1.2.1顺序结构(2014年人教A版数学必修三导学案)
- 格式:doc
- 大小:136.50 KB
- 文档页数:4
福建省长乐第一中学高中数学必修三《1.1.2 程序框图(第3课时)》教案 【课程标准】通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程.在具体问题的解决过程中(如三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.【教学目标】1.进一步理解程序框图的概念;2.掌握运用程序框图表达循环结构的算法;3.培养学生逻辑思维能力与表达能力.【教学重点】运用程序框图表达循环结构的算法【教学难点】循环体的确定,计数变量与累加变量的理解.【教学过程】一、回顾练习引例:设计一个计算1+2+…+100的值的算法.解:算法1 按照逐一相加的程序进行第一步:计算1+2,得到3;第二步:将第一步中的运算结果3与3相加,得到6;第三步:将第二步中的运算结果6与4相加,得到10;……第九十九步:将第九十八步中的运算结果4950与100相加,得到5050.简化描述:进一步简化:第一步:sum=0;第一步:sum=0,i=1;第二步:sum=sum+1; 第二步:依次i 从1到100,反复做sum=sum+i ;第三步:sum=sum+2;第三步:输出sum.第四步:sum=sum+3;……第一百步:sum=sum+99;第一百零一步:sum=sum+100第一百零二步:输出sum.根据算法画出程序框图,引入循环结构.二、循环结构循环结构:在一些算法中,也经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这种结构称为循环结构.循环体:反复执行的处理步骤称为循环体.计数变量:在循环结构中,通常都有一个起到循环计数作用的变量,这个变量的取值一般都含在执行或终止循环体的条件中.当型循环:在每次执行循环体前对控制循环条件进行判断,当条件满足时执行循环体,不满足则停止.直到循环:在执行了一次循环体之后,对控制循环体进行判断,当条件不满足时执行循环体,满足则停止.练习1:画出引例直到型循环的程序框图.当型循环与直到循环的区别:①当型循环可以不执行循环体,直到循环至少执行一次循环体.②当型循环先判断后执行,直到型循环先执行后判断. ③对同一算法来说,当型循环和直到循环的条件互为反条件.练习2:1.1.1节例1的算法步骤的程序框图(如图)说明:①为了减少难点,省去flag 标记;②解释赋值语句“2=d ”与“1+=d d ”,还有“1-<=n d ;③简单分析.练习3:画出100321⨯⨯⨯⨯ 的程序框图.小结:画循环结构程序框图前:①确定循环变量和初始条件;②确定算法中反复执行的部分,即循环体;③确定循环的转向位置;④确定循环的终止条件.三、条件结构与循环结构的区别与联系区别:条件结构通过判断分支,只是执行一次;循环结构通过条件判断可以反复执行. 联系:循环结构是通过条件结构来实现.例1:(课本第10页的《探究》)画出用二分法求方程022=-x 的近似根(精确度为0.005)的程序框图,并指出哪些部分构成顺序结构、条件结构和循环结构?练习4:设计算法,求使2005321>++++n 成立的最小自然数n 的值,画出程序框图. 练习5:输入50个学生的考试成绩,若60分及以上的为及格,设计一个统计及格人数的程序框图.练习6:指出下列程序框图的运行结果五、课堂小结1. 理解循环结构的逻辑,主要用在反复做某项工作的问题中;2. 理解当型循环与直到循环的逻辑以及区别:①当型循环可以不执行循环体,直到循环至少执行一次循环体.②当型循环先判断后执行,直到型循环先执行后判断.③对同一算法来说,当型循环和直到循环的条件互为反条件.3. 画循环结构程序框图前:①确定循环变量和初始条件;②确定算法中反复执行的部分,即循环体;③确定循环的转向位置;④确定循环的终止条件.4. 条件结构与循环结构的区别与联系:区别:条件结构通过判断分支,只是执行一次;循环结构通过条件判断可以反复执行. 联系:循环结构是通过条件结构来实现.七、作业1. 设计一个算法,计算两个非0实数的加、减、乘、除运算的结果(要求输入两个非0实数,输出运算结果),并画出程序框图.2. 设计一个算法,判断一个数是偶数还是奇数(要求输入一个整数,输出该数的奇偶性),并画出程序框图.3. 设计一个算法,计算函数53)(2+-=x x x f 当20,,3,2,1 =x 时的函数值,并画出程序框图.4. (课本第11页习题1.1A 组第2题)5. 如果我国工农业产值每年以9%的增长率增长,问几年后我国产值翻一翻,试用程序框图描述其算法.6.(课本第11页习题1.1B 组第1题)。
1.1.3算法的三种基本逻辑结构和框图表示自主学习学习目标1.在具体问题的解决过程中,理解程序框图的三种基本逻辑结构.2.能正确选择并运用三种逻辑结构框图表示具体问题的算法.自学导引1.顺序结构顺序结构描述的是最简单的算法结构,语句与语句之间,框与框之间按____________的顺序进行.2.条件分支结构条件分支结构可以描述要求进行____________,并根据判断结果进行不同处理,是依据____________选择执行不同指令的控制结构.3.循环结构根据____________决定是否重复执行一条或多条指令的控制结构称为循环结构.对点讲练知识点一用顺序结构的程序框图表示算法例1已知点P(x0,y0)和直线l:Ax+By+C=0,求点P(x0,y0)到直线l的距离d.写出该问题的一个算法,并画出程序框图.变式迁移1设计求侧棱是5,顶角是60°的圆锥体积的程序框图.知识点二用条件分支结构的程序框图表示算法例2某居民区的物业部门每月向居民收取卫生费,计算方法如下:3人和3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收1.2元.设计一个算法,根据输入的人数,计算应收取的卫生费,只需画出程序框图即可.点评(1)求分段函数的函数值的程序框图画法:如果是分两段的函数,只需引入一个判断框;如果是分三段的函数,需要引入两个判断框;依次类推.(2)判断框内的内容没有顺序,可以不惟一,但一经改变,其相应的处理框等的内容均要有所改变.变式迁移2设计求y=x2的算法,并画出相应的程序框图.知识点三用循环结构的程序框图表示算法例3写出计算12+32+52+…+9992的相应的程序框图.点评(1)框图内的内容包括累和变量初始值、计数变量初始值、累加值,前后两个变量的差值都要仔细斟酌不能有丝毫差错,否则会差之毫厘,谬以千里.(2)判断框内内容的填写,有时大于等于,有时大于,有时小于,有时还可以是小于等于.它们的含义是各不相同的,要根据所选循环的类型,正确地进行选择.变式迁移3计算1×3×5×7×…×99的值,画出程序框图.三种逻辑结构的框图(1)顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤.(2)条件分支结构在程序框图中是用判断框来表示,判断框内写上条件,它有两个出口,分别对应着条件满足和条件不满足时所执行的不同指令.(3)循环结构在程序框图中也是利用判断框来表示,判断框内写上条件,两个出口分别对应着条件成立和条件不成立时执行的不同指令.课时作业一、选择题1.下列算法中,含有条件分支结构的是()A.求两个数的积B.求点到直线的距离C.解一元二次不等式D .已知梯形两底和高求面积2.函数的程序框图如图所示,则①②③的填空完全正确的是( )A .①y =0;②x =0;③y =x +6B .①y =0;②x <0;③y =x +6C .①y =x 2+1;②x >0;③y =0D .①y =x 2+1;②x =0;③y =03.下图是一个算法的程序框图,该算法所输出的结果是( ) A.12 B.23 C.34 D.452题 3题4.如图所示的程序框图输出结果为S =1 320,则判断框中应填( ) A .i ≥9 B .i ≥10 C .i ≤10 D .i ≤9 5.读下面程序框图,则该循环执行的次数为( ) A .50 B .49 C .100 D .994题 5题二、填空题6.如图所示的算法功能是______________________. 7.下图的程序框图输出的结果是________.6题 7题 8.如图所示的程序框图表示的算法的运行结果为________.三、解答题9.设火车托运质量为P (kg)的行李时,每千米的费用(单位:元)标准为Y =试画出路程为D 千米时行李托运费用的程序框图.10.画出计算式子12+22+32+…+1002的程序框图:1.1.3 算法的三种基本逻辑结构和框图表示自学导引 1.从上到下2.逻辑判断 指定条件 3.指定条件 对点讲练例1 解 算法如下:S1 输入点的坐标x 0,y 0及直线方程的系数A ,B ,C ; S2 计算Z 1=Ax 0+By 0+C ; S3 计算Z 2=A 2+B 2;S4 计算d =|Z 1|Z 2;S5 输出d .其程序框图如图所示:变式迁移1 解 程序框图:例2 解 依题意费用y 与人数n (n ∈N +)之间的关系为 y =⎩⎪⎨⎪⎧5 (n ≤3),5+1.2(n -3) (n >3). 程序框图如图所示:变式迁移2解算法如下:第一步,输入x;第二步,如果x≥0,使y=x,否则,使y=-x;第三步,输出y.相应的程序框图如图所示:例3解方法一算法:S1令S=0,i=1;S2若i≤999成立,则执行第三步;否则,输出S,结束算法;S3S=S+i2;S4i=i+2,返回S2.程序框图:方法二算法:S1令S=0,i=1S2S=S+i2S3i=i+2S4如果i>999,则输出S,结束算法;否则,返回第二步.程序框图:变式迁移3 解 程序框图描述算法如下:课时作业 1.C 2.D3.C [运行第一次的结果为n =0+11×2=12;第二次n =12+12×3=23;第三次n =23+13×4=34. 此时i =4程序终止,即输出n =34.]4.B5.B [∵i =i +2,∴当2+2n ≥100时循环结束此时n =49,故选B.] 6.求两数差的绝对值 7.20解析 当a =5时,S =1×5=5;a =4时,S =5×4=20; 此时程序结束,故输出S =20. 8.-5解析 根据程序框图,得S =1-2+3-4+5-6+7-8+9-10=-5.9.解 应先输入托运质量P 和路程D ,再分别用各自条件下的计算式子来进行计算处理,将结果与托运路程D相乘,最后输出托运行李的费用M.用条件分支结构画出框图.10.解。
§1.1.2 程序框图与算法的基本逻辑结构一、教材分析用自然语言表示的算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确.因此,本节有必要探究使算法表达得更加直观、准确的方法.程序框图用图形的方式表达算法,使算法的结构更清楚、步骤更直观也更精确.为了更好地学好程序框图,我们需要掌握程序框的功能和作用,需要熟练掌握三种基本逻辑结构.二、教学目标1、知识与技能:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;掌握画程序框图的基本规则,能正确画出程序框图。
2、过程与方法:通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。
3、情感态度与价值观:通过本节的学习,使我们对程序框图有一个基本的了解;掌握算法语言的三种基本逻辑结构,明确程序框图的基本要求;认识到学习程序框图是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路。
三、重点难点数学重点:程序框图的画法.数学难点:程序框图的画法.四、课时安排4课时五、教学设计第1课时程序框图及顺序结构(一)导入新课思路1(情境导入)我们都喜欢外出旅游,优美的风景美不胜收,如果迷了路就不好玩了,问路有时还听不明白,真是急死人,有的同学说买张旅游图不就好了吗,所以外出旅游先要准备好旅游图.旅游图看起来直观、准确,本节将探究使算法表达得更加直观、准确的方法.今天我们开始学习程序框图.思路2(直接导入)用自然语言表示的算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确.因此,本节有必要探究使算法表达得更加直观、准确的方法.今天开始学习程序框图.(二)推进新课、新知探究、提出问题(1)什么是程序框图?(2)说出终端框(起止框)的图形符号与功能.(3)说出输入、输出框的图形符号与功能.(4)说出处理框(执行框)的图形符号与功能.(5)说出判断框的图形符号与功能.(6)说出流程线的图形符号与功能.(7)说出连接点的图形符号与功能.(8)总结几个基本的程序框、流程线和它们表示的功能.(9)什么是顺序结构?讨论结果:(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.(2)椭圆形框:表示程序的开始和结束,称为终端框(起止框).表示开始时只有一个出口;表示结束时只有一个入口.(3)平行四边形框:表示一个算法输入和输出的信息,又称为输入、输出框,它有一个入口和一个出口.(4)矩形框:表示计算、赋值等处理操作,又称为处理框(执行框),它有一个入口和一个出口.(5)菱形框:是用来判断给出的条件是否成立,根据判断结果来决定程序的流向,称为判断框,它有一个入口和两个出口.(6)流程线:表示程序的流向.(7)圆圈:连接点.表示相关两框的连接处,圆圈内的数字相同的含义表示相连接在一起.(8)总结如下表.图形符号名称功能终端框(起止框)表示一个算法的起始和结束输入、输出框表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框连接点连接程序框图的两部分(9)很明显,顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.三种逻辑结构可以用如下程序框图表示:顺序结构 条件结构 循环结构(二)应用示例例1 请用程序框图表示前面讲过的“判断整数n(n>2)是否为质数”的算法.解:程序框图如下:点评:程序框图是用图形的方式表达算法,使算法的结构更清楚,步骤更直观也更精确.这里只是让同学们初步了解程序框图的特点,感受它的优点,暂不要求掌握它的画法.变式训练观察下面的程序框图,指出该算法解决的问题.解:这是一个累加求和问题,共99项相加,该算法是求100991431321211⨯++⨯+⨯+⨯Λ的值.例2 已知一个三角形三条边的边长分别为a ,b ,c ,利用海伦—秦九韶公式设计一个计算三角形面积的算法,并画出程序框图表示.(已知三角形三边边长分别为a,b,c ,则三角形的面积为S=))()((c p b p a p p ---),其中p=2cb a ++.这个公式被称为海伦—秦九韶公式)算法分析:这是一个简单的问题,只需先算出p 的值,再将它代入分式,最后输出结果.因此只用顺序结构应能表达出算法. 算法步骤如下:第一步,输入三角形三条边的边长a,b,c. 第二步,计算p=2cb a ++. 第三步,计算S=))()((c p b p a p p ---.第四步,输出S. 程序框图如下:点评:很明显,顺序结构是由若干个依次执行的步骤组成的,它是最简单的逻辑结构,它是任何一个算法都离不开的基本结构.变式训练下图所示的是一个算法的流程图,已知a 1=3,输出的b=7,求a 2的值.解:根据题意221a a +=7, ∵a 1=3,∴a 2=11.即a 2的值为11.例3 写出通过尺轨作图确定线段AB的一个5等分点的程序框图.解:利用我们学过的顺序结构得程序框图如下:点评:这个算法步骤具有一般性,对于任意自然数n,都可以按照这个算法的思想,设计出确定线段的n等分点的步骤,解决问题,通过本题学习可以巩固顺序结构的应用.(四)知能训练有关专家建议,在未来几年内,中国的通货膨胀率保持在3%左右,这将对我国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情况下,某种品牌的钢琴2004年的价格是10 000元,请用流程图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格.解:用P表示钢琴的价格,不难看出如下算法步骤:2005年P=10 000×(1+3%)=10 300;2006年P=10 300×(1+3%)=10 609;2007年P=10 609×(1+3%)=10 927.27;2008年P=10 927.27×(1+3%)=11 255.09;因此,价格的变化情况表为:年份2004 2005 2006 2007 2008钢琴的价格10 000 10 300 10 609 10 927.27 11 255.09 程序框图如下:点评:顺序结构只需严格按照传统的解决数学问题的解题思路,将问题解决掉.最后将解题步骤 “细化”就可以.“细化”指的是写出算法步骤、画出程序框图.(五)拓展提升 如下给出的是计算201614121++++Λ的值的一个流程图,其中判断框内应填入的条件是______________.答案:i>10.(六)课堂小结(1)掌握程序框的画法和功能.(2)了解什么是程序框图,知道学习程序框图的意义.(3)掌握顺序结构的应用,并能解决与顺序结构有关的程序框图的画法.(七)作业习题1.1A 1.。
1.2。
1输入、输出语句和赋值语句一、教学目标:1、知识与技能(1)正确理解输入语句、输出语句、赋值语句的结构。
(2)会写一些简单的程序。
(3)掌握赋值语句中的“=”的作用。
2、过程与方法(1)让学生充分地感知、体验应用计算机解决数学问题的方法;并能初步操作、模仿。
(2)通过对现实生活情境的探究,尝试设计出解决问题的程序,理解逻辑推理的数学方法.3、情感态度与价值观通过本节内容的学习,使我们认识到计算机与人们生活密切相关,增强计算机应用意识,提高学生学习新知识的兴趣。
二、重点与难点重点:正确理解输入语句、输出语句、赋值语句的作用。
难点:准确写出输入语句、输出语句、赋值语句。
三、教学设计【创设情境】在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具,如:听MP3,看电影,玩游戏,打字排版,画卡通画,处理数据等等,那么,计算机是怎样工作的呢?计算机完成任何一项任务都需要算法,但是,我们用自然语言或程序框图描述的算法,计算机是无法“看得懂,听得见"的。
因此还需要将算法用计算机能够理解的程序设计语言(programming language )翻译成计算机程序。
程序设计语言有很多种。
如BASIC ,Foxbase ,C 语言,C++,J++,VB 等。
为了实现算法中的三种基本的逻辑结构:顺序结构、条件结构和循环结构,各种程序设计语言中都包含下列基本的算法语句:这就是这一节所要研究的主要内容——基本算法语句。
今天,我们先一起来学习输入、输出语句和赋值语句.(板出课题)【探究新知】我们知道,顺序结构是任何一个算法都离不开的基本结构。
输入、输出语句和赋值语句基本上对应于算法中的顺序结构。
(如右图)计算机从上而下按照语句排列的顺序执行这些语句。
输入语句和输出语句分别用来实现算法的输入信息,输出结果的功能。
如下面的例子:用描点法作函数3232430y xx x =+-+的图象时,需要求出自变量与函数的一组对应值。
1.1.2 程序框图与算法的基本逻辑结构第一课时程序框图与算法的顺序结构、条件结构选题明细表知识点、方法题号程序框图1,2顺序结构4,6,7条件结构3,5,8,9,10,11基础巩固1.对程序框叙述正确的是( C )(A)表示一个算法的起始和结束,程序框是(B)表示一个算法输入和输出的信息,程序框是(C)表示一个算法的起始和结束,程序框是(D)表示一个算法输入和输出的信息,程序框是解析:由程序框的算法功能可知,选C.2.下列关于程序框图的说法正确的是( D )①程序框图只有一个入口,也只有一个出口;②程序框图中的每一部分都应有一条从入口到出口的路径通过它;③流程线只要是上下方向就表示上下执行,可以不要箭头.(A)①②③(B)②③(C)①③(D)①②解析:根据程序框图的含义,①②正确;流程线也可以左右方向,必须有箭头,③错.故选D.3.(2019·湖北武汉调研)如果输入的t∈[-2,2],则输出的S属于( A )(A)[-4,2] (B)[-2,2](C)[-2,4] (D)[-4,0]解析:由题知,当t∈[-2,0)时,S=2t∈[-4,0),当t∈[0,2]时,S=-3t+t3=t(t-)(t+)∈[-2,2],综上S∈[-4,2],故选A.4.(2018·陕西延安中学期末)阅读如图所示的程序框图,若输入的a,b,c的值分别是21,32,75,则输出的a,b,c分别是( A )(A)75,21,32 (B)21,32,75(C)32,21,75 (D)75,32,21解析:由图知输入a=21,b=32,c=75后,x=21,a=75,c=32,b=21,故选A.5.某班有49位同学玩“数字接龙”游戏,具体规则按如图所示的程序框图执行(其中a为座位号),并以输出的值作为下一轮输入的值.若第一次输入的值为8,则第三次输出的值为( A )(A)8 (B)15 (C)20 (D)36解析:输入a=8后,则输出a=2×8-1=15;输入a=15,则输出a=2×15-1=29;输入a=29,不满足条件,a=29-25=4,a=2×4=8,输出a=8,故第三次输出的值为8,故选A.6.(2018·河北衡水高三模拟)古代著名数学典籍《九章算术》在“商功”篇章中有这样的描述:“今有圆亭,下周三丈,上周二丈,问积几何?”其中“圆亭”指的是正圆台体形建筑物.算法为:“上下底面周长相乘,加上底面周长自乘、下底面周长自乘的和,再乘以高,最后除以36.”可以用程序框图写出它的算法,如图,今有圆亭上底面周长为6,下底面周长为12,高为3,则它的体积为( D )(A)32 (B)29 (C)27 (D)21解析:由题意可得a=6,b=12,h=3,可得A=3×(6×6+12×12+6×12)=756,V==21.故程序输出V的值为21.故选D.7.已知一个直角三角形的两条直角边长分别为a,b,求该直角三角形内切圆的面积.试设计求解该问题的算法,并画出程序框图.解:算法步骤如下:第一步,输入a,b.第二步,计算c=.第三步,计算r=(a+b-c).第四步,计算S=πr2.第五步,输出面积S.相应程序框图如图.能力提升8.(2019·四川省雅安中学月考)根据下面的流程图操作,使得当成绩不低于60分时,输出“及格”,当成绩低于60分时,输出“不及格”,则( A )(A)1框中填“是”,2框中填“否”(B)1框中填“否”,2框中填“是”(C)1框中填“是”,2框中可以不填(D)2框中填“否”,1框中可以不填解析:模拟程序的运行,由题意可得当成绩不低于60分时,即满足判断框内的条件时,应该执行输出“及格”,故框1中填是;当成绩低于60分时,即不满足判断框内的条件时,输出“不及格”,则框2中填否.故选A.9.(2019·陕西省黄陵中学高三月考)设a=log23,b=ln 3,执行如图所示的程序框图,则输出的S的值为( C )(A)9+ln 3 (B)3-ln 3(C)11 (D)1解析:将a=log23,b=ln 3输入,a=log23=>ln 3,即a>b,故S=+=9+2=11,故选C.10.画出解关于x的不等式ax+b<0(a,b∈R)的程序框图.解:程序框图如图.探究创新11.设计算法判断一元二次方程ax2+bx+c=0是否有实数根,并画出相应的程序框图.解:算法步骤如下:第一步,输入一元二次方程的系数a,b,c.第二步,计算Δ=b2-4ac.第三步,判断Δ≥0是否成立.若Δ≥0成立,输出“方程有实根”;否则输出“方程无实根”.结束算法.相应的程序框图如图.由Ruize收集整理。
高一数学必修3第一节1.1.2导学案1.1.2 程序框图(第2课时)一、教学目标:1.理解程序框图的概念;2.掌握运用程序框图表达顺序结构和条件结构的算法;3.培养学生逻辑思维能力与表达能力.【教学重点】运用程序框图表达顺序结构和条件结构的算法【教学难点】规范程序框图的表示以及条件结构算法的框图【教学过程】二、问题导学:(一)练习:1. 已知一个三角形的三边长分别为2,3,4,利用海伦—秦九韶公式设计一个算法,求出它的面积.2. 任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在.(二)、程序框图的有关概念1. 程序框图的概念:2. 构成程序框图的图形符号及其作用(课本第6页)3.规范程序框图的表示:4.三种逻辑结构:;;。
三、问题探究:1、顺序结构是由若干个依次执行的处理步骤组成.例1:(课本第7页例3)练习1:交换两个变量A和B的值,并输出交换前后的值.解:算法如下:程序框图:第一步:输入A,B的值.第二步:把A的值赋给x.第三步:把B的值赋给A.第四步:把x的值赋给B.第五步:输出A,B的值.2、条件结构根据条件判断,决定不同流向.例2:(课本第8页例4)四、课堂练习:1、有三个整数,,,由键盘输入,输出其中最大的数.解:算法1第一步:输入,,;第二步:若,且;则输出;否则,执行第三步;第三步:若,则输出;否则,输出.算法2第一步:输入,,;第二步:若,则;否则,;第三步:若,则输出;否则,输出.2、已知,求的值.设计出解决该问题的一个算法,并画出程序框图.解:算法如下:第一步:;第二步:;第三步:;第四步:;第五步:;第六步:输出.3、(课本第11页练习1)设计一个求任意数的绝对值的算法,并画出程序框图.解:第一步:输入任意实数;第二步:若,则;否则;第三步:输出.4、(课本第18页例6)设计一个算法,使得任意输入的3个整数按从大到小的顺序输出,并画出程序框图.五、自主小结1. 画程序框图的步骤:首先用自然语言描述解决问题的一个算法,再把自然语言转化为程序框图;2. 理解条件结构的逻辑以及框图的规范画法,条件结构主要用在判断、分类或分情况的问题解决中.六、作业1. 如果考生的成绩大于或等于60分,则输出“及格”,否则输出“不及格”,试写出一个算法,并画出程序框图.2. 画出1+2+3+4+5的一个算法的程序框图.3. (课本第11页习题1.1A组第3题)4. 输入一元二次方程的系数,输出它的实数根,试写出一个算法,并画出程序框图.。