人教版九年级上册第23章旋转提高练习一(含答案)
- 格式:docx
- 大小:116.38 KB
- 文档页数:6
巧用旋转进行计算类型之一利用旋转构造等腰三角形由旋转性质1:对应点到旋转中心的距离相等,可得对应点与旋转中心所构成的三角形是等腰三角形.1.如图1,在△ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到△A′B′C,若点B′恰好落在线段AB上,AC,A′B′相交于点O,则∠COA′的度数是( )图1A.50°B.60°C.70°D.80°2.如图2,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为( )图2A.90°-αB.αC.180°-αD.2α3.如图3,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C是由△ABC绕点C顺时针旋转得到的,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且点A,B′,A′在同一条直线上,则AA′的长为( )图3A.6 B.4 3 C.3 3 D.34.如图4,△COD是由△AOB绕点O顺时针旋转40°后得到的图形.若点C恰好落在AB 上,且∠AOD的度数为90°,则∠B的度数是________.图4类型之二利用旋转构造等腰直角三角形如果旋转角为90°,那么对应点与旋转中心构成的三角形是等腰直角三角形.5.如图5,将Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,连接BB′.若∠A′B′B=20°,则∠A的度数是________.图56.如图6,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.把△ADE以点A为中心顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于________.图6类型之三利用旋转构造等边三角形如果旋转角是60°,那么对应点与旋转中心构成的三角形是等边三角形.7.如图7所示,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n(n<90)度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n 的大小和图中阴影部分的面积分别为( )图7A.30,2 B.60,2 C.60,32D.60, 38.如图8所示,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C 逆时针旋转至△A′B′C的位置,使得点A′恰好落在AB上,连接BB′,则BB′的长为________.图89.如图9,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D 的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则BD=________.图910.如图10,O是等边三角形ABC内一点,∠AOB=105°,∠BOC等于α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)求∠OAD的度数;(3)探究:当α为多少度时,△AOD是等腰三角形?图1011.如图11,在等边三角形ABC中,D为△ABC内的一点,∠ADB=120°,∠ADC=90°,将△ABD绕点A逆时针旋转60°得△ACE,连接DE.(1)求证:AD=DE;(2)求∠DCE的度数;(3)若BD=1,求AD,CD的长.图1112.请阅读下列材料:问题:如图12①,在等边三角形ABC内有一点P,且PA=2,PB=3,PC=1,求∠BPC 的度数和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图②),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,进而求出等边三角形ABC的边长为7,问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图③,在正方形ABCD内有一点P,且PA=5,PB=2,PC=1.求∠BPC的度数和正方形ABCD的边长.图121.B [解析] ∵在△ABC 中,∠ACB =90°,∠B =50°, ∴∠A =180°-∠ACB -∠B =40°. 由旋转的性质可知BC =B ′C , ∴∠B =∠BB ′C =50°.又∵∠BB ′C =∠A +∠ACB ′=40°+∠ACB ′, ∴∠ACB ′=10°,∴∠COA ′=∠OB ′C +∠ACB ′=∠B +∠ACB ′=60°.2.C [解析] 由题意可得,∠ABE =α,BE =BA ,∴∠BAE =∠E =12(180°-∠ABE)=12(180°-α)=90°-12α,∴∠BAC =90°-12α,∴∠CAD =∠BAC +∠BAE =180°-α,故选C.3.A [解析] ∵在Rt △ABC 中,∠ACB =90°,∠B =60°,∴∠CAB =30°.∵BC =2,∴AB =4.∵△A ′B ′C 由△ABC 绕点C 顺时针旋转得到的,其中点A ′与点A 是对应点,点B ′与点B 是对应点,且点A ,B ′,A ′在同一条直线上,∴AB =A ′B ′=4,AC =A ′C ,∠A ′B ′C =∠B =60°,∴∠A ′=30°.又∵AC =A ′C ,∴∠CAA ′=∠A ′=30°,∴∠ACB ′=∠A ′B ′C -∠CAA ′=60°-30°=30°,则∠ACB ′=∠B ′AC ,∴AB ′=B ′C =2,∴AA ′=2+4=6.4.60° [解析] 由旋转的性质,得∠AOC =∠BOD =40°,OA =OC ,则∠A =∠ACO =70°. 由∠AOD =90°,得∠BOC =∠AOD -(∠AOC +∠BOD)=10°.∴∠B =∠ACO -∠BOC =70°-10°=60°.5.65° [解析] ∵Rt △ABC 绕直角顶点C 顺时针旋转90°得到△A ′B ′C ,∴△BCB ′是等腰直角三角形,∴∠CBB ′=45°.∴∠B ′A ′C =∠A ′B ′B +∠CBB ′=20°+45°=65°.由旋转的性质得∠A =∠B ′A ′C =65°.6.2 5 [解析] ∵DE =1,AD =3,∠D =90°,∴AE 2=AD 2+DE 2=32+12=10. 由旋转的性质得∠EAE ′=90°,AE =AE ′,∴EE ′2=AE 2+AE ′2=10+10=20,即EE ′=2 5.7.C [解析] ∵△ABC 是直角三角形,∠ACB =90°,∠A =30°,BC =2, ∴∠B =60°,AB =2BC =4,AC =AB 2-BC 2=2 3. ∵△EDC 是由△ABC 绕点C 按顺时针方向旋转得到的, ∴CD =BC =2,∠CDE =∠B =60°. ∵∠B =60°,∴△BCD 是等边三角形,∴∠BCD =60°,∴∠DCF =30°, ∴∠DFC =90°, 即DE ⊥AC ,∴DE ∥BC. ∵BD =BC =12AB =2,∴DF 是△ABC 的中位线,∴DF =12BC =12×2=1,CF =12AC =12×2 3=3,∴S 阴影=12DF ·CF =12×1×3=32.故选C.8. 3 [解析] ∵Rt △ABC 中,∠ACB =90°,∠ABC =30°,AC =1,∴A ′C =AC =1,AB =2,BC = 3.∵∠A =60°,∴△AA ′C 是等边三角形, ∴AA ′=12AB =1,∴A ′C =A ′B ,∴∠A ′CB =∠A ′BC =30°. ∵△A ′B ′C 是由△ABC 旋转而成的, ∴∠A ′CB ′=90°,BC =B ′C , ∴∠B ′CB =90°-30°=60°,∴△BCB ′是等边三角形,∴BB ′=BC = 3. 9.5 [解析] 连接BE.∵△DCB 绕点C 顺时针旋转60°得到△ACE ,AB =3,BC =4,∠ABC =30°, ∴∠BCE =60°,CB =CE ,AE =BD , ∴△BCE 是等边三角形, ∴∠CBE =60°,BE =BC =4,∴∠ABE =∠ABC +∠CBE =30°+60°=90°,∴AE=AB2+BE2=32+42=5.又∵AE=BD,∴BD=5.10.解:(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得到△ADC,∴△BOC≌△ADC,∠OCD=60°,∴OC=CD,∴△OCD是等边三角形.(2)∵∠AOB=105°,∠BOC=α,∴∠AOC=360°-∠AOB-∠BOC=360°-105°-α.∵将△BOC绕点C按顺时针方向旋转60°得到△ADC,∴△BCO≌△ACD,∴∠ADC=∠BOC=α.∴∠OAD=360°-∠AOC-∠OCD-∠ADC=360°-(360°-105°-α)-60°-α=45°.(3)∵由(1)知△COD是等边三角形,∴∠COD=60°.由(2)知∠OAD=45°.若△AOD是等腰三角形,则分以下三种情况讨论:当OA=OD时,∠AOD=90°,α=360°-105°-60°-90°=105°;当OA=AD时,∠AOD=67.5°,α=360°-105°-60°-67.5°=127.5°;当AD=OD时,∠AOD=45°,α=360°-105°-60°-45°=150°.综上所述,当α=105°,127.5°或150°时,△AOD是等腰三角形.11.解:(1)证明:∵将△ABD绕点A逆时针旋转60°得△ACE,∴△ABD≌△ACE,∠BAC=∠DAE,∴AD=AE,BD=CE,∠AEC=∠ADB=120°.∵△ABC为等边三角形,∴∠BAC=60°,∴∠DAE=60°,∴△ADE为等边三角形,∴AD=DE.(2)∵∠ADC=90°,∠AEC=120°,∠DAE=60°,∴∠DCE=360°-∠ADC-∠AEC-∠DAE=90°.(3)∵△ADE为等边三角形,∴∠ADE=60°,∴∠CDE=∠ADC-∠ADE=30°.又∵∠DCE=90°,∴DE=2CE=2BD=2.∴AD=DE=2.在Rt△DCE中,CD=DE2-CE2=22-12= 3.12.解:将△BPC绕点B逆时针旋转90°,得△BP′A,则△BPC≌△BP′A. ∴AP′=PC=1,BP′=PB= 2.连接PP′,如图.在Rt△BP′P中,∵PB=BP′=2,∠PBP′=90°,∴PP′=2,∠BP′P=45°.在△AP′P中,AP′=1,PP′=2,PA=5,∵12+22=(5)2,即AP′2+PP′2=PA2,∴△AP′P是直角三角形,即∠AP′P=90°.∴∠AP′B=135°,∴∠BPC=∠AP′B=135°.过点B作BE⊥AP′,交AP′的延长线于点E,则△BEP′是等腰直角三角形,∴∠EP′B=45°.又∵BP′=2,∴EP′=BE=1,∴AE=2.在Rt△ABE中,∵BE=1,AE=2,∴由勾股定理,得AB= 5.综上可得,∠BPC=135°,正方形ABCD的边长为 5.。
人教版九年级数学上册第23章旋转单元练习卷含答案一、单选题1.已知点与点关于坐标原点对称,则实数a、b的值是A. ,B. ,C. ,D. ,2.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A. B. C. D.3.将图绕中心按顺时针方向旋转60°后可得到的图形是()A. B. C. D.4.如图,四边形ABCD是正方形,△ADE绕着点A旋转90°后到达△ABF的位置,连接EF,则△AEF的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.如图,□ABCD绕点A逆时针旋转32°,得到□AB′C′D′,若点B′与点B是对应点,若点B′恰好落在BC边上,则∠C=()A. 106°B. 146°C. 148°D. 156°6.如图所示的图案绕旋转中心旋转一定角度后能够与自身重合,那么这个旋转角可能是( )A. B. C. D.7.如图的四个图形中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()个.A. 1B. 2C. 3D. 48.已知点P1(a,3)与P2(﹣5,﹣3)关于原点对称,则a的值为()A. 5B. 3C. 4D. -5二、填空题9.在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出旋转后的点关于原点的对称点,这称为一次变换,已知点A的坐标为(﹣1,0),则点A经过连续2016次这样的变换得到的点A2016的坐标是________.10.我们知道,在平面内,如果一个图形绕着一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转的这个角称为这个图形的一个旋转角.例如,正方形绕着它的对角线的交点旋转90°后能与自身重合所以正方形是旋转对称图形,它有一个旋转角为90°.(1)判断下列说法是否正确(在相应横线里填上“对”或“错”)①正五边形是旋转对称图形,它有一个旋转角为144°.________②长方形是旋转对称图形,它有一个旋转角为180°.________(2)填空:下列图形中时旋转对称图形,且有一个旋转角为120°的是________ .(写出所有正确结论的序号)①正三角形②正方形③正六边形④正八边形11.在下列图案中可以用平移得到的是________(填代号).12.如图是奥迪汽车的车牌标志,右边的三个圆环可以看作是左边的圆环经过________得到的.13.将一个自然数旋转180°后,可以发现一个有趣的现象,有的自然数旋转后还是自然数.例如,808,旋转180°后仍是808.又如169旋转180°后是691.而有的旋转180°后就不是自然数了,如37.试写一个五位数,使旋转180°后仍等于本身的五位数________.(数字不得完全相同)14.如图,在平面直角坐标系中,是由绕着某点旋转得到的,则这点的坐标是________.15.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为________ .三、解答题16.如图,在直角坐标系中,已知△ABC各顶点坐标分别为A(0,1),B(3,﹣1),C(2,2),试作出与△ABC关于原点对称的图形△A1B1C1,并直接写出A1,B1,C1的坐标.17.找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.18.如图所示,在△OAB中,点B的坐标是(0,4),点A的坐标是(3,1).(1)画出△OAB向下平移4个单位长度、再向左平移2个单位长度后的△O1A1B1(2)画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求出点A旋转到A2所经过的路径长(结果保留π)四、作图题19.如图,阴影部分是由4个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑一个小正方形,使涂黑后整个图形的阴影部分成为轴对称图,并画出其对称轴.答案一、单选题1.【答案】D【解析】【解答】点与点关于坐标原点对称,实数a、b的值是:,.故答案为:D【分析】根据关于原点对称点的坐标特点:横纵坐标都互为相反数,就可求出a、b的值。
初中数学九年级数学上册第23章《旋转》全章课堂同步练习图形的旋转一.选择题(共20小题)1.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b 平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°2.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()A.45°B.60°C.70°D.90°3.如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α4.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6) C.(3.8,2.6)D.(﹣3.8,﹣2.6)5.在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是()A.(1,2)B.(﹣1,2) C.(﹣1,﹣2)D.(1,﹣2)6.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°7.如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3) B.(4,0)C.(3,﹣3) D.(5,﹣1)8.(2018•济宁)如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(﹣1,0),AC=2.将Rt △ABC 先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(2,2)B .(1,2)C .(﹣1,2)D .(2,﹣1)9.如图,等边三角形ABC 的边长为4,点O 是△ABC 的中心,∠FOG=120°,绕点O 旋转∠FOG ,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD=OE ;②S △ODE =S △BDE ;③四边形ODBE 的面积始终等于;④△BDE 周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .410.如图,在平面直角坐标系中,把△ABC 绕原点O 旋转180°得到△CDA ,点A ,B ,C 的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D 的坐标为( )A .(2,2)B .(2,﹣2)C .(2,5)D .(﹣2,5)11.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B.(0,)C.()D.(﹣1,1)12.如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A.(0,﹣2) B.(1,﹣)C.(2,0)D.(,﹣1)13.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()A.55°B.60°C.65°D.70°14.如图,正方形ABCD的对角线相交于点O,Rt△OEF绕点O旋转,在旋转过程中,两个图形重叠部分的面积是正方形面积的()A.B.C.D.15.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的是()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′16.如图,在平面直角坐标系中,点A,B的坐标分别是A(3,0),B(0,4),把线段AB绕点A旋转后得到线段AB′,使点B的对应点B′落在x轴的正半轴上,则点B′的坐标是()A.(5,0)B.(8,0)C.(0,5)D.(0,8)17.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(2,5)B.(5,2)C.(2,﹣5) D.(5,﹣2)18.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是()A.0 B.1 C.2 D.319.如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是()A.60°B.90°C.120°D.150°20.(2016•朝阳)如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.7二.填空题(共15小题)21.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O 按顺时针方向旋转而得到的,则旋转的角度为.22.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接BB',若∠A′B′B=20°,则∠A的度数是.23.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为.24.如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为.25.如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.26.如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标,在某平面斜坐标系中,已知θ=60°,点M的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为.27.如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,有下列结论:①AD=CD;②∠ACD的大小随着α的变化而变化;③当α=30°时,四边形OADC为菱形;④△ACD面积的最大值为a2;其中正确的是.(把你认为正确结论的序号都填上).28.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD= 度.29.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2017的坐标为.30.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是.31.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是.32.如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为.33.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为.34.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF= cm.35.如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正确的结论是.三.解答题(共10小题)36.如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C′上取点F,使B'F=AB.(1)求证:AE=C′E.(2)求∠FBB'的度数.(3)已知AB=2,求BF的长.37.将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.38.如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.39.如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC= ;(2)求线段DB的长度.40.我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.41.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A 1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.42.如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.43.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.44.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.45.如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A 1C1相交于点D,AC与A1C1、BC1分别交于点E、F.(1)求证:△BCF≌△BA1D.(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.参考答案一.选择题(共20小题)1.B.2.D.3.C.4.A.5.A.6.C.7.D.8.A.9.C.10.A.11.D.12.D.13.C.14.A.15.C.16.B.17.B.18.D.19.D.20.B.二.填空题(共15小题)21.90°.22.65°.23.324.15°.25.9﹣5.26.(﹣3,5)27.①③④.28.30.29.(﹣2,0).30.60°.31..32.17°.33.π.34.2.35.①②③.三.解答题(共10小题)36.(1)证明:∵在Rt△ABC中,AC=2AB,∴∠ACB=∠AC′B′=30°,∠BAC=60°,由旋转可得:AB′=AB,∠B′AC=∠BAC=60°,∴∠EAC′=∠AC′B′=30°,∴AE=C′E;(2)解:由(1)得到△ABB′为等边三角形,∴∠AB′B=60°,∴∠FBB′=15°;(3)解:由AB=2,得到B′B=B′F=2,∠B′BF=15°,过B作BH⊥BF,在Rt△BB′H中,cos15°=,即BH=2×=,则BF=2BH=+.37.解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.38.解:∵菱形ABCD,∴BC=CD,∠BCD=∠A=110°,由旋转的性质知,CE=CF,∠ECF=∠BCD=110°,∴∠BCE=∠DCF=110°﹣∠DCE,在△BCE和△DCF中,,∴△BCE≌△DCF,∴∠F=∠E=86°.39.解:(1)∵AC=AD,∠CAD=60°,∴△ACD是等边三角形,∴DC=AC=4.故答案是:4;(2)作DE⊥BC于点E.∵△ACD是等边三角形,∴∠ACD=60°,又∵AC⊥BC,∴∠DCE=∠ACB﹣∠ACD=90°﹣60°=30°,∴Rt△CDE中,DE=DC=2,CE=DC•cos30°=4×=2,∴BE=BC﹣CE=3﹣2=.∴Rt△BDE中,BD===.40.解:(1)平移的性质:平移前后的对应线段相等且平行.所以与对应线段有关的结论为:AB=A′B′,AB∥A′B′;(2)轴对称的性质:AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.(3)轴对称的性质:轴对称图形对称轴是任何一对对应点所连线段的垂直平分线.所以与对应点有关的结论为:l垂直平分AA′.(4)OA=OA′,∠AOA′=∠BOB′.故答案为:(1)AB=A′B′,AB∥A′B′;(2)AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.;(3)l垂直平分AA′;(4)OA=OA′,∠AOA′=∠BOB′.41.解:(1)如图,△A1B1C1为所作,因为点C(﹣1,3)平移后的对应点C1的坐标为(4,0),所以△ABC先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),B1点的坐标为(3,﹣2);(2)因为△ABC和△A1B2C2关于原点O成中心对称图形,所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)如图,△A2B3C3为所作,A3(5,3),B3(1,2),C3(3,1);42.解:(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.43.证明:(1)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,∴QB=DF,AQ=AF,∠BAQ=∠DAF,∵∠EAF=45°,∴∠DAF+∠BAE=45°,∴∠QAE=45°,∴∠QAE=∠FAE,在△AQE和△AFE中,∴△AQE≌△AFE(SAS),∴∠AEQ=∠AEF,∴EA是∠QED的平分线;(2)由(1)得△AQE≌△AFE,∴QE=EF,在Rt△QBE中,QB2+BE2=QE2,又∵QB=DF,∴EF2=BE2+DF2.44.解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=2,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2﹣2.45.(1)证明:∵△ABC是等腰三角形,∴AB=BC,∠A=∠C,∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,在△BCF与△BA1D中,,∴△BCF≌△BA1D;(2)解:四边形A1BCE是菱形,∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴∠A1=∠A,∵∠ADE=∠A1DB,∴∠AED=∠A1BD=α,∴∠DEC=180°﹣α,∵∠C=α,∴∠A1=α,∴∠A1BC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,∴∠A1=∠C,∠A1BC=∠A1EC,∴四边形A1BCE是平行四边形,∴A1B=BC,∴四边形A1BCE是菱形.中心对称一.选择题(共20小题)1.观察下列图形,是中心对称图形的是( )A .B .C .D .2.下列生态环保标志中,是中心对称图形的是( )A .B .C .D .3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.在平面直角坐标系中,点P (﹣3,﹣5)关于原点对称的点的坐标是( ) A .(3,﹣5) B .(﹣3,5) C .(3,5)D .(﹣3,﹣5)5.下列图形中,既是轴对称图形又是中心对称图形的是( ) A .扇形B .正五边形C .菱形D .平行四边形6.下列说法正确的是( )A .有两条边和一个角对应相等的两个三角形全等B .正方形既是轴对称图形又是中心对称图形C .矩形的对角线互相垂直平分D .六边形的内角和是540°7.剪纸是我国传统的民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形的是( )A .B .C .D .8.下列图形中是中心对称图形的是( )A .B .C .D .9.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .10.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有( )A .1个B .2个C .3个D .4个11.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .12.在平面直角坐标系中,点(3,﹣2)关于原点对称的点是( ) A .(﹣3,2) B .(﹣3,﹣2) C .(3,﹣2) D .(3,2) 13.下列图标中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .14.下列图案其中,中心对称图形是( ) A .①②B .②③C .②④D .③④15.国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形( ) A .BB .JC .4D .016.下列图案中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .17.下列图案中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .18.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .19.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( ) A .2个 B .3个 C .4个 D .5个20.(2016•云南)下列交通标志中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .二.填空题(共8小题)21.在平面直角坐标系中,点A 的坐标为(a ,3),点B 的坐标是(4,b ),若点A 与点B 关于原点O 对称,则ab= .22.如图,点O 是▱ABCD 的对称中心,AD >AB ,E 、F 是AB 边上的点,且EF=AB ;G 、H 是BC 边上的点,且GH=BC ,若S 1,S 2分别表示△EOF 和△GOH 的面积,则S 1与S 2之间的等量关系是 .23.如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为.24.在平面直角坐标系中,点M(3,﹣1)关于原点的对称点的坐标是.25.点A(2,1)与点B关于原点对称,则点B的坐标是.26.在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC 与BD互相平分,则点D关于坐标原点的对称点的坐标为.27.下列图形中:①圆;②等腰三角形;③正方形;④正五边形,既是轴对称图形又是中心对称图形的有个.28.若点M(3,a﹣2),N(b,a)关于原点对称,则a+b= .参考答案一.选择题(共20小题)1.D.2.B.3.B.4.C.5.C.6.B.7.C.8.C.9.A.10.C.11.C.12.A.13.D.14.D.15.D.16.D.17.A.18.B.19.B.20.A.二.填空题(共8小题)21.12.22.=.23.6.24.(﹣3,1).25.(﹣2,﹣1).26.(﹣5,﹣3).27.2.28.﹣2.课题学习图案设计一.选择题1.小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个2.一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A.B.C.D.3.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M 经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13 B.14 C.15 D.164.下列3个图形中,能通过旋转得到右侧图形的有()A.①②B.①③C.②③D.①②③二.填空题5.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上,(I)∠ACB的大小为(度);(Ⅱ)在如图所示的网格中,P是BC边上任意一点,以A为中心,取旋转角等于∠BAC,把点P逆时针旋转,点P的对应点为P′,当CP′最短时,请用无刻度的直尺,画出点P′,并简要说明点P′的位置是如何找到的(不要求证明).6.定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△An﹣1Bn﹣1Cn﹣1经γ(n,180°)变换后得△AnBnCn,则点A1的坐标是,点A2018的坐标是.三.解答题7.如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.8.如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是对称图形;(3)求所画图形的周长(结果保留π).9.在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(﹣4,﹣2),请直接写出直线l的函数解析式.10.如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)画出一个面积最小的▱PAQB.(2)画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.11.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.12.在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.13.在边长为1个单位长度的正方形网格中建立如图的平面直角坐标系xOy,△ABC的顶点都在格点上,请解答下列问题:(1)将△ABC向下平移5个单位长度,画出平移后的△A1B1C1;(2)若点M是△ABC内一点,其坐标为(a,b),点M在△A1B1C1内的对应点为M 1,则点M1的坐标为;(3)画出△ABC关于点O的中心对称图形△A2B2C2.14.如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.15.在4×4的方格内选5个小正方形,让它们组成一个轴对称图形,请在图中画出你的4种方案.(每个4×4的方格内限画一种)要求:(1)5个小正方形必须相连(有公共边或公共顶点视为相连)(2)将选中的小正方形方格用黑色签字笔涂成阴影图形.(若两个方案的图形经过翻折、平移、旋转后能够重合,均视为一种方案)16.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.17.如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B (0,3),C(0,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.18.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.参考答案一.选择题1.C.2.B.3.B.4.D.二.填空题5.解:(1)由网格图可知AC=BC=AB=∵AC2+BC2=AB2∴由勾股定理逆定理,△ABC为直角三角形.∴∠ACB=90°故答案为:90°(Ⅱ)作图过程如下:取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G:取格点F,连接FG交TC延长线于点P′,则点P′即为所求证明:连CF∵AC,CF为正方形网格对角线∴A、C、F共线∴AF=5=AB由图形可知:GC=,CF=2,∵AC=,BC=∴△ACB∽△GCF∴∠GFC=∠B∵AF=5=AB∴当BC边绕点C逆时针选择∠CAB时,点B与点F重合,点C在射线FG上.由作图可知T为AB中点∴∠TCA=∠TAC∴∠F+∠P′CF=∠B+∠TCA=∠B+∠TAC=90°∴CP′⊥GF此时,CP′最短故答案为:如图,取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G:取格点F,连接FG交TC延长线于点P′,则点P′即为所求6.(﹣,﹣),(﹣,).三.解答题(共12小题)7.解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作8.解:(1)点D→D1→D2→D经过的路径如图所示:(2)观察图象可知图象是轴对称图形,故答案为轴对称.(3)周长=4×=8π.9.解:(1)如图,△A1B1C1为所作,C1(﹣1,2);(2)如图,△A2B2C2为所作,C2(﹣3,﹣2);(3)因为A的坐标为(2,4),A3的坐标为(﹣4,﹣2),所以直线l的函数解析式为y=﹣x,10.解:(1)如图①所示:(2)如图②所示:11.解:(1)画出△ABC关于y轴对称的△A1B1C1,如图所示,此时A1的坐标为(﹣2,2);(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,如图所示,此时A2的坐标为(4,0);(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,如图所示,此时A3的坐标为(﹣4,0).12.解:如图所示.13.解:(1)如图所示:△A1B1C1,即为所求;(2)∵点M是△ABC内一点,其坐标为(a,b),点M在△A1B1C1内的对应点为M1,∴点M1的坐标为:(a,b﹣5);故答案为:(a,b﹣5);(3)如图所示:△A2B2C2,即为所求.14.解:(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形,答案如图所示;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形,答案如图所示;15.解:如图..解:(1)如图1所示:(2)如图2所示:(3)找出A的对称点A′(1,﹣1),连接BA′,与x轴交点即为P;如图3所示:点P坐标为(2,0).17.解:(1)如图,△A 1B 1C 1为所作,(2)四边形AB 1A 1B 的面积=×6×4=12.18.解:(1)如图,△A 1B 1C 1即为所求;(2)如图,△AB 2C 2即为所求,点B 2(4,﹣2),C 2(1,﹣3).。
人教版九年级数学上册第二十三章《旋转》测试带答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题12个小题,每小题4分,共48分)1.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列垃圾分类的标志中,既是轴对称图形又是中心对称图形的是()A.可回收物B.厨余垃圾C.有害垃圾D.其它垃圾物3.下列垃圾分类图标分别表示:“可回收垃圾”、“有害垃圾”、“厨余垃圾”、“其它垃圾”,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.观察下列图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.为推动世界冰雪运动的发展,我国将于2022年举办北京冬奥会.在此之前进行了冬奥会会标的征集活动,以下是部分参选作品,其文字上方的图案既是轴对称图形又是中心对称图形的是()A.B.C.D.7.2022年油价多次上涨,新能源车企迎来了更多的关注,如图是理想、蔚来、小鹏、哪吒四款新能源汽车的标志,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.如图,在平面直角坐标系中,△ABC的边AB⊥x轴,A(﹣2,0),C(﹣4,1),二次函数y=x2﹣2x﹣3的图象经过点B.将△ABC沿x轴向右平移m(m>0)个单位,使点A平移到点A′,然后绕点A'顺时针旋转90°,若此时点C的对应点C′恰好落在抛物线上,则m的值为()A B C D .9.如图,将ABC 绕点A 逆时针旋转40︒得到ADE ,AD 与BC 相交于点F ,若80E ∠=︒且AFC 是以线段FC 为底边的等腰三角形,则BAC ∠的度数为( )A .55︒B .60︒C .65︒D .70︒10.如图,在平面内将五角星绕其中心旋转180︒后所得到的图案是( )A .B .C .D .11.如图,矩形ABCD 中,AD =2,ABAC 上有一点G (异于A ,C ),连接 DG ,将△AGD 绕点A 逆时针旋转60°得到△AEF ,则BF 的长为( )A B .C D .=60°,在x 轴正半轴上有一点C ,点C 坐标为()1,0,将线段AC 绕点A 逆时针旋转120°,得线段AD ,连接BD .则BD 的长度为( )A .B .4CD .152二、填空题(本大题4个小题,每小题4分,共16分)13.点(6,1)-关于原点的对称点是__________.14.如图,在ABC 中,80ACB ∠=︒,将ABC 在平面内绕点A 逆时针旋转到AB C ''△的位置,使CC '平分B C A ''∠,则旋转角的度数为__________.15.如图,在ABC 中,70CAB ∠=︒,在同一平面内,将ABC 绕点A 逆时针旋转到AB C ''△的位置,使CC AB '∥,作B D AC '∥交BC 于点D ,则AB D '∠=______.16.如图,在ABC 中,90B ,4AB BC ==,将ABC 绕点A 逆时针旋转60︒,得到ADE ,则点D 到BC 的距离是______.三、解答题(共9个小题,17、18每小题8分,19-25每小题10分,共86分)17.如图所示的正方形网格中,画出将△ABC 绕点C 逆时针旋转90°得到的△MNC ,A 、B 的对应点分别为M 、N .18.如图,ABC 的顶点坐标分别为(4,5)A -,(5,2)B -,(3,4)C -.(1)画出与ABC 关于原点O 对称的111A B C △,并写出点1A 的坐标为___________.(2)D 是x 轴上一点,使DB DC 的值最小,画出点D (保图痕迹),D 点坐标为___________.(3)(,0)P t 是x 轴上的动点,将点C 绕点P 顺时针旋转90︒至点E ,直线25y x =-+经过点E ,则t 的值为___________.19.阅读理解,并解答问题:观察发现:如图1是一块正方形瓷砖,分析发现这块瓷砖上的图案是按图2所示的过程设计的,其中虚线所在的直线是正方形的对称轴.问题解决:用四块如图1所示的正方形瓷砖按下列要求拼成一个新的大正方形,并在图3和图4中各画一种拼法.(1)图3中所画拼图拼成的图案是轴对称图形,但不是中心对称图形;(2)图4中所画拼图拼成的图案既是轴对称图形,又是中心对称图形.20.如图,在平面直角坐标系内,ABC 的顶点坐标分别为(4,4)A -,(2,5)B -,(2,1)C -.(1)平移ABC ,使点C 移到点1(2,2)C ,画出平移后的111A B C △;(2)将ABC 绕点(0,0)旋转180︒,得到222A B C △,画出旋转后的222A B C △;(3)连接12A C ,21A C ,求四边形1221A C A C 的面积.21.如图,在平面直角坐标系中,点A 的坐标为()1,1,点B 的坐标为()4,1,点C 的坐标为()3,3.(1)画出将ABC 向下平移5个单位长度得到的111A B C △;(2)画出将ABC 绕点原点O 逆时针旋转90°后得到的222A B C △,写出2C 的坐标.22.如图,在△ABC 中,AB =AC ,∠BAC =α,点D 在边BC 上(不与点B ,C 重合),连接AD ,以点A 为中心,将线段AD 逆时针旋转180°﹣α得到线段AE ,连接BE .(1)∠BAC +∠DAE = °;(2)取CD 中点F ,连接AF ,用等式表示线段AF 与BE 的数量关系,并证明.23.对于平面直角坐标系xOy 中的图形M 和点P ,给出如下定义:将图形M 绕点P 顺时针旋转90 得到图形N ,图形N 称为图形M 关于点P 的“垂直图形”.例如,图1中点D 为点C 关于点P 的“垂直图形”.(1)点A 关于原点O 的“垂直图形”为点B .①若点A 的坐标为()0,3,则点B 的坐标为___________;②若点B 的坐标为()3,1,则点A 的坐标为___________;(2)(3,3)E -,(2,3)F -,(,0)G a ,线段EF 关于点G 的“垂直图形”记为E F '',点E 的对应点为E ',点F 的对应点为F '.①求点E '的坐标(用含a 的式子表示);②若O 的半径为2E F '',上任意一点都在O 内部或圆上,直接写出满足条件的EE '的长度的最大值.24.已知AOB 和MON △都是等腰直角三角形OM OA ⎫<<⎪⎪⎝⎭,90AOB MON ∠=∠=︒.(1)如图1,连接AM ,BN ,求证:AM BN =;(2)将MON △绕点O 顺时针旋转.①如图2,当点M 恰好在AB 边上时,求证:2222AM BM OM +=;②当点A ,M ,N 在同一条直线上时,若4OA =,3OM =,请直接写出线段AM 的长.25.如图,在Rt ABC △中,90BAC ∠=︒,将Rt ABC △绕点A 旋转一定的角度得到Rt ADE △,且点E 恰好落在边BC 上.(1)求证:AE 平分CED ∠;(2)连接BD ,求证:90DBC ∠=︒.参考答案:1.C【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意.故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,正确掌握相关定义是解题关键.2.C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【详解】解:A.既不是中心对称图形,也不是轴对称图形,故本选项不合题意;B.不是中心对称图形,是轴对称图形,故本选项不合题意;C.既是中心对称图形又是轴对称图形,故本选项符合题意;D.既不是中心对称图形,也不是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.既不是轴对称图形,也不是中心对称图形.故本选项不合题意;B.既是轴对称图形,又是中心对称图形.故本选项符合题意;C.是轴对称图形,不是中心对称图形.故本选项不合题意;D.既不是轴对称图形,也不是中心对称图形.故本选项不合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.D【分析】根据轴对称图形和中心对称图形的定义进行判断即可.【详解】A是轴对称图形不是中心对称图形,不符合题意;B是轴对称图形不是中心对称图形,不符合题意;C既不是轴对称图形也不是中心对称图形,不符合题意;D既是轴对称图形又是中心对称图形,符合题意;故选:D.【点睛】本题考查了轴对称图形和中心对称图形的定义,即轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.A【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【详解】解:A.既是轴对称图形,又是中心对称图形,故本选项符合题意;B.是轴对称图形,不是中心对称图形,故本选项不合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.B【分析】根据轴对称图形及中心对称图形的概念可直接进行排除选项.【详解】解:A、文字上方的图案既不是轴对称图形也不是中心对称图形,故不符合题意;B、文字上方的图案既是轴对称图形也是中心对称图形,故符合题意;C、文字上方的图案是轴对称图形但不是中心对称图形,故不符合题意;D、文字上方的图案既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B.【点睛】本题主要考查轴对称图形及中心对称图形的识别,熟练掌握轴对称图形及中心对称图形的概念是解题的关键.7.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.既不是轴对称图形,也不是中心对称图形.故本选项不合题意;B.是轴对称图形,不是中心对称图形.故本选项不符合题意;C.既是轴对称图形又是中心对称图形.故本选项符合题意;D.是轴对称图形,不是中心对称图形.故本选项不合题意.故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.8.C【分析】作CD⊥AB于D,C'D'⊥A'B'于D',先根据已知条件求出点B坐标,由A、B、C三点坐标可得CD=2,AD=1.设点A(﹣2,0)向右平移m个单位后得点A'(m>0),则点A'坐标为(m﹣2,0).进而表示出点C'的坐标为(m﹣1,2),最后将C'坐标代入二次函数解析式中计算即可得到点C坐标.【详解】解:作CD⊥AB于D,C'D'⊥A'B'于D',∵AB⊥x轴,二次函数y=x2﹣2x﹣3的图象经过点B,∴点B(﹣2,5)∵A(﹣2,0),C(﹣4,1),∴CD=2,AD=1.设点A(﹣2,0)向右平移m个单位后得点A'(m>0),则点A'坐标为(m﹣2,0).∵A'D'=AD=1,C'D'=CD=2,∴点C'坐标为(m﹣1,2),又点C'在抛物线上,∴把C'(m﹣1,2)代入y=x2﹣2x﹣3中,得:(m ﹣1)2﹣2(m ﹣1)﹣3=2,整理得:m 2﹣4m ﹣2=0.解得:m 1=m 2=2(舍去).故选:C .【点睛】此题考查了二次函数图象上点的坐标特点,平移的性质,解一元二次方程,正确理解平移的性质是解题的关键.9.B【分析】由旋转的性质得出80E C ∠=∠=︒,40BAD ∠=︒,由等腰三角形的性质得出80C AFC ∠=∠=︒,求出20CAF ∠=︒,根据BAC BAD CAF ∠=∠+∠即可得出答案. 【详解】解:将ABC 绕点A 逆时针旋转40︒得到ADE ,且80E ∠=︒,80E C ∴∠=∠=︒,40BAD ∠=︒,又AFC 是以线段FC 为底边的等腰三角形,AC AF ∴=,80C AFC ∴∠=∠=︒,180180808020CAF C AFC ∴∠=︒-∠-∠=︒-︒-︒=︒,402060BAC BAD CAF ∴∠=∠+∠=︒+︒=︒,故选:B .【点睛】本题考查了旋转的性质、等腰三角形的性质、三角形内角和定理,熟练掌握旋转的性质是解题的关键.10.C【分析】根据旋转的性质找出阴影部分三角形的位置即可得答案.【详解】∵将五角星绕其中心旋转180︒,∴图中阴影部分的三角形应竖直向下,故选:C .【点睛】本题考查旋转的性质,图形旋转前后,对应边相等,对应角相等,前后两个图形全等;熟练掌握旋转的性质是解题关键.11.A【分析】过点F 作FH ⊥BA 交BA 的延长线于点H ,则∠FHA =90°,△AGD 绕点A 逆时针旋转60°得到△AEF ,得∠F AD =60°,AF =AD =2,又由四边形ABCD 是矩形,∠BAD =90°,得AF=1,由勾股定理得AH=,得到到∠F AH=30°,在Rt△AFH中,FH=12BH=AH+AB,再由勾股定理得BF=【详解】解:如图,过点F作FH⊥BA交BA的延长线于点H,则∠FHA=90°,∵△AGD绕点A 逆时针旋转60°得到△AEF∴∠F AD=60°,AF=AD=2,∵四边形ABCD是矩形∴∠BAD=90°∴∠BAF=∠F AD+ ∠BAD=150°∴∠F AH=180°-∠BAF=30°AF=1在Rt△AFH中,FH=12由勾股定理得AH=在Rt△BFH中,FH=1,BH=AH+AB由勾股定理得BF=故BF故选:A【点睛】本题考查了图形的旋转,矩形的性质,含30度角的直角三角形的性质,勾股定理等知识,解决此题的关键在于作出正确的辅助线.12.C【分析】连接CD,过点A作AE⊥CD于点E,过点E作FG⊥x轴于点F,过点A作AG⊥FG于点G,设E(m,n),根据旋转证∠ACG=30°,CE,根据两角对应相等证△AEG∽△ECF,求出74E ⎛ ⎝⎭,52D ⎛ ⎝⎭,结合B (-2,0)求出BD =. 【详解】连接CD ,过点A 作AE ⊥CD 于点E ,过点E 作FG ⊥x 轴于点F ,过点A 作AG ⊥FG 于点G ,则∠AEC =∠OFG =∠G =90°,∵∠AOF =90°,∴∠OAG =90°,∴四边形AOFG 是矩形,∵(0,A ,∴FG =OA设E (m ,n ),∴AG =OF =m ,EF =n ,∴CF =m -1,EGn ,由旋转知,∠CAD =120°,AC =AD ,∴CE =DE ,∠ACG =30°,∴CE,∵∠CEF +∠ECF =∠AEG +∠CEF =90°,∴∠AEG =∠ECF ,∴△AEG ∽△ECF ,∴EF CE AG AE ==,∴=n m∵CF CE EG AE==∴74m =,n∴74E ⎛ ⎝⎭, ∵73144-=,735442+=,∴52D ⎛ ⎝⎭,∵∠ABO=60°,=OA∴OB =2,B (-2,0),∴BD =. 故选C .【点睛】本题主要考查了旋转,等腰三角形,含30°的直角三角形,两点间的距离公式,熟练掌握旋转图形全等性质,三线合一含30°角的直角三角形边的性质,两点间的距离公式是解决此题的关键.13.(6,1)-【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是点P '(﹣x ,﹣y ),进而得出答案.【详解】解:点(6,﹣1)关于原点的对称点的坐标为(﹣6,1).故答案为:(﹣6,1).【点睛】此题主要考查了原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键. 14.100︒##100度【分析】根据旋转的性质得出80B C A ''∠=︒,C A AC '=,再根据角平分线的性质得出40CC A '∠=︒,利用等腰三角形的性质可求旋转角.【详解】解:∵ABC 在平面内绕点A 逆时针旋转到AB C ''△的位置,∴80C B C A A B ∠︒==''∠,C A AC '=,∵CC '平分B C A ''∠,∴1402CC A B C A '''∠=∠=︒,∴40CC A C CA ''∠=∠=︒,∴100C AC '∠=︒,故答案为:100°.【点睛】本题考查了旋转的性质和等腰三角形的性质,解题关键是熟练运用旋转的性质得出角的度数.15.30°##30度【分析】利用旋转的性质可求得AC =AC ′,∠CAB =∠C ′AB ′,由平行线性质和三角形内角和定理可求得∠C ′AC ;进而求得∠CAB ′即可解答;【详解】解:∵CC AB '∥,∴∠C ′CA =∠CAB =70°,由旋转的性质可得:AC =AC ′,∠CAB =∠C ′AB ′=70°,∴∠ACC ′=∠AC ′C =70°,∴∠C ′AC =180°-70°-70°=40°,∴∠CAB ′=∠C ′AB ′-∠C ′AC =70°-40°=30°,∵B D AC '∥,∴∠AB ′D =∠CAB ′=30°,故答案为:30°.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,平行线的性质;掌握旋转的性质是解题关键.16.2【分析】由旋转的性质可得4AB AD ==,60BAD ∠=︒,可证ABD △是等边三角形,由直角三角形的性质可求解.【详解】解:如图,连接BD ,过点D 作DH BC ⊥于H ,将ABC 绕点A 逆时针旋转60︒,4AB AD ∴==,60BAD ∠=︒,ABD ∴是等边三角形,4BD AB ∴==,60ABD ∠=︒,30DBC ∴∠=︒,DH BC ⊥,122DH BD ∴==, ∴点D 到BC 的距离是2,故答案为:2.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,掌握旋转的性质是解题的关键.17.见解析【分析】根据题意画出旋转后的图形即可;【详解】:如图,【点睛】本题主要考查了图形的旋转,掌握旋转图形的画法是解题的关键.18.(1)作图见详解,(4,5)-(2)作图见详解,13,03⎛⎫- ⎪⎝⎭(3)2-【分析】(1)已知ABC 三点坐标,ABC 关于原点O 对称的111A B C △各对应点的坐标与原坐标的横纵坐标均为相反数,由此即可作图;(2)作点B 关于x 轴的对称点B',连接'CB 交x 轴于点D ,此时BD CD +的值最小; (3)构造全等三角形求出等E 坐标,利用待定系数法即可解问题.【详解】(1)解:已知ABC 三点坐标(4,5)A -,(5,2)B -,(3,4)C -,关于原点对称,则对应点的坐标分别是1(4,5)A -,1(5,2)B -,1(3,4)C -,连接1A ,1B ,1C 所组成的图形为所求图形111A B C △,如图所示,(2)解:作点B 关于x 轴的对称点B',连接'CB 交x 轴于点D ,此时BD CD +的值最小,如图所示,已知(4,5)A -,(5,2)B -,(3,4)C -,点B'是点B 关于x 轴的对称点,∴'(5,2)B --、(34)C -,, ∴直线'BC 解析式为313y x =+,当0y =时,133x , ∴1303D ⎛⎫- ⎪⎝⎭,. (3)解:如图所示,作CH x ⊥轴于H EK x ⊥,轴于K ,根据题意得,(34)C -,,90CHP CPE PKE ∠=∠=∠=︒, ∴9090CPH HCP CPH EPK ∠+∠=︒∠+∠=︒,,∴PCH EPK ∠=∠,∵PC PE =,∴(AAS)PCH EPK △≌△,∴43PK CH EK PH t ====+,,∴4OK t =+,∴(43)E t t ++,,∵点E 在直线25y x =-+上,∴3245t t +=-++(),∴2t =-.【点睛】本题考查平面直角坐标系中图形的旋转变换,一次函数图像上的点的特征,轴对称最短问题等知识,解题的关键是熟练掌握旋转变换的性质,根据题意添加常用辅助线,构造全等三角形解决问题.19.(1)见解析(2)见解析【分析】(1)按照轴对称的意义得出答案即可;(2)按照轴对称的定义和中心对称的定义设计,所设计的图案既是中心对称图形,又是轴对称图形.(1)解:(1)参考图案,如图所示:(2)(2)参考图案,如图所示:【点睛】本题考查利用轴对称或中心对称设计图案,关键是理解轴对称和中心对称的定义.20.(1)见解析(2)见解析(3)6【分析】(1)首先确定C 点的平移规律,依此规律平移A 、B 两点,从而得到111A B C △; (2)利用中心对称的性质作出A 、B 、C 的对应点2A 、2B 、2C 即可;(3)先求112AC C 的面积,四边形1221A C A C 的面积为112AC C 面积的2倍.(1)解:如图所示,111A B C △为所求作;(2)解:如图所示,222A B C △为所求作; (3)解:如图,123C C =,1A 到12C C 距离为2; 则112AC C 的面积为:13232⨯⨯=. ∴由图可得四边形1221A C A C 的面积为236S =⨯=.【点睛】本题考查了坐标的平移,中心对称图形的画法,网格中图形面积的求法,解题的关键是根据题意画出图象. 21.(1)见解析 (2)见解析,()3,3-【分析】(1)利用平移的坐标特征写出1A 、1B 、1C 的坐标,然后描点依次连接即可; (2)利用网格特点和旋转的性质找出 A 、B 、C 的对应点 2A 、2B 、2C ,然后描点依次连接即可得 (1)解:经过平移可得:()11,4A -,()14,4B -,()13,2C -,顺次连接,如图所示:111A B C △即为所求作;(2)解:旋转后的点的坐标分别为:()21,1A -,()21,4B -,()23,3C -,然后顺次连接, 如图所示:222A B C △即为所求作,2C 的坐标()3,3-【点睛】本题考查了作图:平移及旋转变换,找到对应点的坐标,然后顺次连接各点是解题关键. 22.(1)180 (2)12AF BE =,证明见解析;【分析】(1)由旋转可知∠DAE =180°-a ,所以得到:∠BAC +∠DAE =a +180°-a =180°; (2)连接并延长AF ,使FG =AF ,连接DG ,CG ;因为DF =CF ,AF =GF ;可以得到四变形ADGC 为平行四边形;从而有∠DAC +∠ACG =180°,再证∠ACG =∠BAE 继而证明△ABE ≌△CAG 得到BE =AG ,即可得线段AF 与BE 的数量关系; 【详解】(1)解:由旋转可知∠DAE =180°-a , ∠BAC +∠DAE =a +180°-a =180° 故答案为:180(2)解:如图所示:连接并延长AF ,使FG =AF ,连接DG ,CG ; ∵DF =CF ,AF =GF ;∴四变形ADGC 为平行四边形; ∴∠DAC +∠ACG =180°,即∠ACG =180°-∠DAC ,∠BAE =∠BAC +∠DAE-∠DAC =180°-∠DAC , 所以∠ACG =∠BAE ,∵四变形ADGC 为平行四边形; ∴AD =CG , 又∵AD =AE , AE =CG ,在△ABE 和△CAG 中,{AB CA BAE ACG AE CG=∠=∠=∴△ABE ≌△CAG , ∴BE =AG , ∴AF =12AG =12BE ,故线段AF 与BE 的数量关系:AF =12BE ;【点睛】本题考查了旋转的性质,旋转角的定义,以及全等三角形的性质的判定,解题的关键是熟悉并灵活应用以上性质. 23.(1)①()3,0,②()1,3- (2)①(3,3)a a ++,【分析】(1)①②根据“垂直图形”的定义可得答案;(2)①过点E 作EP x ⊥轴于点P ,过点E '作E H x '⊥轴于点H ,利用AAS证明PEG HGE '△≌△得3E H PG a '==+,3GH EP ==,从而得出答案;②由点E '的坐标可知,满足条件的点E '在第一象限的O 上,求出点E '的坐标,从而解决问题. (1)解:①点A 的坐标为()0,3, ∴点B 的坐标为()3,0,故答案为:()3,0;②当()3,1B 时,如图,()1,3A -,故答案为:()1,3-; (2)解:①过点E 作EP x ⊥轴于点P ,过点E '作E H x '⊥轴于点H ,90EGE ∠'=︒,EG E G =',90EGP E GH ∴∠+∠'=︒,90EGP E ∠+∠=︒, E E GH ∴∠=∠',EPG GHE ∠=∠',∴AAS HG PEG E '△≌△(), 3E H PG a ∴'==+,3GH EP ==,3OH a ∴=+,3,3E a a ∴'++();②如图,观察图象知,满足条件的点E '在第一象限的O 上,()3,3E a a '++,2OE '=,()()222332a a ∴+++=,3a +=负值舍去),3a ∴=,E ∴',EE ∴'EE ∴'【点睛】本题是几何变换综合题,主要考查了全等三角形的判定与性质,“垂直图形”的定义,坐标与图形,求出点E '的坐标是解题的关键.24.(1)见解析;(2)①见解析; 【分析】(1)证明△AMO ≌△BNO 即可;(2)①连接BN ,证明△AMO ≌△BNO ,得到∠A =∠OBN =45°,进而得到∠MBN =90°,且△OMN 为等腰直角三角形,再在△BNM 中使用勾股定理即可证明; ②分两种情况分别画出图形即可求解.【详解】解:(1)∵AOB 和MON △都是等腰直角三角形, ∴90OA OB ON OM AOBNOM ,,,又=+=90+AOM NOM AON AON ,=+=90+BON AOB AON AON ,∴=BON AOM , ∴()AMO BNO SAS ≌, ∴AM BN =;(2)①连接BN ,如下图所示:∴==90AOM AOBBOM BOM , ==90BON MONBOM BOM ,且OA OB OM ON ,==, ∴()AMO BNO SAS ≌, ∴45A OBN,AM BN =,∴454590ABNABOOBN,且OMN ∆为等腰直角三角形,∴MN ,在Rt BMN ∆中,由勾股定理可知:22222(2)2BM BN MN OM OM ,且AM BN =∴2222AM BM OM +=; ②分类讨论:情况一:如下图2所示,设AO 与NB 交于点C ,过O 点作OH ⊥AM 于H 点,45HNO ,NHO 为等腰直角三角形,∴332222NO HOHM ,在Rt AHO ∆中,22223223464()222AH AO OH , ∴46322AMAH HM; 情况二:如下图3所示,过O 点作OH ⊥AM 于H 点,45HNO ,NHO 为等腰直角三角形,∴332222NO HOHM ,在Rt AHO ∆中,22223223464()222AH AO OH , ∴46322AM AH HM;故46322AM或.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 25.(1)见解析 (2)见解析【分析】(1)根据旋转性质得到对应边相等,对应角相等,进而根据等边对等角性质可将角度进行等量转化,最后可证得结论;(2)根据旋转性质、等腰三角形的性质以及三角形内角和定理对角度进行等量转化可证得结论.【详解】(1)证明:由旋转性质可知:AE AC =,AED C ∠=∠,AEC C ∴∠=∠AED AEC ∴∠=∠AE ∴平分CED ∠.(2)证明:如图所示:由旋转性质可知:AD AB =,90DAE BAC ∠=∠=︒,ADB ABD ∴∠=∠,DAE BAE BAC BAE ∠-∠=∠-∠,即DAB EAC ∠=∠,=1802DAB ABD ∠︒-∠,1802EAC C ∠=︒-∠, ABD C ∴∠=∠,∵在Rt ABC △中,90BAC ∠=︒, 90ABC C ∴∠+∠=︒, 90ABC ABD ∴∠+∠=︒,即90DBC ∠=︒.【点睛】本题考查了三角形的旋转变化,熟练掌握旋转前后图形的对应边相等,对应角相等以及合理利用三角形内角和定理是解决本题的关键.。
人教版九年级上册第二十三章旋转单元测试(含答案)一、选择题1、在图所示的4个图案中既有图形的旋转,还有图形轴对称的是()2、右边的图案是由下面五种基本图形中的两种拼接而成,这两种基本图形是( D )A ①⑤B ②④C ③⑤D ②⑤3、在我国古代数学家赵爽所著《勾股圆方图注》中所画的图形(如图),下列说法正确是()A 它是轴对称图形,但不是中心对称图形B 它是轴对称图形,又是中心对称图形C 它是中心对称图形,但不是轴对称图形D 它既不是轴对称图形,也不是中心对称图形4、下列图形中,是中心对称的图形有()①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形。
A.5个B.2个C.3个D.4个5、在平面直角坐标系中,点P(2,—3)关于原点对称的点的坐标是()A.(2,3)B.(—2,3)C.(—2,—3)D.(—3,2)6、将图形按顺时针方向旋转900后的图形是( )A D7、如图所示,图中的一个矩形是另一个矩形顺时针AB CD P P 1 方向旋转90°后形成的个数是( )A l 个B 2个C 3个D 4个8、如图,把图①中的△ABC 经过一定的变换得到图②中的,如果图①中△ABC 上点P 的坐标为,那么这个点在图②中的对应点的坐标为( )A .B .C .D .9、下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度为( )A ︒30B ︒45C ︒60D ︒9010、如图,点P 是正方形ABCD 内一点,将△ABP 绕点B 沿顺时针方向旋转后与△CBP 1重合,若PB=5,那么PP 1=( )A 5B 53C 6 D2二、填空题(每小题3分,共30分) 11、一条线段绕其上一点旋转90°与原来的线段位置 关系.12、用示意图写出具有“中心对称图形”特征的汉字和英文字母各3个: .13、钟表的分针匀速旋转一周需要60分钟,它的旋转中心是____________,经过20分钟,分针旋转了____________。
旋转单元测试题一.选择题1.在直角坐标系中,点O为坐标原点,点A(3,4),把线段OA绕点O顺时针旋转90°得到线段OA',则点A'的坐标为()A.C.2.下列图标中,是中心对称图形的是()A.B.C.D.3.下列关于平行四边形的说法正确的是()①平行四边形既是轴对称图形也是中心对称图形;②平行四边行的对边相等,对角互补;③平行四边形的对角线互相平分;④平行四边形具有不稳定性;A.①②③④B.①③④C.③④D.①②③4.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.下列是世界一些国家的国旗图案,其中是中心对称图形的是()A.B.C.D.6.如图,在△ABC中,以C为中心,将△ABC顺时针旋转34°得到△DEC,边ED,AC 相交于点F,若∠A=30°,则∠EFC的度数为()A.60°B.64°C.66°D.68°7.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上的点G处,连接CE,则点B到CE的距离是()A.B.C.D.8.如图,将平行四边形ABCD绕点D逆时针旋转150°,得到平行四边形DEFG,这时点C,E,G恰好在同一直线上,延长AD交CG于点H.若AD=2,∠A=75°,则HG的长是()A.B.C.D.9.在如图所示的单位正方形网格中,△ABC经过平移后将到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则点P2的坐标为()A.C.10.如图,已知在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,则以下结论:①DE+BF=EF,②BF=,③AF=,④S=中正确的是()△AEFA.①②③B.②③④C.①③④D.①②④二.填空题11.时钟从上午8时到中午12时,时针沿顺时针方向旋转了度.12.如图,将△ABC绕着点C顺时针旋转一定角度后得到△A′B′C,若∠A=45°.∠B′=110°,则∠ACB的度数是.13.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF 的位置,若四边形AECF的面积为25,DE=2,则AE的长为.14.如图,矩形ABCD中,点M是CD的中点,点P是AB上的一动点,若AD=1,AB=2,则P A+PB+PM的最小值是;P A+PB+PM的最大值为.15.如图,O是等边△ABC内一点,OA=1,OB=,OC=2,将线段BO绕点B逆时针旋转60°得到线段BO′,连接AO'①点O与O′的距离为2;②∠AOB=135°;③四边形AOBO′的面积为;④△ABC的边长为;其中正确的结论为.(填正确的番号)三.解答题16.如图,△ABD是等边三角形,以AD为边向外作△ADE,使∠AED=30°,且AE=3,DE=2,连接BE,求BE的长.17.如图,图1等腰△BAC与等腰△DEC,共点于C,且∠BCA=∠ECD,连结BE、AD,若BC=AC、EC=DC.(1)求证:BE=AD;(2)若将等腰△DEC绕点C旋转至图2、3、4情况时,其余条件不变,BE与AD还相等吗?为什么?(请你用图2证明你的猜想)18.如图,已知ΔABC的三个顶点的坐标分别为A(﹣5,0),B(﹣2,3),C(﹣1,0).(1)画出ΔABC关于原点O成中心对称的图形ΔA'B'C';(2)将ΔABC绕原点O顺时针旋转90°,画出对应的ΔA''B''C'',并写出点B''的坐标.19.图①、图②、图③均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形边长为1,点A、B、C、D、E、F均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.(1)在图①中以线段AB为边画个中心对称四边形ABGH,使其面积为9;(2)在图②中以线段CD为边画一个轴对称四边形CDMN,使其面积为10;(3)在图③中以线段EF为边画一个四边形EFPQ,使其满足仅有一对对角都为直角.参考答案与试题解析一.选择题1.【解答】解:如图,由题意A(3,4),把线段OA绕点O顺时针旋转90°得到线段OA',观察图象可知A′(4,﹣3).故选:B.2.【解答】解:A、不属于中心对称图形;B、属于中心对称图形;C、不属于中心对称图形;D、不属于中心对称图形;故选:B.3.【解答】解:①平行四边形不是轴对称图形,是中心对称图形,故原说法错误;②平行四边行的对边相等,对角相等,故原说法错误;③平行四边形的对角线互相平分,说法正确;④平行四边形具有不稳定性,说法正确.故选:C.4.【解答】解:A、是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、既是轴对称图形,又是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意.故选:C.5.【解答】解:A.不是中心对称图形,故本选项不合题意;B.不是中心对称图形,故本选项不合题意;C.是中心对称图形,故本选项符合题意.D.不是中心对称图形,故本选项不合题意;故选:C.6.【解答】解:由旋转的性质得:∠D=∠A=30°,∠DCF=34°,∴∠EFC=∠A+∠DCF=30°+34°=64°;故选:B.7.【解答】解:如图,连接AG,过点G作GQ⊥AB于Q,过点B作BP⊥CE于P,过点E 作EH⊥BC于H,由旋转变换的性质可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,∴DG=DC﹣CG=1,则AG===,∵,∠ABG=∠CBE,∴△ABG∽△CBE,∴==,解得,CE=,EH=,=×BC×HE=×EC×BP,∵S△BCE∴3×=×BP,∴BP=,故选:A.8.【解答】解:由题意:∠ADE=150°,AD=DE=2,∴∠EDH=30°,∵AD∥CD,∴∠CDH=∠A=75°,∵∠CDG=150°,∴∠CDH=∠GDH=75°,∵DC=DG,∴DH⊥CG,∴EH=DE=1,DH=EH=在CG上取一点k,使得DK=GK,∵∠KDG=∠KGD=15°,∴∠DKH=15°+15°=30°,∴KG=DK=2DH=2,HK=DH=3,∴HG=HK+KG=3+2,故选:D.9.【解答】解:∵A点坐标为:(2,4),A1(﹣2,1),∴点P(2.4,2)平移后的对应点P1为:(﹣1.6,﹣1),∵点P1绕点O逆时针旋转180°,得到对应点P2,∴P2点的坐标为:(1.6,1).故选:C.10.【解答】解:∵将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,∴AG=AE,∠DAE=∠BAG,DE=BG,∵∠EAF=45°,∴∠DAE+∠BAF=45°=∠GAB+∠BAF=∠GAF=45°,∵AG=AE,∠F AE=∠F AG=45°,AF=AF,∴△AFE≌△AFG(SAS),∴EF=FG,∵DE=BG,∴EF=FG=BG+FB=DE+BF,故①正确,∵BC=CD=AD=4,EC=1,∴DE=3,设BF=x,则EF=x+3,CF=4﹣x,在Rt△ECF中,(x+3)2=(4﹣x)2+12,解得x=,∴BF=,AF===,故②正确,③错误,∴GF=3+=,∴S△AEF =S△AGF=AB×GF=,故④正确,故选:D.二.填空题11.【解答】解:从上午8时到中午12时,时针就从指向8,旋转到指向12,共顺时针转了3个“大格”,而每个“大格”相应的圆心角为30°,所以,30°×4=120°,故答案为:120°.12.【解答】解:∵△ABC绕着点C顺时针旋转一定角度后得到△A′B′C′,∴∠B=∠B′=110°,在△ABC中,∠ACB=180°﹣∠A﹣∠B=180°﹣45°﹣110°=25°,故答案为:25°.13.【解答】解:∵把△ADE顺时针旋转△ABF的位置,∴△ADE的面积=△ABF的面积,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE===,故答案为:.14.【解答】解:∵AP+PB=AB,∴PM最小时,P A+PB+PM的值是最小值,由垂线段最短可知PM⊥CD时,P A+PB+PM的值最小值,最小值为1+2=3;当P在A点或B点时,PM最大,P A+PB+PM的值是最大值,最大值为P A+PB+PM=AB+AM=2+.故答案为:3,2+.15.【解答】解:如图,连接OO',过点B作BM⊥AO,交AO的延长线于M,∵△ABC是等边三角形,∴∠ABC=60°,AB=BC,∵将线段BO绕点B逆时针旋转60°得到线段BO′,∴BO=BO'=,∠OBO'=60°,∴△BOO'是等边三角形,∴OO '=BO =,∠BOO '=60°,故①错误,∵∠OBO '=∠ABC =60°,∴∠ABO '=∠CBO , 在△BOC 和△BO 'A 中,,∴△BOC ≌△BO 'A (SAS ),∴O 'A =OC =2,∵AO '2=4,AO 2+O 'O 2=3+1=4,∴AO '2=AO 2+O 'O 2,∴∠AOO '=90°,∴∠AOB =150°,故②错误,∵四边形AOBO ′的面积=S △O 'BO +S △AO 'O ,∴四边形AOBO ′的面积=×3+×1×=,故③正确,∵∠BOM =180°﹣∠AOB =30°,∴BM =BO =,OM =BM =,∴AM =AO +OM =,∴AB ===,故④正确,故答案为:③④.三.解答题16.【解答】解:将DE 绕点E 逆时针旋转60°得到EF ,连接AF 、DF ,如图所示:则∠AEF =∠DEF +∠AED =60°+30°=90°,由旋转的性质得:DE =EF ,∴△DEF 是等边三角形,∴DF =DE ,∠EDF =60°,∵△ABD 是等边三角形,∴AD =BD ,∠ADB =60°,∴∠ADF =∠BDE ,在Rt△AEF中,由勾股定理得:AF===,在△ADF和△BDE中,,∴△ADF≌△BDE(SAS),∴BE=AF=.17.【解答】(1)证明:∵∠BCA=∠ECD,∴∠BCA﹣∠ECA=∠ECD﹣∠ECA,∴∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴BE=AD;(2)解:图2、图3、图4中,BE=AD,理由如下:∵∠BCA=∠ECD,∴∠BCA﹣∠ECA=∠ECD﹣∠ECA,∴∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴BE=AD1、三人行,必有我师。
人教版九年级数学上册第23章旋转同步单元练习题一、选择题1.观察下列图案,既是轴对称图形又是中心对称图形的共有(B)A.4个 B.3个 C.2个 D.1个2.如图,用左面的三角形连续的旋转可以得到右面的图形,那么每次旋转(C) A.60° B.90° C.120° D.150°3.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,连接AD.下列结论一定正确的是(C)A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC4.如图,若将△ABC绕点O逆时针旋转90°,则顶点B的对应点B1的坐标为(B) A.(-4,2) B.(-2,4) C.(4,-2) D.(2,-4)5.如图,在△ABC中,∠CAB=64°,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的大小为(B)A.64° B.52° C.62° D.68°6.观察下列图形,是中心对称图形的是(D)A. B. C. D.7.在学习图案设计这一节时,老师要求同学们利用图形变化设计图案,下列设计的图案中,是中心对称图形但不是轴对称图形的是(C)A. B. C. D.8.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC的延长线上,下列结论错误的是(C)A.∠BCB′=∠ACA′ B.∠ACB=2∠B C.∠B′CA=∠B′AC D.B′C平分∠BB′A′9.已知点P(a-3,2-a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是(C)10.如图,正方形OABC在平面直角坐标系中,点A的坐标为(2,0),将正方形OABC绕点O 顺时针旋转45°,得到正方形OA′B′C′,则点C′的坐标为(A)A.(2,2) B.(-2,2) C.(2,-2) D.(22,22)二、填空题11.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为(1,-1).12.将数字“6”旋转180°,得到数字“9”;将数字“9”旋转180°,得到数字“6”.现将数“69”旋转180°,得到的数是(B)A.96 B.69 C.66 D.9913.一副三角板按如图所示的方式叠放在一起,若固定△AOB,将△ACD绕着公共顶点A,按顺时针方向旋转α(0°<α<180°),当△ACD的边CD与△AOB的某一边平行时,相应的旋转角α的度数是 30°,75°或165°.14.如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:答案不唯一,如:先将△OCD 绕点C顺时针旋转90°,再向左平移2个单位长度得到△AOB.三、解答题15.如图,正方形ABCD 与正方形A 1B 1C 1D 1关于某点中心对称.已知A ,D 1,D 三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点B ,C ,B 1,C 1的坐标.解:(1)∵D 和D 1是对称点, ∴对称中心是线段DD 1的中点. ∴对称中心的坐标是(0,52).(2)∵A ,D 两点的坐标分别是(0,4),(0,2), ∴正方形ABCD 、正方形A 1B 1C 1D 1的边长为2. ∵点A ,B 纵坐标相同, ∴B(-2,4).∵点C ,D 纵坐标相同,点C ,B 横坐标相同, ∴C(-2,2).∵点C 1,D 1纵坐标相同, ∴C 1(2,3).∵点C 1,B 1横坐标相同,点B 1,A 1纵坐标相同, ∴B 1(2,1).16.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A(5,4),B(0,3),C(2,1).(1)画出△ABC 关于原点成中心对称的△A 1B 1C 1,并写出点C 1的坐标; (2)画出将A 1B 1C 1绕点C 1按顺时针旋转90°所得的△A 2B 2C 1.解:(1)如图所示,△A 1B 1C 1即为所求,点C 1的坐标为(-2,-1). (2)如图所示,△A 2B 2C 1即为所求.17.(苏州中考)如图,在△ABC 中,点E 在BC 边上,AE =AB ,将线段AC 绕A 点旋转到AF 的位置,使得∠CAF =∠BAE ,连接EF ,EF 与AC 交于点G.(1)求证:EF =BC ;(2)若∠ABC =65°,∠ACB =28°,求∠FGC 的度数.解:(1)证明:∵∠CAF =∠BAE , ∴∠EAF =∠BAC.∵将线段AC 绕A 点旋转到AF 的位置, ∴AC =AF.在△AEF 和△ABC 中, ⎩⎪⎨⎪⎧AE =AB ,∠EAF =∠BAC ,AF =AC ,∴△AEF≌△ABC(SAS).∴EF=BC.(2)∵AB=AE,∠ABC=65°,∴∠ABC=∠AEB=65°.∴∠BAE=180°-65°×2=50°.∴∠CAF=∠BAE=50°.∵△AEF≌△ABC,∴∠F=∠C=28°.∴∠FGC=∠FAG+∠F=50°+28°=78°.18.如图1,利用正方形各边中点和弧的中点设计的正方形瓷砖图案,用四块如图1所示的正方形瓷砖拼成一个新的正方形,使拼成的图案既是轴对称图形,又是中心对称图形.请你在图2和图3中各画一种拼法(要求两种拼法各不相同).解:如图所示(答案不唯一).19.如图,在等腰Rt△ABC中,∠ACB=90°,点P是△ABC内一点,连接PA,PB,PC,且PA=2PC,设∠APB=α,∠CPB=β.(1)如图1,若∠ACP=45°,将△PBC绕点C顺时针旋转90°至△DAC,连接DP,易证△DAP为等边三角形,则α=150°,β=105°;(2)如图2,若PB=2PA,求α,β的值;(3)猜想并写出α与β之间的数量关系:α-β=45°.解:将△PBC绕点C顺时针旋转90°至△DAC,连接DP.∴BP=AD,CD=CP,∠DCP=90°,∴PD=2PC,∠CPD=∠CDP=45°.∵PA=2PC,PB=AD=2PA,∴PD=PA.∴PD2+PA2=AD2.∴△ADP是等腰直角三角形,且∠APD=90°.∴∠ADP=45°.∴∠APC=∠APD+∠CPD=135°,∠BPC=∠ADC=∠ADP+∠CDP=90°. ∴∠APB=360°-∠APC-∠BPC=135°.∴α=135°,β=90°.。
人教版九年级上册数学第23章旋转 1 图形的旋转一、选择题1. 如图,△A′B′C′是由△ABC经过平移得到的,△A′B′C′还可以看作是△ABC经过怎样的图形变换得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是( )A.①④ B.②③ C.②④ D.③④2. 将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是( )A.平行四边形 B.矩形 C.菱形D.正方形3. 在平面直角坐标系中,点P(-4,2)向右平移7个单位长度得到点P1,点P1绕原点逆时针旋转90°得到点P2,则点P2的坐标是( )A.(-2,3) B.(-3,2) C.(2,-3) D.(3,-2)4. 如图所示,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心是( )A.点A B.点B C.点C D.点D5. 把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为 ( )A.30° B.90° C.120° D.180°6. 如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是( )A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC7. 如图,将线段AB先向右平移5个单位长度,再将所得线段绕原点顺时针旋转90°,得到线段A′B′,则点B的对应点B′的坐标是( )A.(-4,1) B.(-1,2) C.(4,-1) D.(1,-2)8. 如图,在平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B′的坐标是( )A.(-1,2+3) B.(-3,3) C.(-3,2+3) D.(-3,3)9. 如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B′的坐标是( )A.(-1,2+3) B.(-3,3) C.(-3,2+3) D.(-3,3)10. 如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为20,DE=2,则AE的长为( )A.4 B.2 5 C.6 D.2 6二、填空题11. 如图,在平面直角坐标系xOy中,△AOB可以看作是由△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:__________________________.12. 如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=________°.13. 如图所示,在Rt△ABC 中,∠B =90°,AB =2 5,BC = 5.将△ABC 绕点A 逆时针旋转90°得到△AB′C′,连接B′C,则B′C=________.14. 如图,两块完全相同的含30°角的三角尺ABC 和A′B′C′重合在一起,将三角尺A′B′C′绕其顶点C′逆时针旋转角α(0°<α≤90°),有以下三个结论:①当α=30°时,A′C 与AB 的交点恰好为AB 的中点;②当α=60°时,A′B′恰好经过点B ;③在旋转过程中,始终存在AA′⊥BB′.其中正确结论的序号是__________.15. 如图,在△ABC 中,∠BAC =90°,AB =AC =10 cm ,D 为△ABC 内一点,∠BAD =15°,AD =6 cm ,连接BD ,将△ABD 绕点A 逆时针旋转,使AB 与AC 重合,点D 的对应点为点E ,连接DE ,DE 交AC 于点F ,则CF 的长为________ cm.16. 分类讨论如图,点A 的坐标为(-1,5),点B 的坐标为(3,3),点C 的坐标为(5,3),点D 的坐标为(3,-1).小明发现线段AB 与线段CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是_________.17.如图,点O 是平行四边形ABCD 的对称中心,AD >AB ,E ,F 是AB 边上的点,且EF =12AB ;G ,H 是BC 边上的点,且GH =13BC.若S 1,S 2分别表示△EOF 和△GOH 的面积,则S 1与S 2之间的等量关系是S 1S 2=________.三、解答题18. 如图,将一个钝角三角形ABC(其中∠ABC=120°)绕点B顺时针旋转得到△A1BC1,使得点C落在AB的延长线上的点C1处,连接AA1.(1)写出旋转角的度数;(2)求证:∠A1AC=∠C1.19. 如图,等腰直角三角形OEF的直角顶点O为正方形ABCD的中心,点C,D分别在OE和OF上,现将△OEF 绕点O逆时针旋转角α(0°<α<90°),连接AF,DE(如图②).(1)在图②中,∠AOF=________;(用含α的式子表示)(2)猜想图②中AF与DE的数量关系,并证明你的结论.20. 如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△D EC,点A,B的对应点分别是D,E.(1)当点E恰好在AC上时,如图①,求∠ADE的度数;(2)若α=60°,F是边AC的中点,如图②,求证:四边形BEDF是平行四边形.21. 如图,在等边三角形ABC内有一点P,且PA=2,PB=3,PC=1.求∠BPC的度数和等边三角形ABC的边长.22. 已知:如图,在四边形ABCD中,∠ADC=60°,∠ABC=30°,AD=CD.求证:BD2=AB2+BC2.答案一、选择题1. D.2. D.3. A.4. B5. C6. D7. D8. B9. B 10. D. 二、填空题11.将△OCD 绕点C 顺时针旋转90°,再向左平移2个单位长度即可得到△AOB(答案不唯一) 12. 20 13. 5 14. ①②③ 15. (10-2 6) 16. (4,4)或(1,1)17. 32三、解答题18. 解:(1)旋转角的度数为60°.(2)证明:由旋转的性质知∠ABC =∠A 1BC 1=120°,∠C =∠C 1,AB =A 1B.∵点A ,B ,C 1在同一直线上,∴∠ABC 1=180°,∴∠ABA 1=∠CBC 1=60°,∴∠A 1BC =60°, ∵AB =A 1B ,∴△ABA 1是等边三角形, ∴∠AA 1B =∠A 1BC =60°, ∴AA 1∥BC ,∴∠A 1AC =∠C. 又∵∠C =∠C 1,∴∠A 1AC =∠C 1.19. 解:(1)∵△OEF 绕点O 逆时针旋转角α, ∴∠DOF =∠COE =α. ∵四边形ABCD 为正方形, ∴∠AOD =90°, ∴∠AOF =90°-α. 故答案为90°-α. (2)猜想:AF =DE.证明:∵四边形ABCD 为正方形, ∴∠AOD =∠COD =90°,OA =OD. ∵∠DOF =∠COE =α, ∴∠AOF =∠DOE.∵△OEF 为等腰直角三角形, ∴OF =OE.在△AOF 和△DOE 中, ⎩⎪⎨⎪⎧OA =OD ,∠AOF =∠DOE ,OF =OE ,∴△AOF ≌△DOE(SAS), ∴AF =DE.20. 解:(1)∵△ABC 绕点C 顺时针旋转角α得到△DEC,点E 恰好在AC 上, ∴CA =CD ,∠ECD =∠BCA =30°,∠DEC =∠ABC =90°. ∵CA =CD ,∴∠CAD =∠CDA =12(180°-30°)=75°,∴∠ADE =90°-75°=15°. (2)证明:连接AD.∵F 是边AC 的中点,∠ABC =90°, ∴BF =12AC.∵∠ACB =30°, ∴AB =12AC ,∴BF =AB.∵△ABC 绕点C 顺时针旋转60°得到△DEC, ∴∠BCE =∠ACD =60°,BC =CE ,CD =CA ,DE =AB , ∴DE =BF ,△ACD 和△BCE 均为等边三角形, ∴BE =CB.∵F 为△ACD 的边AC 的中点, ∴DF ⊥AC ,易证得△CFD≌△ABC , ∴DF =BC , ∴DF =BE. 又∵BF =DE ,∴四边形BEDF 是平行四边形.21. 解:将△BPC 绕点B 逆时针旋转60°得到△BP′A(如图).连接PP′,由旋转的性质知△BPP′为等边三角形,AP′=PC =1,∴PP′=PB =3,∠BPP′=∠BP′P=60°. 在△APP′中,∵AP′2+PP′2=12+(3)2=22=PA 2, ∴△APP′是直角三角形,且∠AP′P=90°, ∴∠BP′A=∠BP′P+∠AP′P=60°+90°=150°, ∴∠BPC =∠BP′A=150°.在Rt△APP′中,∵PA =2,AP′=1, ∴∠APP′=30°. 又∵∠BPP′=60°, ∴∠APB =90°,∴在Rt△ABP 中,AB =PA 2+PB 2=22+(3)2=7, 即等边三角形ABC 的边长为7.22. 证明:如图,将△ADB 绕点D 顺时针旋转60°,得到△CDE,连接BE ,则∠ADB=∠CDE,∠A=∠DCE,AB=CE,BD=DE.又∵∠ADC=60°,∴∠BDE=60°,∴△DBE是等边三角形,∴BD=BE.又∵∠ECB=360°-∠BCD-∠DCE=360°-∠BCD-∠A=360°-(360°-∠ADC-∠ABC)=90°,∴△ECB是直角三角形,∴BE2=CE2+BC2,即BD2=AB2+BC2.2 中心对称提升练习一、选择题1. 如图是一个以点为对称中心的中心对称图形,若,,,则的长为( )A. 2B.4C. .D.82、下列说法正确的是 ( )A.线段绕着它的中点旋转180°后与原线段重合,那么线段是中心对称图形B.等边三角形绕着它的三边中线的交点旋转120°后与原图形重合,那么等边三角形是中心对称图形C.正方形绕着它的对角线交点旋转90°后与原图形重合,那么正方形是中心对称图形D.正五角星绕着它的中心旋转72°后与原图形重合,那么正五角星是中心对称图形3、平面图形的旋转一般情况下会改变图形的()A、位置B、大小C、形状D、性质4. 下列图形中,不是中心对称图形的是A. 平行四边形B. 圆C. 正八边形D. 等边三角形5. 下列图形中既是轴对称图形又是中心对称图形的是()A、等边三角形B、等腰三角形C、菱形D、平行四边形6、下列图案中,是中心对称图形,不是轴对称图形的是A. B. C. D.7. 下列几组几何图形中,既是轴对称图形,又是中心对称图形,完全正确的一组是().A.正方形、菱形、矩形、平行四边形 B.正三角形、正方形、菱形、矩形C.正方形、矩形、菱形 D.平行四边形、正方形、等腰三角形8. 下列标志既是轴对称图形又是中心对称图形的是()A 、B 、C 、D 、9、如图,不是中心对称图形的是( )A 、B 、C 、D 、10.下列图形中,既是轴对称图形又是中心对称图形的是( )A 、B 、C 、D 、11、已知点A (1x ,1y )与点B (2x ,2y )关于原点对称,若112x y +=,则22x y +的值为( ) A .2B .12C .12-D .2-12、在下列Word 文档的自选图形中,既是中心对称图形,又是轴对称图形的有A. 1个B. 2个C. 3个D. 4个13、如图所示,已知△ABC 和△A'B 'C '关于点O 成中心对称,则下列结论错误的是( )A. ∠AOC=∠A'OC 'B. ∠ABC=∠A'B 'C 'C. AB=A 'B 'D. OA=OC ' 二、填空题14、如图,将△ABC 绕其中一个顶点逆时针连续旋转、、后所得到的三角形和△ABC 的对称关系是 .15、如图,在△BDE 中,∠BDE="90" °,BD=4,点D 的坐标是(5,0),∠BDO="15" °,将△BDE 旋转到△ABC 的位置,点C 在BD 上,则旋转中心的坐标为___ ___.16、已知点P(x+2y,﹣3)和点Q(4,y)关于原点对称,则x+y=_____.17.给出以下4个图形:①平行四边形,②正方形,③等边三角形,④圆.其中,既是轴对称图形又是中心对称图形的是.(填写序号)18、线段、两相交直线、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形、圆等图形中是中心对称图形的有:________.三、解答题19.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,的三个顶点都在格点上每个小方格的顶点叫格点.画出关于点O中心对称的;将绕点O顺时针旋转,画出旋转后的,并求线段BC扫过的面积.20、如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)画出△ABC关于原点成中心对称的三角形△A′B′C′;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点B″的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.21.如图,正与正关于某点中心对称,已知三点的坐标分别是求对称中心的坐标;写出顶点的坐标.22. 在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点),画出△ABC绕点O逆时针旋转90°后的.23、用六根一样长的小棒搭成如图所示的图形,试移动、这两根小棒,使六根小棒成为中心对称图形;若移动、这两根,能不能也达到要求呢?(画出图形)24、如图所示,△ABC为任意三角形,若将△ABC绕点C顺时针旋转180°得到△DEC.(1)试猜想AE与BD有何关系?并且直接写出答案.(2)若△ABC的面积为4cm2,求四边形ABDE的面积;(3)请给△ABC添加条件,使旋转得到的四边形ABDE为矩形,并说明理由.答案一、1. B 2、 A 3、 A4. D 5. C 6、 C 7. C 8. A 9、 B 10. D 11、 D 12、 A 13、 D二、14、中心对称15、(3,2)16、-7 17.②④18、线段、两条相交直线、平行四边形、矩形、菱形、正方形、圆三、19. 解:如图所示,即为所求;如图所示,即为所求;线段BC扫过的面积,.20、(1)如图所示△A′B′C′即为所求;(2)如图所示,△即为所求;(3)D(-7,3)或(-5,-3)或(3,3).当以BC为对角线时,点D3的坐标为(-5,-3);当以AB为对角线时,点D2的坐标为(-7,3);当以AC为对角线时,点D1坐标为(3,3).21. 解:三点的坐标分别是,所以对称中心的坐标为;等边三角形的边长为,所以点C的坐标为,点的坐标.22. 解:如下图所示:23、解:能,24、解:(1)AE∥BD,且AE=BD;(2)四边形ABDE的面积是:4×4=16;(3)AC=BC.理由是:∵AC=CD,BC=CE,∴四边形ABDE是平行四边形.∵AC=BC,∴平行四边形ABDE是矩形.。
旋转同步练习附答案1.如图,假如把钟表的指针看做三角形OAB,它绕 O点按顺时针方向旋转获得△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点 A、 B 分别挪动到什么地点?2.(学生活动)如图,四边形ABCD、四边形 EFGH都是边长为1 的正方形.(1)这个图案能够看做是哪个“基本图案”经过旋转获得的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点 A、 B、 C、 D 分别移到什么地点?3.如图,△ ABC绕 C 点旋转后,极点A的对应点为点D,试确立顶点 B?对应点的地点,以及旋转后的三角形.4 .如图,四边形ABCD是边长为 1 的正方形,且DE=1,△ ABF 4是△ ADE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3) AF 的长度是多少?(4)假如连结 EF,那么△ AEF是如何的三角形?5.如图, K 是正方形ABCD内一点,以AK 为一边作正方形AKLM,使 L、 M?在 AK 的同旁,连结BK 和 DM,试用旋转的思想说明线段BK 与DM的关系.答案:1.解:( 1)旋转中心是 O,∠ AOE、∠ BOF等都是旋转角.( 2)经过旋转,点 A 和点 B 分别挪动到点 E 和点 F 的地点.2.( 1)能够看做是由正方形 ABCD的基本图案经过旋转而获得的.( 2)?绘图略.( 3)点A、点B、点C、点 D 移到的地点是点 E、点 F、点 G、点 H.(3)旋转前、后的图形全等.3.剖析:绕 C 点旋转, A 点的对应点是 D 点,那么旋转角就是∠ ACD,依据对应点与旋转中心所连线段的夹角等于旋转角,即∠ BCB′ =ACD,?又由对应点到旋转中心的距离相等,即CB=CB′,便可确立 B′的地点,如下图.解:( 1)连结 CD(2)以 CB为一边作∠ BCE,使得∠ BCE=∠ ACD(3)在射线 CE上截取 CB′ =CB则 B′即为所求的 B 的对应点.( 4)连结 DB′则△ DB′ C 就是△ ABC绕 C 点旋转后的图形.4.剖析:由△ ABF是△ ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF?的长度,依据旋转前后的对应线段相等,只需求AE的长度,由勾股定理很简单获得.?△ABF 与△ ADE是完整重合的,因此它是直角三角形.解:( 1)旋转中心是 A 点.( 2)∵△ ABF是由△ ADE旋转而成的∴B 是 D的对应点∴∠ DAB=90°就是旋转角( 3)∵ AD=1, DE=1∴AE= 12(1)2=17444∵对应点到旋转中心的距离相等且F 是 E 的对应点∴ AF=174( 4)∵∠ EAF=90°(与旋转角相等)且AF=AE ∴△ EAF是等腰直角三角形.5.剖析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.解:∵四边形 ABCD、四边形 AKLM是正方形∴AB=AD, AK=AM,且∠ BAD=∠ KAM为旋转角且为 90°∴△ ADM是以 A为旋转中心,∠BAD为旋转角由△ABK旋转而成的∴BK=DM。
一、选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .等边三角形B .平行四边形C .圆D .五角星2.以原点为中心,将点P (3,4)旋转90°,得到的点Q 所在的象限为( ) A .第二象限 B .第三象限 C .第四象限 D .第二或第四象限 3.如图所示,把ABC 绕C 点旋转35︒,得到A B C ''',A B ''交AC 于点D ,若90A DC '∠=︒,则A ∠等于( )A .35︒B .65︒C .55︒D .45︒4.如图,正方形ABCD 内一点P ,5AB =,2BP =,把ABP △绕点B 顺时针旋转90°得到CBP ',则PP '的长为( )A .22B .23C .3D .32 5.如图,正方形ABCD 的边长为1,将其绕顶点C 旋转,得到正方形CEFG ,在旋转过程中,则线段AE 的最小值为( )A 32B 2-1C .0.5D 51-6.如图所示,在Rt ABC ∆中,90ACB ∠=︒,将ABC ∆绕顶点C 逆时针旋转得到A B C ∆'',M 是BC 的中点,P 是A B ''的中点,连接PM .若2BC =,30A ∠=︒,则线段PM 长的最大值是( )A .4B .3C .2D .1 7.若点P(-m ,m -3)关于原点对称的点是第二象限内的点,则m 满足( ) A .m >3 B .0<m≤3 C .m <0 D .m <0或m >3 8.以下关于新型冠状病毒的防范宣传图标中是中心对称图形的是( )A .B .C .D .9.下列图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边形C .正五边形D .菱形10.如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有( )A .4种B .5种C .6种D .7种 11.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是( ) A .正方形 B .矩形 C .菱形 D .矩形或菱形 12.下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .13.下列图标中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 14.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 15.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .二、填空题16.如图所示,在直角坐标系中,点()0,6A ,点()3,4P 将AOP 绕点O 顺时针方向旋转,使OA 边落在x 轴上,则PP '=_______________.17.已知点(,2)A m m 在直线3y x 上,则点A 关于原点对称点B 的坐标为______. 18.如图,在正方形ABCD 中,3AB =,点E 在CD 边上,1DE =,把ADE 绕点A 顺时针旋转90°,得到ABE '△,连接EE ',则线段EE '的长为______.19.如图,在平面直角坐标系中有一个等边OBA △,其中A 点坐标为()1,0,将OBA △绕顶点A 顺时针旋转120︒,得到11AO B ;将得到的11AO B 绕顶点B 顺时针旋转120︒,得到112B AO ;然后再将得到的112B AO 绕顶点2O 顺时针旋转120︒,得到222O B A …按照此规律,继续旋转下去,则2014A 点的坐标为________.20.如图,点E 在正方形ABCD 的边CB 上,将DCE 绕点D 顺时针旋转90˚到ADF 的位置,连接EF ,过点D 作EF 的垂线,垂足为点H ,于AB 交于点G ,若4AG =,3BG =,则BE 的长为___________.21.如图,把△ABC 绕点C 顺时针旋转得到△A 'B 'C ',此时A ′B ′⊥AC 于D ,已知∠A =50°,则∠B ′CB 的度数是_____°.22.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分,若菱形的面积为20cm 2,则阴影部分的面积为_____cm 2.23.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是_____.24.如图,在△ABC 中,AB =6,将△ABC 绕点B 按逆时针方向旋转30°后得到△A 1BC 1,则阴影部分的面积为________.25.如图,正方形ABCD 的边长为2,BE 平分∠DBC 交CD 于点E ,将△BCE 绕点C 顺时针旋转90°得到△DCF ,延长BE 交DF 于G ,则BF 的长为_____.26.若点()3,5B n +与点()4,A m 关于原点O 中心对称,则m n +=______________.三、解答题27.如图,四边形ABCD 是正方形,△ADF 旋转一定角度后得到△ABE ,如图所示,如果AF=4,AB=7,求:(1)指出旋转中心和旋转角度;(2)求DE 的长度;(3)BE 与DF 的位置关系如何?28.如图1,等腰Rt ABC 中,90A ∠=︒,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是______,位置关系是______. (2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若8AD =,20AB =,请直接写出PMN 面积的最大值.29.如图,在一个1010⨯的正方形网格中有一个,ABC ABC ∆∆的顶点都在格点上.(1)在网格中画出ABC ∆向下平移4个单位,再向右平移6个单位得到的111A B C ∆. (2)在网格中画出ABC ∆关于点P 成中心对称得到的222A B C ∆.(3)若可将111A B C ∆绕点О旋转得到222A B C ∆,请在正方形网格中标出点O ,连接12A A 和12B B ,请直接写出四边形2211A B A B 的面积.30.如图,已知ABC 和A B C ''''''△及点O .(1)画出ABC 关于点O 对称的A B C ''';(2)若A B C ''''''△与A B C '''关于点O '对称,请确定点O '的位置.。
1.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到
正方形A'B'C'D',图中阴影部分的面积为( )
A.12 B. √33 C.1- √33 D. .1- √34
2.如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF
是正方形,连接AF、BD.
(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;
(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC
的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想
的结论是否仍然成立?若成立,请写出证明;若不成立,请说明理由.
3.两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,
∠A=∠D =30°,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)求证:AF+EF=DE;
(2)若将图①中的DBE△绕点B按顺时针方向旋转角,且060°°,其
它条件不变,请在图②中画出变换后的图形,并直接写出⑴中的结论是否仍然
成立;
(3)若将图①中的△DBE绕点B按顺时针方向旋转角,且60180°°,
其它条件不变,如图③.你认为⑴中的结论还成立吗?若成立,写出证明过程;
若不成立,请写出AF、EF与DE之间的关系,并说明理由.
解:(1)证明:
(2)结论:AF+EF=DE .(填成立还是不成立)
4.如
图,在等边三角形ABC内有一点P,PA=10,PB=6,PC=8,求∠BPC的度数
5.在等边△ABC内有一点P,且∠CPA∶∠APB∶∠BPC=5∶6∶7。求以CP、AP、
BP为边的三角形的内角度数之比。
6.已知等边ΔABC,D为AC边的中点,E为AB上的一个动点,F为BC边延长线
上的一点,∠EDF=120度.
(1)求证:DE=DF
(2)当E点运动时,求BCBFBE的值
7.如图所示,在四边形ABCD中,ABAD,60BAD,120BCD,
证明:BCDCAC.
B
C
P
A
B
C
P
A
D
BCAEF
8.如图所示:ABC中,90ACB,ACBC,P是ABC内的一点,且3AP,
2CP,1BP,求BPC
的度数
9如图所示,P是等边ABC内部一点,3PC,4PA,5PB,求ABC的边长.
1
23
P
C
B
A
P
CBA
参考答案:
1. C
2. (1)猜想:AF=BD且AF⊥BD.证明:设AF与DC交点为G.
∵FC=DC,AC=BC,∠BCD=∠BCA+∠ACD,
∠ACF=∠DCF+∠ACD,∠BCA=∠DCF=90°,
∴∠BCD=∠ACF.
∴△ACF≌△BCD. ∴AF=BD. ∴∠AFC=∠BDC.
∵∠AFC+∠FGC=90°, ∠FGC=DGA,
∴∠BDC+∠DGA=90° ∴AF⊥BD.
∴AF=BD且AF⊥BD.
(2)结论:AF=BD且AF⊥BD.
图形不唯一,只要符合要求即可.如:
①CD边在△ABC的内部时; ②CF边在△ABC的内部时.
3. 解:(1)证明(略):连接BF,则Rt⊿BEF≌Rt⊿
BCF
∴EF=CF ∴AF+EF=AF+CF=AC=DE
(2)结论:AF+EF=DE 成立 .(填成立还是不
成立)
(3)⑴中的结论不成立。这种情况下AF=DE+EF
理由如下:连接BF,则Rt⊿BCF≌Rt⊿BEF∴CF=EF
∴AF=AC+CF=DE+EF
4. 将⊿BPC绕点B逆时针旋转60得⊿BQA, 则∠BQA=∠BPC,
QA=PC=8,连接PQ,则⊿BQP为等边三角形,∴∠BQP=60,QP=6.
在⊿PQA中,PAQAPQ2222221086 ∴∠PQA=90
∴∠BQA=60+90=150 ∴∠BPC=
150
5. 解:∵∠CPA:∠APB:∠BPC =5:6:7,∴∠CPA =100°, ∠APB =120°,∠
BPC=140
将⊿BPC绕点C顺时针旋转60得⊿AQC, 连接PQ,则PB = QA ,△PCQ为等边三
角形,∴PC = PQ, ∴ △APQ就是以PA,PB,PC为边的三角形。∵∠CPQ =∠CQP
=60°,又 ∠APC=100°, ∠AQC=140°∴∠APQ=40,°∠AQP=80°,∴∠
PAQ=60°。即三个角之比为40:60:80=2:3:4.
6. 解:(1)取 AB中点M,连接DM, 又∵△ABC为等边三角形且D为AC中点,
∴ △AMD为等边三角形 ∴∠DME =∠DCF=120° , DM=DA=DC
∵∠MDE=∠MDC- ∠EDC =120°-∠EDC, ∠CDF=∠EDF- ∠EDC =120°-∠EDC
∴∠MDE=∠CDF, ∴△MDE≌△CDF ∴DE=DF
(2)由(1)知△MDE≌△CDF ∴ME=CF 设等边△ABC的边长为2,则
BC
BFBE
=BCCFBCMEBM=221CFME=23
7.解:延长DC到E,使CE=CB,连接BE、BD. ∵AB=AD,60BAD ∴△ABD为等
B
C
P
A
B
C
P
A
D
BCAEF
边三角形 ∴BA=BD, ∠ABD=60°, ∴∠ABC=60°+∠DBC.
∵∠BCD=120° ∴∠BCE=60° 又CE=CB ∴ △BCE为等边三角形 ∴
BC=BE, ∠CBE=60°, ∴∠DBE=60°+∠DBC. ∴∠ABC=∠DBE ∴△ABC≌△DBE
∴AC=DE=DC+CE=DC+BC