超高韧性纤维增强水泥基复合材料基本力学性能
- 格式:pdf
- 大小:436.29 KB
- 文档页数:9
复合材料的力学性能与结构设计复合材料是由两种或两种以上的材料组合而成的材料,具有优异的力学性能和结构设计潜力。
在本文中,将探讨复合材料的力学性能以及如何进行结构设计。
一、复合材料的力学性能复合材料由于多种材料的组合,具有独特的力学性能。
以下将讨论复合材料在强度、刚度和韧性方面的性能。
1. 强度由于不同材料之间的协同作用,复合材料通常具有很高的强度。
这是由于各个组成材料的优点相互弥补,从而提高整体强度。
例如,纤维增强复合材料中的纤维可以提供很高的强度,而基体材料可以增加韧性。
2. 刚度复合材料具有很高的刚度,这是由于组成材料之间的相互作用。
纤维增强复合材料中的纤维可以提供很高的刚度,而基体材料可以提供弹性和柔韧性。
因此,复合材料在受力时可以保持其形状和结构的稳定性。
3. 韧性复合材料通常具有较高的韧性,这是由于材料的组合结构所致。
纤维增强复合材料中的纤维可以分散和吸收能量,从而提高材料的韧性。
相反,在单一材料中,这种能量分散效应很少出现。
二、复合材料的结构设计复合材料的结构设计是为了实现所需的力学性能和功能。
以下将介绍复合材料结构设计的关键因素。
1. 材料选择合理的材料选择是进行复合材料结构设计的关键因素。
不同材料具有不同的力学性能和化学特性,因此需要根据应用需求选择合适的材料组合。
例如,在需要高强度和刚度的应用中,可以选择纤维增强复合材料。
2. 界面控制复合材料中不同材料之间的界面是其力学性能的重要因素。
界面的控制可以通过界面处理和表面改性来实现。
例如,通过添加粘合剂或增加表面处理剂,可以增强纤维与基体之间的结合,提高界面的力学性能。
3. 结构设计结构设计是为了实现所需的功能和性能。
在复合材料结构设计中,需要考虑材料的排布方式、层压顺序和几何形状等因素。
通过合理设计复合材料的结构,可以充分发挥其力学性能,同时满足应用需求。
三、结论复合材料具有优异的力学性能和结构设计潜力。
通过合理选择材料、控制界面以及进行结构设计,可以充分发挥复合材料的力学性能。
复合材料力学性能复合材料力学性能是指复合材料在力学加载下的行为和性能。
复合材料是由两种或两种以上不同类型的材料组成的复合体,通常包括增强相和基体相。
增强相是由具有较高强度和刚度的材料制成,而基体相是由具有较高韧性和耐用性的材料制成。
复合材料的力学性能直接影响着其在各种应用领域的使用。
复合材料的力学性能包括强度、刚度、韧性和抗疲劳性等方面。
首先是强度。
强度是指材料在受到外界力作用下抵抗断裂或变形的能力。
复合材料通常具有较高的强度,特别是拉伸、压缩和弯曲强度。
这是因为增强相的存在使得复合材料能够承受更大的力。
同时,复合材料还具有较高的拉伸、剪切和压缩模量,这使得它们在应力下更加稳定。
其次是刚度。
刚度是指材料对应力产生相应应变的能力。
复合材料通常具有较高的刚度,这使得它们在应用中具有更好的稳定性和振动性能。
刚度取决于增强相的类型、层数和配比等因素。
然后是韧性。
韧性是指材料在受到外界力作用下承受变形和断裂的能力。
复合材料通常具有较高的韧性,这是由于其基体相的存在,基体相能够吸收能量并阻止裂纹的扩展。
韧性通常通过测量断裂韧性来评估。
最后是抗疲劳性。
抗疲劳性是指材料在经过长时间循环加载后仍然能保持其性能和强度的能力。
复合材料通常具有较好的抗疲劳性能,这是由于增强相的存在,增强相能够在应力加载下分散和吸收应力。
除了以上几个方面,复合材料的力学性能还受到其制备工艺、层数和组织结构等因素的影响。
制备工艺的不同会导致复合材料的性能有所差异。
层数的增加会提高复合材料的强度和刚度,但也会增加制备难度。
组织结构的优化能够提高复合材料的性能。
综上所述,复合材料具有强度、刚度、韧性和抗疲劳性等优良的力学性能。
这些性能的提高在很大程度上推动了复合材料在航空、汽车、建筑等领域的广泛应用。
随着材料科学和制备技术的进步,复合材料的力学性能还将不断得到改善和优化。
PVA 纤维混凝土的应用研究现状引言混凝土属于脆性材料,其韧性较差。
而纤维抗拉强度较高,两者复合使用可以克服混凝土抗拉强度较低和脆性的缺点。
目前,应用到水泥混凝土内的纤维种类比较多,常用的包括碳纤维、聚丙烯纤维、聚乙烯纤维、钢纤维、聚丙烯晴纤维、聚乙烯醇纤维(PVA)等。
其中PVA 纤维增强水泥基材料是目前热门课题之一。
近年来,超高韧性水泥基复合材料是比较热门的一种新型建筑材料,其实质上是通过在混凝土中加入2%的聚乙烯醇短纤维制备出一种高性能纤维增强水泥基复合材料。
这种纤维增强混凝土在受到轴向拉伸和弯曲荷载作用下会呈现出显著的应变硬化特征,并且当受力开裂后,其承载力会经历一个类似于钢筋的假应变硬化阶段,而不会像钢纤维混凝土和聚丙烯纤维混凝土那样当遭受达到极限承载力的荷载作用时会突然降低。
1 PVA 的性能特点与其他种类的纤维相比,PVA 纤维具有以下几点优势:①高抗拉强度和高弹性模量;②与矿物掺合料的相容性较好;③高亲水性,能够较好地均匀分布在水泥浆体中;④与水泥基材料的界面结合较好;⑤高耐酸碱性;⑥直径适中,可达到39 mu;m;⑦环保,无毒无害。
几种常用纤维的性能参数见表1。
由表1 可以看出,钢纤维弹性模量较高,制作工艺较复杂,生产的钢纤维直径较大,不利于普遍应用。
聚丙烯纤维的弹性模量太低,碳纤维的弹性模量较高,其极限延伸率较小,且不能弯曲。
整体上看,聚乙烯纤维性能上与PVA 接近,但是聚乙烯纤维价格较高,不适合大量应用。
2 PVA 纤维增强混凝土的力学性能钱桂枫等人研究发现,PVA 纤维的最佳掺量是0.08%~0.1%,体积掺量在此范围内可以有效改善混凝土抗折强度,且PVA 纤维的长径比越小,强度提高效果越显著。
Fukuyama 等人对PVA 纤维增强混凝土构件进行了拉mdash;压循环荷载试验,结果发现当PVA 纤维掺量为1.5%时,构件的应变可以达1.5%,试件韧性较好,且裂缝宽度小于0.2 mm。
竹板—纤维增强水泥基复合材料的力学性能研究
姚武;李宗津
【期刊名称】《建筑节能》
【年(卷),期】2000(028)001
【摘要】改性竹板具有很高的抗拉、抗弯强度,它与纤维增强水泥基材料复合可以获得轻质、高强、韧性好的新型建筑材料.该复合材料可用于建筑模板、隔墙材料和其它房屋制品等领域.本文介绍了这种竹板-纤维增强水泥基复合材料的结构组成和生产工艺,并研究了该材料的抗弯和抗冲击性能.
【总页数】4页(P10-12,15)
【作者】姚武;李宗津
【作者单位】同济大学混凝土材料研究国家重点实验室;香港科技大学土木工程系【正文语种】中文
【中图分类】TU599.026
【相关文献】
1.钢纤维增强水泥基复合材料力学性能试验研究 [J], 赵燕茹; 喻泊厅; 王磊; 刘宇蛟
2.高温后PVA纤维增强水泥基复合材料力学性能试验研究 [J], 杨珊;李祚;彭林欣;罗月静;滕晓丹
3.碳纤维增强水泥基复合材料的力学性能研究进展 [J], 程健强;王文广;韩杰
4.芳纶纤维增强水泥基复合材料力学性能与冲击性能研究 [J], 冯雨琛;李地红;卞立波;李紫轩;张亚晴
5.基于三向交织结构玄武岩纤维增强水泥基复合材料力学性能研究 [J], 贾明皓;裴佳慧;肖学良;钱坤;樊凯
因版权原因,仅展示原文概要,查看原文内容请购买。
超高韧性水泥基复合材料试验研究摘要:本文主要研究了超高韧性水泥基复合材料的试验制备及其性能表征。
通过优化材料选择和工艺流程,成功制备出具有优异韧性的水泥基复合材料。
本文的研究成果对于推动水泥基复合材料的发展具有一定的理论和实践意义。
关键词:超高韧性,水泥基复合材料,材料选择,工艺流程,性能测试。
引言:水泥基复合材料是一种由水泥、增强体和外加剂等组成的新型复合材料。
由于其具有高强度、高韧性、抗腐蚀、耐久性强等特点,被广泛应用于桥梁、道路、建筑等领域。
随着科学技术的发展,人们对水泥基复合材料的要求越来越高,尤其是对其韧性的要求。
因此,开展超高韧性水泥基复合材料的试验研究具有重要的现实意义。
材料选择:在本次研究中,我们选择了高强度水泥、纤维增强体、减水剂等为主要原材料。
其中,高强度水泥提供了优异的强度和耐久性;纤维增强体(如钢纤维、聚丙烯纤维等)可以有效地提高材料的韧性;减水剂则有助于改善材料的可加工性和力学性能。
工艺流程:制备超高韧性水泥基复合材料的工艺流程如下:首先将原材料按照一定比例混合均匀,然后加入适量的水进行搅拌,最后在压力机中压制成型并养护。
其中,搅拌时间的控制、压力机的压制压力和养护条件的设定等因素都会对材料的性能产生影响。
性能测试:为了表征超高韧性水泥基复合材料的性能,我们对其进行了抗压强度、抗折强度、韧性等指标的测试。
测试结果表明,该材料具有优异的力学性能,其抗压强度和抗折强度均高于普通水泥基复合材料,同时,其韧性也得到了显著提高。
通过本次试验研究,我们成功地制备出了具有优异韧性的超高韧性水泥基复合材料。
通过对材料选择和工艺流程的优化,实现了对该材料的力学性能的有效提升。
本文还对制备过程中的影响因素进行了分析,为进一步优化制备工艺提供了理论依据。
然而,本研究仍存在一定的局限性。
例如,对于材料韧性的提高机制以及制备工艺与材料性能之间的内在尚需深入探讨。
未来研究方向可以包括:进一步优化纤维增强体的分散和拌合工艺,探究不同纤维对材料韧性的影响机制,以及开展针对不同应用场景的超高韧性水泥基复合材料的优化设计和制备技术研究。
纤维增强水泥基复合材料综述学号:079024444 姓名:王柳班级:无机072水泥基复合材料概述:最早的、最常见的水泥基复合材料其实就是我们所熟悉的混凝土。
自八十年代美国将混凝土定义为水泥基复合材料以来,这个称法已逐渐地被各国学者认同。
该定义赋予了水泥更多科技内涵,也为水泥研究提供了新的方法,将复合材料的研究方法引入水泥领域,将大大推动水泥科学的发展。
复合材料是指由两种或两种以上异质、异形、异性的材料复合形成的新型材料,一般由基体组元与增强体或功能组元所组成。
混凝土其实就是采用复合材料中的颗粒增强手段来提高性能。
混凝土中的水泥将砂、石等增强体胶结在一起,这就大大提高了单个材料的性能,这也是复合材料的优势!但是单纯的将沙石等颗粒材料胶结在一起形成的混凝土抗压但是不抗拉,其抗拉强度较低,韧性较差。
所以后来人们才混凝土中加入钢筋,钢筋混凝土类似我们在复合材料中所学的纤维增强,只不过钢筋比较粗还不能称作纤维,钢筋在混凝土中钢筋主要承受拉应力,这样混凝土的抗拉强度就得到了很大的提高,于是就出现了钢筋混凝土,我们现在大量运用的我其实就是这种!纤维增强水泥基复合材料的组成:一、水泥水泥在纤维增强水泥基复合材料中是一种胶结材料,与水拌合形成水泥浆,以其很高的粘结力将砂、石和钢纤维胶结成一整体。
目前,在纤维增强水泥基复合材料中常用的水泥强度主要为等级为32.5和42.5的普通硅酸盐水泥。
二、砂砂又称细骨料,用于填充碎石或砾石等粗骨料的空隙,并共同组成纤维增强水泥基复合材料的骨架。
砂的粗细程度用砂的细度模数表示用细度模数大的砂,即粗砂进行拌制容易产生离析和泌水现象。
用细度模数小的砂,即细砂进行拌制,则水泥用量较大!需要较多的水泥浆包裹在砂的表面。
因此,砂的细度模数应适中。
三、石又称粗骨料,是组成纤维增强水泥基复合材料的骨架材料,通常为碎石。
纤维增强水泥基复合材料的粗骨料的粒径不宜大于20mm,若骨料粒径过大,将削弱纤维的增强作用,且纤维集中于大骨料周围,不便于纤维的分散。
超高性能混凝土基本力学性能试验方法探究超高性能混凝土(Ultra-High Performance Concrete,简称UHPC)作为一种新型的高性能材料,具有极高的强度和耐久性,广泛应用于建筑和基础设施工程中。
为了研究UHPC的基本力学性能,需要进行一系列试验。
1.抗压强度试验抗压强度是衡量混凝土抗压能力的重要指标。
UHPC具有极高的抗压强度,通常在150-200MPa以上。
抗压强度试验可按照国际标准进行。
试验时,需要制备适当尺寸的试件,并将其放置于试压机中进行加载。
加载时,以恒定速率施加荷载,并记录加载过程中的荷载与变形数据,得到荷载-变形曲线。
最终通过计算得到试件的抗压强度。
2.抗拉强度试验抗拉强度是另一个重要的力学性能指标。
UHPC的抗拉强度通常在10-20MPa左右。
抗拉强度试验可采用拉拔试验方法。
试验时,需要制备角棒形状的试件,并在试验机上施加拉应力。
通过记录加载过程中的荷载与变形数据,得到试件的荷载-变形曲线,并计算出抗拉强度。
3.弯曲试验弯曲试验用于评估材料的强度和韧性。
通过制备横截面尺寸合适的试件,并在试验机上按照一定的加载方式施加荷载,记录加载过程中的荷载与变形数据,得到荷载-变形曲线。
通过分析曲线,可以计算出试件的抗弯强度和韧性指标。
4.拉伸试验拉伸试验能够评估材料的抗拉强度、伸长性和断裂性能。
制备合适尺寸的拉伸试样,加装夹具,并在试验机上施加拉应力。
通过记录加载过程中的荷载与变形数据,得到荷载-变形曲线。
根据最大应力和伸长量计算出抗拉强度和伸长性能。
5.硬度试验硬度试验用于评估材料的耐磨性和弹性模量。
常用的硬度试验包括洛氏硬度试验、巴氏硬度试验和维氏硬度试验等。
通过在试验机上施加一定载荷,并测量产生的印痕或塑性变形,可以计算出试件的硬度值。
除了上述试验方法外,还可以使用扫描电镜(SEM)、X射线衍射(XRD)、热重分析(TGA)等分析方法对UHPC的微观结构和物理性能进行研究。
超高性能混凝土(Ultra-high Performance Concrete,以下简称UHPC)作为20世纪后期诞生的新一代建筑材料,具有超高强、高韧性、高耐久性等优异性能。
基于颗粒紧密堆积理论和混杂纤维增强增韧机理,在UHPC力学性能的提高方面有重大突破。
和普通水泥基材料相比,UHPC表现出更好的抗压性能、抗拉性能、抗折性能和抗冲击抗爆性能。
下面就为大家简单介绍下该产品。
UHPC中,纤维的掺入对其整体强度的提升有较大影响,且由于其低水胶比、微裂纹效应和自修复效应,UHPC也表现出较好的耐久性。
基于这些优点,UHPC在市政工程、国防工程、核工程等工程领域具有广泛的应用前景,已在桥涵隧道、海洋结构、防爆工程、大跨结构和超高层建筑中大量应用。
UHPC材料特性:UHPC是一种高强度,高韧性,孔隙率低的超高强水泥基材料。
它的基本配制原理是:通过提高组织成分的细度与活性,不使用粗骨料,使材料内部的孔隙与微裂缝减到最少,以获得超高强度与高耐久性。
高强、防火,抗爆,抗冰雹,抗化学腐蚀:倍立达UHPC超高性能混凝土外墙板性能卓越,轻质结构,无需另加钢筋等支撑,能够实现更薄界面、更长跨距,轻质优雅,更具创新性。
高耐久性:倍立达UHPC超高性能混凝土外墙板在冻融循环、海洋环境、硫铝酸盐侵蚀、弱酸侵蚀和碳化下,能够耐受各种有害物质渗透到基体内部,同时具有自愈能力,防水效果非常好。
美观性:倍立达UHPC超高性能混凝土外墙板能够实现许多设计者的梦想,实现建筑的优雅造型和丰富的颜色质地和效果。
延展性:水泥基材料与金属纤维和有机纤维的结合实现了抗压强度和抗折强度的有机平衡。
可持续性:独特的结构能够解决环保问题和降低生命周期成本。
倍立达UHPC能够降低建筑成本、模具成本、劳动力成本和维修成本等,提高建筑场地的安全性,建造速度和建筑生命周期。
倍立达创立于1999年,注册资金4600万元,在全国主要经济区域均有生产制造基地,是国际较大规模的专业GRC/UHPC/GRG/FRP/TCP加工和施工企业之一,是通过国际GRCA认证的单位、中国GRC副理事长单位及GRC质量行业标准起草单位。
2009年9月水 利 学 报SH UI LI X UE BAO第40卷 第9期收稿日期:2008212212基金项目:国家自然科学基金重点项目(50438010);南水北调工程建设重大关键技术研究及应用(J G ZX JJ2006213)作者简介:徐世 (1953-),男,湖北人,博士,教授,主要从事混凝土断裂力学基本理论与工程应用、新型材料与结构、超高韧性水泥基复合材料和非金属纤维编织网增强混凝土结构研究。
E 2mail :slxu @文章编号:055929350(2009)0921055209超高韧性纤维增强水泥基复合材料基本力学性能徐世 ,蔡向荣(大连理工大学海岸与近海工程国家重点实验室结构分室,辽宁大连 116024)摘要:研制了采用高强高弹模聚乙烯醇纤维作为增强材,以精制水泥砂浆为基体的超高韧性水泥基复合材料。
本文通过单轴拉伸试验、四点弯曲试验、单轴抗压试验、三点弯曲断裂试验研究了这种新型材料的抗拉、抗弯、抗压和抗裂性能。
试验结果表明,该材料在拉伸和弯曲荷载作用下具有假应变硬化和多缝开裂特性,以及高延性、高韧性和高能量吸收能力。
极限荷载时的最大裂缝宽度在50μm 左右。
拉伸和弯曲试验测得的极限拉伸应变在3%以上,平均裂缝间距1mm 左右。
其抗压强度类似于混凝土,抗压弹性模量较低,但受压变形能力比普通混凝土大很多。
通过三点弯曲断裂试验证明,该材料的峰值荷载及其对应变形都较基体有明显的提高。
缺口拉伸试件和缺口梁试件均证明,该材料可以将单一裂缝细化成多条细裂缝,同时该材料具有对小缺口不敏感的特性。
4种试验的结果证明该材料在各种破坏荷载作用下均能保持良好的整体性,不发生碎裂破坏。
关键词:超高韧性水泥基复合材料;假应变硬化;多缝开裂;高延性;高韧性;高能量吸收能力中图分类号:T U5281572文献标识码:A1 研究背景水利工程是我国的一项基础产业工程,目前我国正在大规模、高速度地进行水利开发,2008年第四季度国家新增200亿元中央水利建设投资加快水利基础设施建设。
水利工程建设耗资巨大,如果水利工程结构耐久性不足,将增加建筑物使用过程中的修理与加固费用,影响或限制结构的正常使用功能并缩短结构的使用年限,影响效益和安全,不仅造成经济损失,而且严重浪费资源,引发社会问题。
因此有必要全方位、多渠道地提高水工混凝土的质量和耐久性,延长工程使用寿命,确保国家可持续发展战略在水利建设开发过程中的有效实施。
裂缝是影响水工混凝土质量和耐久性的首要因素,如何有效地控制水工混凝土裂缝的产生和扩展是目前解决水工混凝土结构耐久性问题的关键之一。
从材料的角度来讲,控制裂缝的方法主要是减少水泥用量、使用外加剂和添加纤维。
其中纤维的添加可以更为有效地控制混凝土裂缝的形成和扩展,提高混凝土的延性和韧性,能较好的解决由于荷载作用或其他变形作用引起的混凝土开裂,成为提高水工混凝土结构耐久性的有效方法之一。
目前各种纤维混凝土的研究和应用已经取得了丰硕的成果,尤其是高性能纤维混凝土的研究和应用在较大程度上解决了混凝土的开裂问题[1-4]。
但是普通的高性能纤维混凝土通常采用较大的钢纤维体积掺量,不仅成本增加,重量大,施工困难,而且其裂缝控制宽度一般在几百个微米,尤其当应变超过115%时基本上不能再控制裂缝宽度[5]。
根据国内外设计规范及有关试验资料,混凝土最大裂缝宽度的控制标准大致为:无侵蚀介质无防渗要求时013~014mm ;轻微侵蚀、无防渗要求时012~013mm ;严重侵蚀、有防渗要求时011~012mm 。
为了能更好的控制混凝土在各种荷载和变形下的裂缝宽度,提高混凝—5501—土结构的抗裂防渗性能,20世纪90年代初美国密歇根大学成功研制了一种中等纤维体积掺量的随机短纤维增强高性能水泥基复合材料(Engineered cementitious com posites,简称ECC)[6-8]。
它采用聚乙烯纤维或聚乙烯醇纤维作为增强材,以水泥净浆或特制水泥砂浆为基体,通过细观力学、断裂力学和数理统计方法选择合理的纤维、基体和界面性能参数。
这种新型材料在拉伸、弯曲等荷载作用下具有假应变硬化和多缝开裂的特性,最大裂缝宽度可以控制在011mm以内,可以有效的防止外界有害物质的侵入,提高水工结构的耐久性。
由于荷载作用下大量细密裂缝的产生使它同时具有高延性、高韧性和高能量吸收能力,解决了混凝土本身固有的脆性。
目前这种材料已经在日本、美国、韩国、瑞士和澳大利亚投入使用[9-11]。
由于它在提高结构的裂缝控制能力、增加结构的延性、耗能能力、抗侵蚀性、抗冲击性和耐磨性方面具有显著的效果[8],所以除了应用于水利工程提高水工结构的抗裂、抗侵蚀、抗冻融等耐久性能以外,它还可以用于桥梁工程、道路路面工程、地下工程、抗震结构、大变形结构、抗冲击结构和修复结构等。
本文采用高强高弹模聚乙烯醇纤维作为增强材,以精制水泥砂浆为基体,通过大量试验研究成功配制了具有类似于ECC材料性能的超高韧性水泥基复合材料(简称UHT CC)。
本文将通过单轴拉伸试验、四点弯曲试验、单轴抗压试验、三点弯曲缺口梁断裂试验研究这种超高韧性水泥基复合材料的抗拉、抗弯、抗压和断裂性能。
2 试验原材料和搅拌工艺211 原材料 胶凝材料包括P.Ⅱ.5215R水泥和矿物掺合料,骨料为特制沙,外加剂为商用高效减水剂,拌和水为饮用自来水,采用PVA纤维,有关性能参数见表1,纤维体积掺量为2%。
表1 PVA纤维参数纤维名称名义强度/MPa纤维直径/μm纤维长度/mm弹性模量/G Pa延伸率Π% PVA1620391242186%212 搅拌工艺 首先将胶凝材料和精细沙投入搅拌机中,先干拌而后加水搅拌以使砂浆基体具有良好的流动性和适宜的黏聚性,最后加入PVA纤维搅拌。
搅拌结束后,纤维分散均匀,没有结团现象。
所有试件均钢模成型,36h后拆模,放入标准养护室养护28d后取出,然后室内放置直至试验。
3 基本力学性能311 拉伸性能 通过直接拉伸试验测定超高韧性水泥基复合材料的拉伸性能。
试件尺寸350mm×50mm×15mm,试件测量标距200mm。
试件形式分为不带切口试件和双边切口试件,所有试件均先制成不带切口试件。
试验前采用约2mm宽的碳化钙锯对部分试件进行双边切口,切口尺寸分别为5mm和10mm。
不带切口试件的试验龄期分别为28d和90d,切口试件的试验龄期为90d。
试验时加载速率011mm/min,采用荷载传感器和夹式引伸计测量荷载和拉伸变形,德国产I MC全自动数据采集处理系统进行荷载和变形的数据采集和处理。
试验测得的荷载-变形曲线如图1所示。
从图1(a)中可以看出,龄期从28d增长到90d,试件的拉伸应变基本没变,而抗拉强度明显增大。
由拉伸变形与测量标距的比值计算平均拉伸应变,由抗拉荷载与试件横截面面积的比值计算抗拉强度。
计算得到的28d极限应变为3137%,抗拉强度为4171MPa;90d极限应变为3140%,抗拉强度为5168MPa。
由于矿物掺合料的二次水化反应,UHT CC后期强度增加较大,90d龄期时抗拉强度较28d增加了2016%。
试验中观察拉伸试件的开裂情况,可以看到接近极限抗拉强度时,试件的受拉区内产生了大量近似平行的细密裂缝。
采用D JCK裂缝观测仪观测到的峰值荷载附近的裂缝张开宽度在50μm左右。
由于——615图1 试验测得的荷载-变形曲线开裂混凝土的抗渗性是裂缝宽度的三次方[5],所以如此小的裂缝宽度可以有效地阻止侵蚀性物质的侵入。
如果利用这种材料作为钢筋的混凝土保护层,则可以有效地减慢钢筋的腐蚀速率,提高钢筋混凝土结构的耐久性。
由D JCK 裂缝观测仪观测到的裂缝宽度和裂缝条数随拉伸应变的增长关系如图2所示。
从图2可以看出,随着变形的增加,裂缝宽度先增长,当增加到一定值(本试验为40~50μm )时,随着变形的增加,裂缝宽度不再增加,而裂缝条数随变形的增加近似成线性关系增长,峰值荷载附近裂缝条数高达200条之多。
图2 裂缝宽度和裂缝条数随应变的增长关系从图1(b )和图1(c )中可以看出,双边切口5mm 的拉伸试件,测量标距内的总变形量明显大于切口的张开变形量;双边切口10mm 的拉伸试件,测量标距内的总变形量与切口的张开变形量大体相当。
由于试件的变形主要来源于试件上产生的裂缝条数和裂缝宽度,测量结果证明纤维具有非常良好的连接作用,可以控制小切口处裂缝的扩展,使小切口试件的多缝开裂形式优于大切口试件。
对试件多缝开裂形式的实际观察也证明了这一点。
对比观察两种切口试件的多缝开裂形式,可以看出当双边切口尺寸较小时,试件在整个测量标距范围内产生均匀分布的多条细裂缝;当双边切口尺寸较大时,多缝开裂仅限于切口附近,并且裂缝不再近似平行,而是围绕切口呈弧形曲线。
由抗拉荷载与试件切口处横截面面积的比值计算切口试件的名义抗拉强度,双边切口5mm 试件的名义抗拉强度5132MPa ,双边切口10mm 试件的名义抗拉强度5190MPa ,与无切口试件的抗拉强度对比可以发现试件的抗拉强度基本不变。
312 弯曲性能 采用薄板试件和梁试件研究超高韧性水泥基复合材料的弯曲性能,试件尺寸分别为400mm ×100mm ×15mm 和400mm ×100mm ×100mm 。
试验龄期90d 。
分别在30t 的闭环液压伺服材料试验机和100t 的闭环液压伺服材料试验机上进行试验。
加载速率分别为015mm/min 和011mm/min 。
加载方式为三分点加载。
采用荷载传感器和LVDT 测量抗弯荷载和跨中挠度,德国进口的I MC 全自动数据采集处理系统进行荷载和变形的数据采集和处理。
试验得到的荷载-挠度曲线如图3所示。
右侧纵坐标是根据材料力学公式计算得到的抗弯应力。
由荷载-挠度曲线可得开裂荷载和开裂挠度、极限荷载和极限挠度,然后分别采用如下公式计算开裂强度、抗弯强度和极限拉伸应变预测值,计算结果见表2。
—7501—图3 荷载-挠度曲线表2 主要力学性能指标编号开裂挠度δc Πmm 开裂荷载P c ΠN极限挠度δu Πmm 极限荷载P u ΠN比例极限强度σc ΠMPa 拉伸应变预测值Π%抗弯强度σu ΠMPa 101383673113956104189313412175薄板试件2013837230121018164196312213158301454263015996105168312513128平均值014038830179901251173127131201013624153198391567135311811187梁试件2012325152319242150716631141217530125241414133401307132314612109平均值012824181410840187144312612124 开裂强度σc (MPa ):σc =P c l 0bh2(1) 抗弯强度σu (MPa ):σu =P u l 0bh 2(2) 极限拉伸应变预测值εu :εu =1s khl 20f(3)式中:P c 为开裂荷载(N );P u 为极限荷载(N );l 0为梁的计算跨度(mm );b 、h 为试件的宽度和高度(mm );s 为与荷载形式、支承条件等有关的系数,对于大变形情况下的四点弯曲构件,系数s =1/8;k =h t /h 为受拉区高度h t 与构件截面高度h 的比值,根据试验得到的裂缝沿构件高度方向的扩展深度进行估算;f 为跨中挠度(mm )。