯,则至少需________元.25、如图,已知以点A(0,1)、C(1,0)为顶点的△ABC中,∠BAC=60°,∠ACB=90°,在坐标系内有一动点P(不与A重合),以P、B、C为顶点的三角形和△ABC全等,则P点坐标为________.三、解答题(共5题,共计25分)26、在 Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a、b、c.若a∶c=15∶17,b=24,求a.27、有一块直角三角形的绿地,量得两直角边长分别为6m和8m,现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.28、小锤和豆花要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边BC上有水池及建筑遮挡,没有办法直接测量其长度。
第二章实数测试题一、选择题(每题3分,共30分)1.有一组数如下:-π,13,|-2|,4,7,39,0.808008…(相邻两个8之间0的个数逐次加1).其中无理数有( )A .4个B .5个C .6个D .7个2.下列说法中,正确说法的个数是( ) ①-64的立方根是-4; ②49的算术平方根是±7; ③127的立方根是13; ④116的平方根是14. A .1 B .2 C .3 D .43.下列各组数中,互为相反数的一组是( )A .-3与3-27 B .-3与(-3)2 C .-3与-13D .||-3与34.下列各式计算正确的是( )A .2+3= 5B .43-33=1C .23×33=6 3D .27÷3=35.下列各式中,无论x 为任何数都没有意义的是( )A .-7xB .-1999x3C .-0.1x2-1D .3-6x2-56.若a =15,则实数a 在数轴上的对应点P 的大致位置是( )图17.如图2是一数值转换机,若输出的结果为-32,则输入的x的值为( )图2A.-4B.4C.±4D.±58.若a,b均为正整数,且a>7,b>320,则a+b的最小值是( )A.6 B.5 C.4 D.39.实数a,b在数轴上所对应的点的位置如图3所示,且||a>||b,则化简a2-||a+b 的结果为( )图3A.2a+b B.-2a+bC.b D.2a-b10.已知x=2-3,则代数式(7+4 3)x2+(2+3)x+3的值是( )A.2+ 3 B.2- 3 C.0 D.7+4 3请将选择题答案填入下表:第Ⅱ卷 (非选择题 共70分)二、填空题(每题3分,共18分) 11.计算:252-242=________.图412.如图4,正方形ODBC 中,OC =1,OA =OB ,则数轴上点A 表示的数是________. 13.用计算器计算并比较大小:39________7.(填“>”“=”或“<”) 14.若|x -y|+y -2=0,则xy -3的值是________.15.若规定一种运算为a ★b =2(b -a),如3★5=2×(5-3)=22,则2★3=________.16.设a ,b 为非零实数,则a |a|+b2b所有可能的值为________. 三、解答题(共52分)17.(6分)实数a ,b 在数轴上所对应的点的位置如图5所示,试化简:a2-b2-(a -b )2.图518.(6分)计算:(1)()-62-25+(-3)2;(2)50×8-6×32;(3)(3+2-1)(3-2+1).19.(6分)已知a ,b 互为相反数,c ,d 互为倒数,x 是2的平方根,求5(a +b )a2+b2-2cd+x 的值.20.(6分)如果a 是100的算术平方根,b 是125的立方根,求a2+4b +1的平方根.21.(6分)某中学要在操场的一块长方形土地上进行绿化,已知这块长方形土地的长为510 m ,宽为415 m .(1)求该长方形土地的面积(精确到0.1 m 2);(2)如果绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金约为多少元?22.(6分)如图6所示,某地有一地下工程,其底面是正方形,面积为405 m2,四个角是面积为5 m2的小正方形渗水坑,根据这些条件如何求a的值?与你的同伴进行交流.图6下面是小康提供的解题方案,根据解题方案请你完成本题的解答过程:①设大正方形的边长为x m,小正方形的边长为y m,那么根据题意可列出关于x的方程为__________,关于y的方程为__________;②利用平方根的意义,可求得x=________(取正值,结果保留根号),y=________(取正值,结果保留根号);③所以a=x-2y=____________=__________(结果保留根号);④答:________________________.23.(8分)如图7,在Rt△OA1A2中,∠A1=90°,OA1=A1A2=1,以OA2为直角边向外作直角三角形,…,使A1A2=A2A3=A3A4=…=A n-1A n=1.(1)计算OA2和OA3的长;(2)猜想OA75的长(结果化到最简);(3)请你用类似的思路和方法在数轴上画出表示-3和10的点.图724.(8分)先阅读材料,再回答问题:因为(2-1)(2+1)=1,所以12+1=2-1;因为(3-2)(3+2)=1,所以13+2=3-2;因为(4-3)(4+3)=1,所以14+3=4- 3.依次类推,你会发现什么规律?请用你发现的规律计算式子12+1+13+2+…+1100+99的值.答案1.A 2.B 3.B 4.D 5.C 6.B 7.C 8.A 9.C 10.A 11.7 12.-213.< 14.1215.6-2 16.±2,017.解:由数轴易知a <0,b >0,|a |<|b |, 所以原式=-a -b -(b -a )=-2b . 18.解:(1)原式=6-5+3=4.(2)原式=5 2×2 2-3 22=20-3=17. (3)(3+2-1)(3-2+1)=[]3+(2-1)[]3-(2-1) =3-(2-1)2=3-3+2 2 =2 2.19.解:由题意知a +b =0,cd =1,x =±2. 当x =2时,原式=-2+2=0; 当x =-2时,原式=-2-2=-2 2, 故原式的值为0或-2 2.20.[解析] 先根据算术平方根、立方根的定义求得a ,b 的值,再代入所求代数式即可计算.解:因为a 是100的算术平方根,b 是125的立方根, 所以a =10,b =5,所以a2+4b+1=121,所以a2+4b+11=11,所以a2+4b+11的平方根为±11.21.[解析] (1)根据这块长方形土地的长为5 10 m,宽为415 m,直接得出面积即可;(2)利用绿化该长方形土地每平方米的造价为180元,即可求出绿化该长方形土地所需资金.解:(1)该长方形土地的面积为510×415=100 6≈244.9(m2).(2)因为绿化该长方形土地每平方米的造价为180元,所以180×244.9=44082(元).答:绿化该长方形土地所需资金约为44082元.22.解:①x2=405 y2=5②9 55③9 5-2 57 5④a的值为7 523.解:(1)OA2=12+12=2,OA3=()22+12=3.(2)OA75=75=5 3.(3)如图所示:24.解:规律:当n是正整数时,1n+1+n=n+1-n,故12+1+13+2+…+1100+99=(2-1)+(3-2)+…+(100-99)=100-1=9.。
北师大版八年级数学下册第1章三角形的证明单元测试卷(时间:120分钟满分:150分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填在相应的答题框内)1.如图,若∠B=30°,∠C=90°,AC=20,则AB=( )A.25B.30C.20 3D.402.如图,已知DE∥BC,AB=AC,∠1=55°,则∠C的度数是( )A.55°B.45°C.35°D.65°3.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是( )A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°4.以下各组数为三角形的三条边长,其中是直角三角形的三条边长的是( )A.2,3,4B.1,2, 3C.4,5,6D.2,2,45.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的理由是( )A.HLB.ASAC.AASD.SAS6.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠CAD的度数为( )A.35°B.45°C.55°D.60°7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为( )A.30°B.45°C.60°D.75°8.如图,D是Rt△ABC的斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β,若α=10°,则β的度数是( )A.40°B.50°C.60°D.不能确定9.如图,在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,DE⊥AB,CD=3,则BD的长为( )A.1.5B.3C.6D.910.用反证法证明“直角三角形中的两个锐角不能都大于45°”,第一步应假设这个直角三角形中( )A.每一个锐角都小于45°B.有一个锐角大于45°C.有一个锐角小于45°D.每一个锐角都大于45°11.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么下列各条件中,不能使Rt△ABC≌Rt△A′B′C′的是( )A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°12.观察下列命题的逆命题:①有两边相等的三角形是等腰三角形;②到角的两边的距离相等的点在这个角的平分线上;③直角三角形的两个锐角互余;④全等三角形的面积相等.其中逆命题为假命题的个数是( )A.1B.2C.3D.413.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E.如果∠BAC=60°,∠ACE=24°,那么∠BCE 的大小是( )A.24°B.30°C.32°D.36°14.如图,直角三角形纸片的两直角边长分别为6,8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE∶S△BDE =( )A.2∶5B.14∶25C.16∶25D.4∶2115.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是( )A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°二、填空题(本大题共5个小题,每小题5分,共25分)16.在直角三角形中,其中一个锐角是22°,则另外一个锐角是.17.如图,某失联客机从A地起飞,飞行1 000 km到达B地,再折返飞行1 000 km到达C地后在雷达上消失,已知∠ABC=60°,则失联客机消失时离起飞地A地的距离为km.18.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.19.如图,已知△ABC的周长是22,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,△ABC的面积是.20.如图,在等腰△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,点C沿EF 折叠后与点O重合,则∠OEC的度数是.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(本题8分)一个机器零件的形状如图所示,在Rt△ABC中,∠BAC=30°,BC=2.5 cm,BD=13 cm,AD=12 cm,求△ABD的面积.22.(本题8分)在加快城镇建设中,有两条公路OA和OB交会于O点,在∠AOB的内部有蔬菜基地C和D,现要修建一个蔬菜转运站P,使转运站P到两条公路OA,OB的距离相等,且到两个蔬菜基地C,D的距离也相等,用尺规作出蔬菜转运站P的位置.(要求:不写作法,保留作图痕迹.)23.(本题10分)如图,点P为△ABC的BC边上一点,且PC=2PB,∠ABC=45°,∠APC=60°,CD⊥AP,连接BD,求∠ABD的度数.24.(本题12分)如图,∠AOB=60°,OC平分∠AOB,C为角平分线上一点,过点C作CD⊥OC,垂足为C,交OB于点D,CE∥OA交OB于点E.(1)判断△CED的形状,并说明理由;(2)若OC=3,求CD的长.25.(本题12分)如图,△ABC的外角∠DAC的平分线交BC边的垂直平分线于点P,PD⊥AB于D,PE⊥AC于E.(1)求证:BD=CE;(2)若AB=6 cm,AC=10 cm,求AD的长.26.(本题14分)如图,在△ABC中,MP,NO分别垂直平分AB,AC.(1)若BC=10 cm,试求出△PAO的周长;(2)若AB=AC,∠BAC=110°,试求∠PAO的度数;(3)在(2)中,若无AB=AC的条件,你能求出∠PAO的度数吗?若能,请求出来;若不能,请说明理由.27.(本题16分)如图,△ABC中,AB=BC=AC=12 cm,现有两点M,N分别从点A,B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N第一次到达点B时,M,N同时停止运动.(1)点M,N运动几秒后,M,N两点重合?(2)点M,N运动几秒后,可得到等边三角形△AMN?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.参考答案一、选择题(本大题共15个小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填在相应的答题框内)1.如图,若∠B=30°,∠C=90°,AC=20,则AB=(D)A.25B.30C.20 3D.402.如图,已知DE∥BC,AB=AC,∠1=55°,则∠C的度数是(A)A.55°B.45°C.35°D.65°3.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是(C)A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°4.以下各组数为三角形的三条边长,其中是直角三角形的三条边长的是(B)A.2,3,4B.1,2, 3C.4,5,6D.2,2,45.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的理由是(A)A.HLB.ASAC.AASD.SAS6.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠CAD的度数为(A)A.35°B.45°C.55°D.60°7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为(C)A.30°B.45°C.60°D.75°8.如图,D是Rt△ABC的斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β,若α=10°,则β的度数是(B)A.40°B.50°C.60°D.不能确定9.如图,在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,DE⊥AB,CD=3,则BD的长为(C)A.1.5B.3C.6D.910.用反证法证明“直角三角形中的两个锐角不能都大于45°”,第一步应假设这个直角三角形中(D)A.每一个锐角都小于45°B.有一个锐角大于45°C.有一个锐角小于45°D.每一个锐角都大于45°11.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么下列各条件中,不能使Rt△ABC≌Rt△A′B′C′的是(B)A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°12.观察下列命题的逆命题:①有两边相等的三角形是等腰三角形;②到角的两边的距离相等的点在这个角的平分线上;③直角三角形的两个锐角互余;④全等三角形的面积相等.其中逆命题为假命题的个数是(A)A.1B.2C.3D.413.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E.如果∠BAC=60°,∠ACE=24°,那么∠BCE 的大小是(C)A.24°B.30°C.32°D.36°14.如图,直角三角形纸片的两直角边长分别为6,8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE∶S△BDE =(B)A.2∶5B.14∶25C.16∶25D.4∶2115.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是(D)A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°二、填空题(本大题共5个小题,每小题5分,共25分)16.在直角三角形中,其中一个锐角是22°,则另外一个锐角是68__°.17.如图,某失联客机从A地起飞,飞行1 000 km到达B地,再折返飞行1 000 km到达C地后在雷达上消失,已知∠ABC=60°,则失联客机消失时离起飞地A地的距离为1__000km.18.如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M19.如图,已知△ABC 的周长是22,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于点D ,且OD =3,△ABC 的面积是33.20.如图,在等腰△ABC 中,AB =AC ,∠BAC =54°,∠BAC 的平分线与AB 的垂直平分线交于点O ,点C 沿EF 折叠后与点O 重合,则∠OEC 的度数是108__°.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(本题8分)一个机器零件的形状如图所示,在Rt △ABC 中,∠BAC =30°,BC =2.5 cm ,BD =13 cm ,AD =12 cm ,求△ABD 的面积.解:∵Rt △ABC 中,∠BAC =30°,BC =2.5 cm , ∴AB =2BC =5 cm.∵52+122=132,即AB 2+AD 2=BD 2, ∴△ABD 是直角三角形.∴S △ABD =12AB·AD =12×5×12=30(cm 2).22.(本题8分)在加快城镇建设中,有两条公路OA 和OB 交会于O 点,在图中∠AOB 的内部有蔬菜基地C 和D ,现要修建一个蔬菜转运站P ,使转运站P 到两条公路OA ,OB 的距离相等,且到两个蔬菜基地C ,D 的距离也相等,用尺规作出蔬菜转运站P 的位置.(要求:不写作法,保留作图痕迹.)解:如图所示.23.(本题10分)如图,点P 为△ABC 的BC 边上一点,且PC =2PB ,∠ABC =45°,∠APC =60°,CD ⊥AP ,连接BD ,求∠ABD 的度数.解:∵∠APC =60 °,CD ⊥AP , ∴∠PCD =90 °-∠APC =90 °-60 °=30 °. ∴PC =2PD.∵PC =2PB ,∴PB =PD. ∴∠PBD =∠PDB.又∵∠APC =∠PBD +∠PDB ,∴∠PBD =12∠APC =12×60 °=30 °.∵∠ABC =45 °,∴∠ABD =∠ABC -∠PBD =45 °-30 °=15 °.24.(本题12分)如图,∠AOB =60°,OC 平分∠AOB ,C 为角平分线上一点,过点C 作CD ⊥OC ,垂足为C ,交OB 于点D ,CE ∥OA 交OB 于点E.(1)判断△CED 的形状,并说明理由; (2)若OC =3,求CD 的长.解:(1)△CED 是等边三角形.理由如下: ∵OC 平分∠AOB ,∠AOB =60 °,∴∠AOC =∠COE =30 °. ∵CE ∥OA ,∴∠AOC =∠COE =∠OCE =30 °,∠CED =60 °. ∵CD ⊥OC ,∴∠OCD =90 °. ∴∠EDC =60 °.∴△CED 是等边三角形.(2)∵△CED 是等边三角形,∴CD =CE =ED. 又∵∠COE =∠OCE ,∴OE =EC. ∴CD =ED =OE.设CD =x ,则OD =2x.在Rt △OCD 中,根据勾股定理得:x 2+9=4x 2,解得x = 3. 则CD = 3.25.(本题12分)如图,△ABC 的外角∠DAC 的平分线交BC 边的垂直平分线于点P ,PD ⊥AB 于D ,PE ⊥AC 于E. (1)求证:BD =CE ;(2)若AB =6 cm ,AC =10 cm ,求AD 的长.解:(1)证明:连接BP ,CP.∵点P 在BC 的垂直平分线上,∴BP =CP. ∵AP 是∠DAC 的平分线,∴DP =EP ,在Rt △BDP 和Rt △CEP 中,⎩⎪⎨⎪⎧BP =CP ,DP =EP ,∴Rt △BDP ≌Rt △CEP (HL ),∴BD =CE.(2)在Rt △ADP 和Rt △AEP 中,⎩⎪⎨⎪⎧AP =AP ,DP =EP ,∴Rt △ADP ≌Rt △AEP (HL ),∴AD =AE.∵AB =6 cm ,AC =10 cm ,∴6+AD =10-AE , 即6+AD =10-AD.解得AD =2 cm.26.(本题14分)如图,在△ABC 中,MP ,NO 分别垂直平分AB ,AC.(1)若BC =10 cm ,试求出△PAO 的周长; (2)若AB =AC ,∠BAC =110°,试求∠PAO 的度数;(3)在(2)中,若无AB =AC 的条件,你能求出∠PAO 的度数吗?若能,请求出来;若不能,请说明理由.解:(1)∵MP ,NO 分别垂直平分AB ,AC , ∴AP =BP ,AO =CO.∴△PAO 的周长为AP +PO +AO =BO +PO +OC =BC. ∵BC =10 cm ,∴△PAO 的周长为10 cm.(2)∵AB =AC ,∠BAC =110 °,∴∠B =∠C =12×(180 °-110 °)=35 °.由(1)知AP =BP ,AO =CO. ∴∠BAP =∠B =35 °,∠CAO =∠C =35 °. ∴∠PAO =∠BAC -∠BAP -∠CAO =110 °-35 °-35 °=40 °. (3)能.理由如下: ∵∠BAC =110 °,∴∠B +∠C =180 °-110 °=70 °.由(1)知AP =BP ,AO =CO.∴∠BAP =∠B ,∠CAO =∠C.∴∠PAO =∠BAC -∠BAP -∠CAO =∠BAC -(∠B +∠C )=110 °-70 °=40 °.27.(本题16分)如图,△ABC 中,AB =BC =AC =12 cm ,现有两点M ,N 分别从点A ,B 同时出发,沿三角形的边运动,已知点M 的速度为1 cm /s ,点N 的速度为2 cm /s .当点N 第一次到达点B 时,M ,N 同时停止运动.(1)点M ,N 运动几秒后,M ,N 两点重合?(2)点M ,N 运动几秒后,可得到等边三角形△AMN?(3)当点M ,N 在BC 边上运动时,能否得到以MN 为底边的等腰三角形AMN ?如存在,请求出此时M ,N 运动的时间.解:(1)设点M ,N 运动x 秒后,M ,N 两点重合,x ×1+12=2x ,解得x =12.(2)设点M ,N 运动t 秒后,可得到等边三角形△AMN ,如图1,AM =t ×1=t ,AN =AB -BN =12-2t.∵三角形△AMN 是等边三角形,∴t =12-2t ,解得t =4.∴点M ,N 运动4秒后,可得到等边三角形△AMN.(3)当点M ,N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形.由(1)知,12秒时M ,N 两点重合,恰好在C 处.如图2,假设△AMN 是以MN 为底边的等腰三角形,∴AN =AM.∴∠AMN =∠ANM.∴∠AMC =∠ANB.∵AB =BC =AC ,∴△ACB 是等边三角形.∴∠C =∠B.在△ACM 和△ABN 中,⎩⎪⎨⎪⎧∠C =∠B ,∠AMC =∠ANB ,AC =AB , ∴△ACM ≌△ABN (AAS ).∴CM =BN.设当点M ,N 在BC 边上运动时,M ,N 运动的时间y 秒时,△AMN 是等腰三角形.∴CM =y -12,NB =36-2y ,由CM =NB ,得y -12=36-2y ,解得y =16.故假设成立.∴当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰三角形AMN ,此时M ,N 运动的时间为16秒.。
北师大版八年级上册数学第四章《一次函数》单元测试卷(含答案)一、选择题(每题3分,共30分)1.下列两个变量之间不存在函数关系的是( )A.圆的面积S和半径r B.某地一天的气温T与时间t C.某班学生的身高y与学生的学号x D.一个正数的平方根与这个数2.一个正比例函数的图象经过点(-2,-4),则它的表达式为( )A.y=-2x B.y=2x C.y=-12x D.y=12x3.【教材P88习题T4改编】正比例函数y=x的图象向上平移2个单位长度,所得函数为( )A.y=x+2 B.y=x-2 C.y=2x D.y=x 24.一次函数y=mx+n的图象如图所示,则关于x的方程mx+n=0的解为( ) A.x=3B.x=-3C.x=4D.x=-45.已知点P(a,-3)在一次函数y=2x+9的图象上,则a的值为( ) A.-3 B.-6 C.15 D.36.关于函数y=-x2-1,下列说法错误的是( )A.当x=2时,y=-2B.y随x的增大而减小C.若(x1,y1),(x2,y2)为该函数图象上两点,x1>x2,则y1>y2D.图象经过第二、三、四象限7.【教材P98复习题T3变式】弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体质量x(kg)间有如下关系(其中x≤12).下列说法不正确的是( )A.x与y都是变量,且x是自变量B.弹簧不挂物体时的长度为10 cmC.物体质量每增加1 kg,弹簧长度增加0.5 cmD.所挂物体质量为7 kg,弹簧长度为14.5 cm8.若直线y=-3x+m与两坐标轴所围成的三角形的面积是6,则m的值为( ) A.6 B.-6 C.±6 D.±39.【教材P99复习题T8变式】已知一次函数y=kx+b,y随着x的增大而减小,且kb>0,则这个函数的大致图象是( )10.【2020·铜仁】如图,在长方形ABCD中,AB=3,BC=4,动点P沿折线BCD 从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x 之间的函数关系的图象大致是( )二、填空题(每题3分,共24分)11.【2021·黑龙江】在函数y =1x -5中,自变量x 的取值范围是__________.12.若函数y =(m +1)x |m |是关于x 的正比例函数,则m =________. 13.直线y =3x +1与y 轴的交点坐标是__________.14.点⎝ ⎛⎭⎪⎫-12,m 和点(2,n )在直线y =2x +1上,则m 与n 的大小关系是__________.15.拖拉机油箱中有54 L 油,拖拉机工作时,每小时平均耗油6 L ,则油箱里剩下的油量Q (L)与拖拉机的工作时间t (h)之间的函数关系式是________________(写出自变量的取值范围).16.【教材P 90习题T 2改编】一次函数y =-2x +m 的图象经过点P (-2,3),且与x 轴、y 轴分别交于点A ,B ,则△AOB 的面积是________.17.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的表达式是____________.(第17题) (第18题)18.甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法:①两人出发1小时后相遇;②赵明阳跑步的速度为8 km/h;③王浩月到达目的地时两人相距10 km;④王浩月比赵明阳提前1.5 h到目的地.其中错误的序号是________.三、解答题(每题11分,共66分)19.已知y-2与x成正比例,且x=2时,y=4.(1)求y与x之间的函数关系式;(2)若点M(m,3)在这个函数的图象上,求点M的坐标.20.已知一次函数y=(m-3)x+m-8中,y随x的增大而增大.(1)求m的取值范围;(2)如果这个一次函数又是正比例函数,求m的值;(3)如果这个一次函数的图象经过第一、三、四象限,试写一个m的值,不用写理由.21.如图,一次函数y=2x+b的图象与x轴交于点A(2,0),与y轴交于点B.(1)求b的值,(2)若直线AB上的点C在第一象限,且S△AOC=4,求点C的坐标.22.如图,一次函数y=kx+5的图象与y轴交于点B,与正比例函数y=32x的图象交于点P(2,a).(1)求k的值;(2)求△POB的面积.23.水龙头关闭不紧会持续不断地滴水,小明用可以显示水量的容器做实验,并根据实验数据绘制出容器内盛水量y(L)与滴水时间t(h)之间的函数关系图象(如图).请结合图象解答下面的问题:(1)容器内原有水多少升?(2)求y与t之间的函数表达式,并计算在这种滴水状态下一天的滴水量是多少升.24.某通信公司推出①②两种通信收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的收费金额y (元)与通信时间x (分钟)之间的函数关系如图所示.(1)有月租费的收费方式是________(填“①”或“②”),月租费是________元; (2)分别求出①②两种收费方式中,收费金额y (元)与通信时间x (分钟)之间的函数表达式;(3)请你根据用户通信时间的多少,给出经济实惠的选择建议.参考答案一、1.D 2.B 3.A 4.D 5.B 6.C 7.D 8.C 9.B 10.D二、11.x ≠5 12.1 13.(0,1) 14.m <n15.Q =54-6t (0≤t ≤9) 16.14 17.y =-x +3 18.③三、19.解:(1)设y -2=kx (k ≠0).把x =2,y =4代入,得k =1.故y 与x 之间的函数关系式是y =x +2. (2)因为点M (m ,3)在这个函数的图象上, 所以3=m +2,解得m =1.所以点M 的坐标为(1,3).20.解:(1)因为一次函数y =(m -3)x +m -8中,y 随x 的增大而增大,所以m -3>0. 所以m >3.(2)因为这个一次函数是正比例函数, 所以m -8=0,即m =8. (3)答案不唯一,如m =4.21.解:将A (2,0)的坐标代入y =2x +b ,得2×2+b =0,解得b =-4.(2)因为S △AOC =4,点A (2,0), 所以OA =2.所以12OA ·y c =4,解得y c =4.把y =4代入y =2x -4,得2x -4=4, 解得x =4.所以点C 的坐标为(4,4).22.解:(1)把点P (2,a )的坐标代入y =32x ,得a =3,所以点P 的坐标为(2,3).把点P (2,3)的坐标代入y =kx +5,得2k +5=3, 解得k =-1.(2)由(1)知一次函数表达式为y =-x +5. 把x =0代入y =-x +5,得y =5,所以点B的坐标为(0,5).所以S△POB=12×5×2=5.23.解:(1)根据图象可知,当t=0时,y=0.3,即容器内原有水0.3 L.(2)设y与t之间的函数表达式为y=kt+b.将点(0,0.3),(1.5,0.9)的坐标分别代入,得b=0.3,1.5k+b=0.9,解得k=0.4.所以y与t之间的函数表达式为y=0.4t+0.3.当t=24时,y=0.4×24+0.3=9.9,所以在这种滴水状态下一天的滴水量是9.9-0.3=9.6(L).24.解:(1)①;30(2)记有月租费的收费金额为y1(元),无月租费的收费金额为y2(元),则设y1=k1x+30,y2=k2x.将点(500,80)的坐标代入y1=k1x+30,得500k1+30=80,所以k1=0.1,则y1=0.1x+30.将点(500,100)的坐标代入y2=k2x,得500k2=100,所以k2=0.2,则y2=0.2x.所以①②两种收费方式中,收费金额y(元)与通信时间x(分钟)之间的函数表达式分别为y1=0.1x+30,y2=0.2x.(3)当收费相同,即y1=y2时,0.1x+30=0.2x,解得x=300.结合图象,可知当通信时间少于300分钟时,选择收费方式②更实惠;当通信时间超过300分钟时,选择收费方式①更实惠;当通信时间等于300分钟时,选择收费方式①②一样实惠.。
第六单元 比的认识 (单元测试)-2024-2025学年六年级上册数学北师大版一、单选题(共5题;共15分)1.(3分)把5:8的前项加10,要使比值不变,后项应该加上( )。
A .10B .16C .24D .202.(3分)在一个比中,前项是8,比值是,后项是( )。
A .B .6C .D .3.(3分)将甲班人数的 调入乙班后,两班人数相等,原来甲、乙两班的人数比是( )。
A .4:3B .5:3C .5:4D .3:44.(3分)甲数比乙数多,甲数:乙数=( )。
A .4:1B .4:3C .5:1D .5:45.(3分)六(2)班男生人数是女生人数的。
下列说法错误的是( )A .女生人数与男生人数的比是5:2B .女生人数比男生人数多C .男生人数比女生人数少D .男生人数占全班人数的二、判断题(共5题;共15分)6.(3分)把30克盐溶解在120克水中,盐与盐水的质量比是1:4。
( )7.(3分)4∶9的后项加上18,要使比值不变,前项应乘3。
( )8.(3分)甲、乙两数的比是4:5,乙、丙两数的比是7:8,则甲、丙两数的比是4:8。
( )9.(3分)含盐率是20%,盐与水的比是2:10 。
( )10.(3分)a 是b 的9倍(a 、b 均不为0),b 和a 的比是9:1。
( )三、填空题(共7题;共21分)11.(3分) 100米短跑测试,平平用了12秒,杨杨用了14秒,那么杨杨和平平的速度比是 。
12.(3分)大圆的半径与小圆的直径相等,那么大小两个圆的周长比是 ,它们的面积比是 。
13.(3分)建筑工地配制一种混凝土,所需水泥、黄沙和石子的质量比是2∶3∶5,现工地上三种材料都有24吨,当黄沙全部用完时,水泥还剩 吨,石子需要添加 吨。
14.(3分) 大小两个圆半径的比是 3:2,它们的周长之比是 。
面积之比是 。
343321632318142535352715.(3分)两个相同的瓶子装滴酒精溶液,一个瓶中酒精与水的体积之比是3:1,另一个瓶中酒精与水的体积之比是4:1。
北师大版八年级下册数学第六单元平行四边形测试题及答案(一)一、选择题1.如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A.BO=OH B.DF=CE C.DH=CG D.AB=AE2.如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A.B.2C.2D.43.如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是()①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2B.3C.4D.54.如图,已知凸五边形ABCDE的边长均相等,且∠DBE=∠ABE+∠CBD,AC=1,F则BD必定满足()A.BD<2B.BD=2C.BD>2D.以上情况均有可能5.如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,为CD上一点,且CF=CD,过点B作BE∥DC交AF的延长线于点E,则BE的长为()A.6B.4C.7D.126.从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形.则m、n的值分别为()A.4,3B.3,3C.3,4D.4,47.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形8.在下列条件中,不能判定四边形为平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边平行且相等C.两组对边分别平行D.对角线互相平分9.如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是()F G HA.4.5B.5C.5.5D.610.如图为互相垂直的两直线将四边形ABCD分成四个区域的情形,若∠A=100°,∠B=∠D=85°,∠C=90°,则根据图中标示的角,判断下列∠1,∠2,∠3的大小关系,何者正确()A.∠1=∠2>∠3B.∠1=∠3>∠2C.∠2>∠1=∠3D.∠3>∠1=∠2 11.如图,已知▱ABCD的四个内角的平分线分别相交于点E、、、,连接AC.若EF=2,FG=GC=5,则AC的长是()A.12B.13C.D.二、填空题12.在平行四边形ABCD中,∠B+∠D=200°,则∠A=.13.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为.14.如图,△ABC中,D,E分别是AB,AC的中点,连线DE.若DE=3,则线段BC的长等于.15.如图所示的正六边形ABCDEF,连结FD,则∠FDC的大小为.三、解答题16.如图,延长▱ABCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.17.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC,(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.18.△ABC的中线BD、CE相交于O,F,G分别是BO、CO的中点,求证:EF∥DG,且EF=DG.19.(1)解不等式组:(2)如图,已知正五边形ABCDE,AF∥CD交DB的延长线于点F,交DE的延长线于点G.求∠G的度数.20.如图,四边形ABCD的对角线AC⊥BD于点E,AB=BC,F为四边形ABCD外一点,且∠FCA=90°,∠CBF=∠DCB.(1)求证:四边形DBFC是平行四边形;(2)如果BC平分∠DBF,∠F=45°,BD=2,求AC的长.21.如图,四边形ABCD是平行四边形,E、F是对角线BD上的两点,∠1=∠2.(1)求证:DE=BF;(2)求证:四边形AECF是平行四边形.22.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证:四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.答案一、选择题1.D2.C3.D4.A5.A6.C7.C8.A9.A10.D11.B二、填空题12.80°13.1214.615.90°三、解答题16.如图,延长▱ABCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.【考点】L5:平行四边形的性质.【专题】解答题【分析】根据平行四边形的性质可得AD=BC,AD∥BC,再证出BE=DF,得出AF=EC,进而可得四边形AECF是平行四边形,从而可得AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AF∥EC,∵DF=DC,BE=BA,∴BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形对边平行且相等,一组对边平行且相等的四边形是平行四边形.17.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC,(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.【考点】L6:平行四边形的判定;KD:全等三角形的判定与性质.【专题】解答题【分析】(1)由SSS证明△ABC≌△DFE即可;(2)连接AF、BD,由全等三角形的性质得出∠ABC=∠DFE,证出AB∥DF,即可得出结论.【解答】证明:(1)∵BE=FC,∴BC=EF,在△ABC和△DFE中,,∴△ABC≌△DFE(SSS);(2)解:连接AF、BD,如图所示:由(1)知△ABC≌△DFE,∴∠ABC=∠DFE,∴AB∥DF,∵AB=DF,∴四边形ABDF是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.18.△ABC的中线BD、CE相交于O,F,G分别是BO、CO的中点,求证:EF∥DG,且EF=DG.【考点】KX:三角形中位线定理.【专题】解答题【分析】利用三角形中线的性质、中位线的定义和性质证得四边形EFGD的对边DE∥GF,且DE=GF=BC;然后由平行四边形的判定﹣﹣对边平行且相等的四边形是平行四边形,继而证得结论.【解答】证明:连接DE,FG,∵BD、CE是△ABC的中线,∴D,E是AB,AC边中点,∴DE∥BC,DE=BC,同理:FG∥BC,FG=BC,∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形,∴EF∥DG,EF=DG.【点评】本题考查了三角形中位线定理、平行四边形的判定.平行四边形的判定:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;一组对边平行,一组对角相等的四边形是平行四边形19.(1)解不等式组:(2)如图,已知正五边形ABCDE,AF∥CD交DB的延长线于点F,交DE的延长线于点G.求∠G的度数.【考点】L3:多边形内角与外角;CB:解一元一次不等式组;JA:平行线的性质.【专题】解答题【分析】(1)根据不等式的解法即可得到结论;(2)根据五边形ABCDE是正五边形,得到∠DCB=∠EDC=108°,DC=BC根据等腰三角形的性质得到∠CDB=36°,求得∠GDB=72°,根据平行线的性质即可得到结论.【解答】解:(1),解不等式①,得x≤2,解不等式②,得x<﹣1,不等式组的解集为x<﹣1;(2)∵五边形ABCDE是正五边形,∴∠DCB=∠EDC=108°,DC=BC,∴∠CDB=36°,∴∠GDB=72°,∵AF∥CD,∴∠CDB=∠F=36°,∴∠G=72°.【点评】本题考查了不等式的解法,多边形的内角和外角,平行线的性质,正确的识别图形是解题的关键.20.如图,四边形ABCD的对角线AC⊥BD于点E,AB=BC,F为四边形ABCD外一点,且∠FCA=90°,∠CBF=∠DCB.(1)求证:四边形DBFC是平行四边形;(2)如果BC平分∠DBF,∠F=45°,BD=2,求AC的长.【考点】L7:平行四边形的判定与性质;KF:角平分线的性质.【专题】解答题【分析】(1)由这一点就证出BD∥CF,CD∥BF,即可得出四边形DBFC是平行四边形;(2)由平行四边形的性质得出CF=BD=2,由等腰三角形的性质得出AE=CE,作CM ⊥BF于F,则CE=CM,证出△CFM是等腰直角三角形,由勾股定理得出CM= CF=,得出AE=CE=,即可得出AC的长.【解答】(1)证明:∵AC⊥BD,∠FCA=90°,∠CBF=∠DCB.∴BD∥CF,CD∥BF,∴四边形DBFC是平行四边形;(2)解:∵四边形DBFC是平行四边形,∴CF=BD=2,∵AB=BC,AC⊥BD,∴AE=CE,作CM⊥BF于F,∵BC平分∠DBF,∴CE=CM,∵∠F=45°,∴△CFM是等腰直角三角形,∴CM=∴AE=CE=∴AC=2CF=,.,【点评】本题考查了平行四边形的判定与性质、等腰三角形的性质、等腰直角三角形的判定与性质、勾股定理;熟练掌握平行四边形的判定与性质是解决问题的关键.21.如图,四边形ABCD是平行四边形,E、F是对角线BD上的两点,∠1=∠2.(1)求证:DE=BF;(2)求证:四边形AECF是平行四边形.【考点】L7:平行四边形的判定与性质;KD:全等三角形的判定与性质.【专题】解答题【分析】(1)通过全等三角形△CDE≌△ABF的对应边相等证得DE=BF;(2)根据平行四边形的判定定理:对边平行且相等的四边形是平行四边形证得结论.【解答】(1)证明:如图:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴∠3=∠4,∵∠1=∠3+∠5,∠2=∠4+∠6,∠1=∠2∴∠5=∠6在△CDE与△ABF中,,∴△CDE≌△ABF(ASA),∴DE=BF;(2)证明:∵∠1=∠2,∴CE∥AF.又∵由(1)知,△CDE≌△ABF,∴CE═AF,∴四边形AECF是平行四边形.【点评】本题考查了全等三角形的判定与性质、平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.22.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证:四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.【考点】L7:平行四边形的判定与性质.【专题】解答题【分析】(1)由已知角相等,利用对顶角相等,等量代换得到同位角相等,进而得出DB与EC平行,再由内错角相等两直线平行得到DE与BC平行,即可得证;(2)由角平分线得到一对角相等,再由两直线平行内错角相等,等量代换得到一对角相等,再利用等角对等边得到CN=BC,再由平行四边形对边相等即可确定出所求.【解答】(1)证明:∵∠A=∠F,∴DE∥BC,∵∠1=∠2,且∠1=∠DMF,∴∠DMF=∠2,∴DB∥EC,则四边形BCED为平行四边形;(2)解:∵BN平分∠DBC,∴∠DBN=∠CBN,∵EC∥DB,∴∠CNB=∠DBN,∴∠CNB=∠CBN,∴CN=BC=DE=2.【点评】此题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.。
第一章单元测试卷一、选择题(每题3分,共30分)1.由下列线段a,b,c组成的三角形,不是直角三角形的是( )A.a=3,b=4,c=5B.a=1,b=错误!未找到引用源。
,c=错误!未找到引用源。
C.a=9,b=12,c=15D.a=错误!未找到引用源。
,b=2,c=错误!未找到引用源。
2.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°3.下列四个命题中,假命题是( )A.“等边对等角”与“等角对等边”是互逆定理B.等边三角形是锐角三角形C.角平分线上的点到角两边的距离相等D.真命题的逆命题是真命题4.下列能判定三角形是等腰三角形的是( )A.有两个角为30°,60°B.有两个角为40°,80°C.有两个角为20°,100°D.有两个角为50°,80°5.已知等腰三角形的两条边长分别是7和3,则第三条边的长是( )A.7或3B.7C.4D.36.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于( )A.65°B.50°C.60°D.57.5°7.下列两个三角形中,一定全等的是( )A.有一个角是40°,腰相等的两个等腰三角形B.两个等边三角形C.有一个角是100°,底相等的两个等腰三角形D.有一条边相等,有一个内角相等的两个等腰三角形8.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC 于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN 的长为 ( )A.4 cmB.3 cmC.2 cmD.1 cm9.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长为( )A.4错误!未找到引用源。
2020-2021学年北师大新版八年级上册数学《第1章勾股定理》单元测试卷一.选择题1.如图所示是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案,现在有五种正方形纸片,面积分别是2,3,4,5,6,选取其中三块(可重复选取),按如图所示方式组成图案,使所围成的三角形是直角三角形,则选取的三块纸片的面积不可以是()A.3,4,5B.2,2,4C.3,3,6D.2,4,62.在Rt△ABC中,∠C=90°.若a=6,b=8,则c的值是()A.10B.2C.2D.4.83.如图,在Rt△ABC中,∠C=90°,AB=2,AC=1,则BC的长度为()A.5B.3C.D.4.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,其直角三角形的两条直角边的长分别是2和4,则小正方形与大正方形的面积比是()A.1:2B.1:4C.1:5D.1:105.下列几组数能作为直角三角形三边长的是()A.3,4,6B.1,1,C.5,12,14D.,2,5 6.下列各组数中,是勾股数的是()A.7,8,9B.6,8,11C.5,12,14D.3,4,57.如图,在Rt△ABC中,∠C=90°,AB=10,BC=8.点P是边AC上一动点,过点P 作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为()A.B.C.D.8.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,某竹梢恰好抵地,抵地处离竹子底部6尺远,则折断处离地面的高度是()A.5.3尺B.6.8尺C.4.7尺D.3.2尺9.丽丽想知道学校旗杆的高,她发现旗杆顶端上的绳子垂直到地面还多2米,当她把绳子的下端拉开离旗杆6米后,发现下端刚好接触地面,则旗杆的高为()A.4米B.8米C.10米D.12米10.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为12cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,且离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为15cm,则该圆柱底面周长为()cm.A.9B.10C.18D.20二.填空题11.直角三角形的两直角边是3和4,则斜边是12.如图,在△ABC中,AB=5,AC=4,BC=3,分别以点A、点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN交AB于点O,连接CO,则CO的长为.13.如图,在3×3的正方形网格中,每个小正方形边长为1,点A,B,C均为格点,以点A为圆心,AB长为半径作弧,交格线于点D,则CD的长为.14.面积为48的等腰三角形底边上的高为6,则腰长为.15.如图,正方形ABCD是由四个全等的直角三角形围成的,若CF=5,AB=13,则EF 的长为.16.如图所示的网格是正方形网格,点A,B,C,D是网格线交点,则△ABC的面积与△ADB的面积大小关系为:S△ABC S△ADB(填“>”“=”或“<”).17.观察下列各组勾股数,并寻找规律:①4,3,5;②6,8,10;③8,15,17;④10,24,26……请根据你发现的规律写出第⑦组勾股数:.18.如图是高空秋千的示意图,小明从起始位置点A处绕着点O经过最低点B.最终荡到最高点C处,若∠AOC=90°,点A与点B的高度差AD=1米,水平距离BD=4米,则点C与点B的高度差CE为米.19.如图,甲、乙两艘客轮同时离开港口C,各自沿一固定方向航行,甲客轮每小时航行16nmile,乙客轮每小时航行12nmile,它们离开港口一个半小时后分别位于点A、B处,且相距30nmile.如果知道甲客轮沿着北偏西45°方向航行,则乙客轮的航行方向可能是.20.如图,如果一只蚂蚁从圆锥底面上的点B出发,沿表面爬到母线AC的中点D处,则最短路线长为.三.解答题21.如图,已知△ABC中,AB=AC,BD⊥AC于D,BD=3,BC=,求AB的长.22.阅读下列材料,解决所提的问题:勾股定理a2+b2=c2本身就是一个关于a,b,c的方程,我们知道这个方程有无数组解,满足该方程的正整数解(a,b,c)通常叫做勾股数组.关于勾股数组的研究我国历史上有非常辉煌的成就,根据我国古代数学书《周髀算经》记载,在约公元前1100年,人们就已经知道“勾广三、股修四、径隅五”(古人把较短的直角边称为勾,较长的直角边称为股,而斜边则为弦),即知道了勾股数组(3,4,5).类似地,还可以得到下列勾股数组:(3,4,5),(5,12,13),(7,24,25),(9,40,41),…等等,这些数组也叫做毕达哥拉斯勾股数组.上述勾股数组的规律,可以用下面表格直观表示:勾股数组各组数的和和的另一表示法和与最小数的差股弦3,4,5123×412﹣3=95,12,13305×630﹣5=257,24,25567×856﹣7=499,40,41909×1090﹣9=81………………观察分析上述勾股数组,可以看出它们具有如下特点:特点1:最小的勾股数的平方等于另两个勾股数的和;特点2:.…学习任务:(1)请你再写出上述勾股数组的一个特点:;(2)如果n表示比1大的奇数,则上述勾股数组可以表示为(n,,)(3)请你证明(2)的结论.23.如图(1)是用硬板纸做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c,请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,并用这个图形证明勾股定理;(2)假设图(1)中的直角三角形有若干个,你能运用图(1)中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图(无需证明)24.如图,已知CD=4,AD=3,∠ADC=90°,BC=12,AB=13.(1)求AC的长.(2)求图中阴影部分图形的面积.25.如图是5×6的网格.(1)如图(1),A,B,C是网格中的三个格点(即小正方形的顶点),判断AC与BC 的数量和位置关系,直接写出结论,不需要说明理由;(2)如图(2),求∠1+∠2的度数(要求:画出示意图并给出推导过程).26.如图,每小个正方形的边长都是1,每个小正方形的顶点称格点,△ABC的顶点都是在格点上.(1)求△ABC的周长;(2)求△ABC的面积.27.如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,求BC的长.参考答案与试题解析一.选择题1.解:由题意可得,三角形各边的平方是对应的各个正方形的面积,∵所围成的三角形是直角三角形,∴斜边对应的正方形的面积=两直角边对应的正方形的面积和,又∵3+4≠5,2+2=4,3+3=6,2+4=6,∴选取的三块纸片的面积不可以是3,4,5,故选:A.2.解:在Rt△ABC中,∠C=90°,a=6,b=8,由勾股定理得:c===10,故选:A.3.解:在Rt△ABC中,∠C=90°,AB=2,AC=1,由勾股定理得,BC===,故选:D.4.解:∵直角三角形的两条直角边的长分别是2和4,∴小正方形的边长为2,根据勾股定理得:大正方形的边长==2,∴===.故选:C.5.解:A、32+42≠62,不符合勾股定理的逆定理,不是直角三角形,不符合题意;B、12+12≠()2,不符合勾股定理的逆定理,不是直角三角形,不符合题意;C、52+122≠142,不符合勾股定理的逆定理,不是直角三角形,不符合题意;D、()2+(2)2=52,符合勾股定理的逆定理,是直角三角形,符合题意;故选:D.6.解:A、∵72+82≠92,∴这组数不是勾股数.不符合题意;B、∵62+82≠112,∴不是勾股数,不符合题意;C、∵52+122≠14,∴这组数不是勾股数.不符合题意;D、∵32+42=52,∴是勾股数,符合题意.故选:D.7.解:设BQ=x,在Rt△ABC中,∠C=90°,AB=10,BC=8,由勾股定理得:AC===6,∵BD平分∠ABC,∴∠QBD=∠ABD,∵PQ∥AB,∴∠QDB=∠ABD,∴∠QBD=∠QDB,∴QD=BQ=x,∵D为线段PQ的中点,∴QP=2QD=2x,∵PQ∥AB,∴△CPQ∽△CAB,∴==,即==,解得:x=,CP=,∴AP=CA﹣CP=,故选:B.8.解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+62=(10﹣x)2.解得:x=3.2,∴折断处离地面的高度为3.2尺,故选:D.9.解:设旗杆的高为xm,则绳子的长为(x+2)m.根据题意得:x2+62=(x+2)2,解得x=8.故旗杆的高为8米.故选:B.10.解:如图:将圆柱展开,EG为上底面圆周长的一半,作A关于E的对称点A',连接A'B交EG于F,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=15cm,延长BG,过A'作A'D⊥BG于D,∵AE=A'E=DG=4cm,∴BD=12cm,Rt△A'DB中,由勾股定理得:A'D==9cm,∴则该圆柱底面周长为18cm.故选:C.二.填空题11.解:在直角三角形中,三边边长符合勾股定理,已知两直角边为3、4,则斜边边长==5,故答案为5.12.解:∵AB=5,AC=4,BC=3,∴AB2=AC2+BC2,∴∠ACB=90°,由作图可知:MN是AB的垂直平分线,∴O是AB的中点,∴CO=AB=,故答案为:.13.解:连接AB,AD,如图所示:∵AD=AB==2,∴DE==,∴CD=3﹣.故答案为:3﹣.14.解:如图所示:△ABC中,AB=AC,AD是底边BC上的高,则BC•AD=48,BD=CD,即BC×6=48,∴BC=16,∴BD=BC=8,∴AB===10,故答案为:10.15.解:如图,∵正方形ABCD是由四个全等的直角三角形围成的,∴AH=BE=CG=DF,AE=BG=CF=DH,∴EG=GF=GH=HE,∴四边形EGFH为菱形,∵△ABE为直角三角形,∴∠AEB=∠GEH=90°,∴四边形EGFH为正方形,∵四边形ABCD为正方形,∴CD=AB=13,在Rt△CDF中,∠DFC=90°,CF=5,根据勾股定理得,DF=12,∴GF=DF﹣DH=GC﹣FC=7,在△GEF中,GE=GF=7,∠EGF=90°,根据勾股定理得,EF==7.故答案为:7.16.解:∵AB2=8,BC2=2,AC2=10,∴AB2+BC2=AC2,∴△ABC是直角三角形,∴S△ABC =××2=2,S△ABD=×2×2=2,∴S△ABC =S△ABD,故答案为:=.17.解:观察前4组数据的规律可知:第一个数是2(n+1);第二个是:n(n+2);第三个数是:(n+1)2+1.所以第⑦组勾股数:16,63,65.故答案为:16,63,65.18.解:作AF⊥BO于F,CG⊥BO于G,∵∠AOC=∠AOF+∠COG=90°,∠AOF+∠OAF=90°,∴∠COG=∠OAF,在△AOF与△OCG中,,∴△AOF≌△OCG(AAS),∴OG=AF=BD=4米,设AO=x米,在Rt△AFO中,AF2+OF2=AO2,即42+(x﹣1)2=x2,解得x=8.5.则CE=GB=OB﹣OG=8.5﹣4=4.5(米).故答案为:4.5.19.解:AC的长度为:16×1.5=24(n mile),BC的长度为:12×1.5=18(n mile),∵302=242+182,∴AB2=AC2+BC2,∴△ABC是直角三角形,∠ACB=90°,∵甲客轮沿着北偏西45°方向航行,∴乙客轮的航行方向可能是北偏东45°,故答案为:北偏东45°.20.解:如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路线.设∠BAB′=n°.∵,∴n=120,即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,Rt△AFB中,∠ABF=30°,AB=6∴AF=3,BF==3,∴最短路线长为3.故答案为:3.三.解答题21.解:设AB=AC=x,∵BD⊥AC,∴∠BDC=90°,∴CD==1,∴AD=x﹣1,在Rt△BDA中,BD2+AD2=AB2,即32+(x﹣1)2=x2,解得,x=5,即AB=5.22.解:特点2,答案不唯一:如:最小的勾股数是奇数,另外两个勾股数是两个连续的正整数,故答案为:答案不唯一:如:最小的勾股数是奇数,另外两个勾股数是两个连续的正整数;(1)上述勾股数组的一个特点:最小的勾股数与比它大1的整数的乘积等于各个勾股数的和,故答案为:最小的勾股数与比它大1的整数的乘积等于各个勾股数的和;(2)如果n表示比1大的奇数,则上述勾股数组可以表示为(n2,,),故答案为:;;(3)证明:n2+()2=n2+==()2,则(n2,,)是勾股数组.23.解:(1)如图所示,是梯形;由上图我们根据梯形的面积公式可知,梯形的面积=(a+b)(a+b).从上图我们还发现梯形的面积=三个三角形的面积,即ab+ab+c2.两者列成等式化简即可得:a2+b2=c2;(2)画边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边.24.解:(1)在Rt△ADC中,∠ADC=90°,由勾股定理,得:AC===5;(2)∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形,∴图中阴影部分图形的面积=S △ABC ﹣S △ACD =×5×12﹣×3×4=30﹣6=24. 25.解:(1)AC =BC 且AC ⊥BC .理由:如图(1),∵CD =BE ,∠ADC =∠CEB =90°,AD =CE , ∴△ACD ≌△CBE (SAS ),∴AC =CB ,∠ACD =∠CBE ,又∵∠CBE +∠BCE =90°,∴∠ACD +∠BCE =90°,∴∠ACB =180°﹣90°=90°,∴AC ⊥BC ;(2)如图(2),作△ABC ,△DEF ,∵BC =FE ,∠ABC =∠DFE ,AB =DF ,∴△ABC ≅△DFE (SAS ),∴∠ACB =∠DEF =∠2.由图,结合勾股定理,得 ,,AD =5,∴AC 2+DC 2=5+20=25=AD 2,∴△ACD 是直角三角形,且∠ACD =90°.∵∠2+∠ACD +∠1=180°,∴∠1+∠2=180°﹣∠ACD =180°﹣90°=90°. 26.解:(1)由勾股定理得:,,, ∴△ABC 的周长=; (2)由(1)可知,AC 2+AB 2=()2+()2=20,BC 2=(2)2=20, ∴AC 2+AB 2=BC 2,∴△ABC 是直角三角形,∠BAC =90°,∴.27.解:延长AD到E使AD=DE,连接CE,在△ABD和△ECD中,∴△ABD≌△ECD,∴AB=CE=5,AD=DE=6,AE=12,在△AEC中,AC=13,AE=12,CE=5,∴AC2=AE2+CE2,∴∠E=90°,由勾股定理得:CD==,∴BC=2CD=2,答:BC的长是2.。
第六章 单元测试
一、选择题(每小题2分,共20分)
1.已知油箱中有油25升,每小时耗油5升,则剩油量P (升)与耗油时间t (小时)之间的函数关系式为( )
A .P =25+5t
B .P =25-5t
C .P =
t
525
D .P =5t -25
2.函数y =
x
x 3
-的自变量的取值范围是( ) A .x ≥3 B .x >3 C .x ≠0且x ≠3 D .x ≠0
3.函数y =3x +1的图象一定通过( )
A .(3,5)
B .(-2,3)
C .(2,7)
D .(4,10) 4.下列函数中,图象经过原点的有( ) ①y =2x -2 ②y =5x 2-4x ③y =-x 2 ④y =
x
6 A .1个 B .2个 C .3个 D .4个 5.某市自来水公司年度利润表如图,观察该图表可知,下列四个说法中错误的是(
)
A .1996年的利润比1995年的利润增长-2173.33万元
B .1997年的利润比1996年的利润增长5679.03万元
C .1998年的利润比1997年的利润增长315.51万元
D .1999年的利润比1998年的利润增长-7706.77万元 6.下列函数中是一次函数的是( ) A .y =2x 2-1
B .y =-
x 1 C .y =3
1+x D .y =3x +2x 2-1
7.已知函数y =(m 2+2m )x 1
2
-+m m
+(2m -3)是x 的一次函数,则常数m 的值
为( )
A .-2
B .1
C .-2或-1
D .2或-1 8.如图所示的图象是直线ax +by +c =0的图象,则下列条件中正确的为(
)
A .a =b ,c =0
B .a =-b ,c =0
C .a =b ,c =1
D .a =-b ,c =1
9.若函数y =2x +3与y =3x -2b 的图象交x 轴于同一点,则b 的值为( )
A .-3
B .-
23 C .9 D .-
4
9 10.函数y =2x +1与y =-2
1
x +6的图象的交点坐标是( )
A .(-1,-1)
B .(2,5)
C .(1,6)
D .(-2,5)
二、填空题(每小题3分,共24分)
11.已知函数y =3x -6,当x =0时,y =______;当y =0时,x =______. 12.在函数y =
1
1
+x 中,自变量x 的取值范围是______. 13.长沙向北京打长途电话,设通话时间x (分),需付电话费y (元),通话
3分以内话费为3.6元.请你根据如图所示的y随x的变化的图象,找出通话
5分钟需付电话费______元.
14.已知直线经过原点和P(-3,2),那么它的解析式为______.
15.已知一次函数y=-(k-1)x+5随着x的增大,y的值也随着增大,那么k的取值范围是______.
16.一次函数y=1-5x经过点(0,______)与点(______,0),y随x的增大而______.
17.一次函数y=(m2-4)x+(1-m)和y=(m-1)x+m2-3的图象与y轴分别交于点P和点Q,若点P与点Q关于x轴对称,则m=______.18.假定甲乙两人在一次赛跑中,路程S与时间t的关系如图所示,那么可以知道:这是一次______米赛跑;甲、乙两人中先到达终点的是______;乙在这次赛跑中的速度为______米/秒.
三、解答题(每小题7分,共56分)
19.北京到天津的低速公路约240千米,骑自行车以每小时20千米匀速从北京出发,t小时后离天津S千米.
(1)写出S与t之间的函数关系式;
(2)画出这个函数的图象;
(3)回答:①8小时后距天津多远?②出发后几小时,到两地距离相等?
20.已知正比例函数的图象上有一点P,它的纵坐标与横坐标的比值是-
6
5
.
(1)求这个函数的解析式;
(2)点P1(10,-12)、P2(-3,36)在这个函数图象上吗?为什么?
21.作出函数y=
3
4
x-4的图象,并回答下面的问题:
(1)求它的图象与x轴、y轴所围成图形的面积;
(2)求原点到此图象的距离.
22.如图一次函数y=kx+b的图象经过点A和点B.
(1)写出点A和点B的坐标并求出k、b的值;
(2)求出当x=
2
3
时的函数值.
23.一次函数y=(2a+4)x-(3-b),当a、b为何值时(1)y随x的增大而增大;
(2)图象与y轴交在x轴上方;
(3)图象过原点.
24.判断三点A(1,3)、B(-2,0)、C(2,4)是否在同一条直线上,为什么?
25.为发展电信事业,方便用户,电信公司对移动电话采用不同的收费方式,所使用的便民卡和如意卡在×市范围内每月(30天)的通话时间x(分钟)与通话费y(元)的关系如图所示:
分别求出通话费y1、y2与通话时间x之间的函数关系式.
26.为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费.设某户每月用水量为x(立方米),应交水费为y(元).
(1)分别写出未超过7立方米和多于7立方米时,y与x的函数关系式;
(2)如果某单位共有50户,某月共交水费541.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?
参考答案
一、1.B2.A3.C4.B5.D6.C7.B8.A9.D10.B
二、11.-6,212.x≠-113. 6
14.y=-
3
2
x15.k<116.1,
5
1
,减小
17.-1或218.100,甲,8
三、19.(1)S=240-20t(2)略(3)①80千米②t=6
20.(1)y=-
6
5
x(2)都不在点的坐标代入函数式不成立
21.图略(1)6(2)
5
12
22.(1) A(-1.3) B(2,-3),k=-2,b=1(2)-2
23.(1)a>-2,b为任意数(2)a≠-2且b>3(3)a≠-2且b=3
24.在略
25.y1=
5
1
x+29y2=
2
1
x
26.(1)y=1.2x(0≤x≤7)y=1.9(x-7)+8.4(x>7)(2)28。