2011中考数学知识点梳理+试题分类汇编(24)相似
- 格式:doc
- 大小:1.94 MB
- 文档页数:33
目录北京中考数学试题分类汇编 ............................................................................................................一、实数(共18小题)..................................................................................................................二、代数式(共2小题)................................................................................................................三、整式与分式(共14小题)......................................................................................................四、方程与方程组(共11小题)..................................................................................................五、不等式与不等式组(共6小题) ............................................................................................六、图形与坐标(共4小题)........................................................................................................七、一次函数(共11小题)..........................................................................................................八、反比例函数(共5小题)........................................................................................................九、二次函数(共10小题)..........................................................................................................一十、图形的认识(共11小题)..................................................................................................一十一、图形与证明(共33小题) ..............................................................................................一十二、图形与变换(共12小题) ..............................................................................................一十三、统计(共15小题)..........................................................................................................一十四、概率(共6小题)............................................................................................................北京中考数学试题分类汇编(答案) ............................................................................................一、实数(共18小题)..................................................................................................................二、代数式(共2小题)................................................................................................................三、整式与分式(共14小题)......................................................................................................四、方程与方程组(共11小题)..................................................................................................五、不等式与不等式组(共6小题) ............................................................................................六、图形与坐标(共4小题)........................................................................................................七、一次函数(共11小题)..........................................................................................................八、反比例函数(共5小题)........................................................................................................九、二次函数(共10小题)..........................................................................................................一十、图形的认识(共11小题)..................................................................................................一十一、图形与证明(共33小题) ..............................................................................................一十二、图形与变换(共12小题) ..............................................................................................一十三、统计(共15小题)..........................................................................................................一十四、概率(共6小题)............................................................................................................2011-2016年北京中考数学试题分类汇编本套试卷汇编了11-16年北京市中考数学试题真题,将真题按照知识点内容重新进行编排,通过试卷可看出北京中考数学学科各知识点所占整套试卷的百分比,知识点所对应的出题类型。
2011全国各省市中考数学试题分类汇编-—函数与一次函数(解答题及答案)三.解答题1.(2011安徽中考)18、在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:A 1(____,____),A 3(____,____),A 12(___,___); (2)写出点A n 的坐标(n 是正整数);(3)指出蚂蚁从点A 100到A 101的移动方向.2.(2011安徽中考)21. 如图函数11y k x b =+的图象与函数2k y x=(x >0)的图象交于A 、B 两点,与y 轴交于C 点.已知A 点的坐标为(2,1),C 点坐标为(0,3). (1)求函数1y 的表达式和B 点坐标; 【解】(2)观察图象,比较当x >0时,1y 和2y 的大小.3.(2011广州中考)14.如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P沿x 轴向右平移4个单位长度得⊙P 1.(1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π)4.(2011甘肃兰州)24.(本小题满分7分)如图,一次函数3y kx =+的图像与反比例函数my x=(x >0)的图像交与点P ,PA ⊥x 轴于点A ,PB ⊥y 轴于点B.一次函数的图像分别交x 轴、y 轴于点C 、点D ,且DBP S ∆=27,OC CA =12. (1)求点D 的坐标;第18题图第21题(2)求一次函数与反比例函数的表达式;(3)根据图像写出当x5.(2011广东茂名)某学校要印制一批《学生手册》,甲印刷厂提出:每本收1元印刷费,另收500元制版费;乙印刷厂提出:每本收2元印刷费,不收制版费.(1)分别写出甲、乙两厂的收费甲y (元) 、乙y (元)与印制数量x (本)之间的关系式;(4分)(2)问:该学校选择哪间印刷厂印制《学生手册》比较合算?请说明理由. (4分) 解:6.(2011广州中考)21.(12分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠。
2011年全国各地中考数学试卷试题分类汇编第2章 实数A. 一 23【答案】B【答案】D【答案】BA. 2 B【答案】A判断正确的是(A) m 0 (B) n ::: 0 (C) mn :: 0 (D) m - n 0--------------------------- > m 0 1 n【答案】C1的结果是()6.(2011江苏苏州, 1,3 分)23 (—23A. — 4B. — 1C.— 1D.42【答案】B5.(2011四川成都,8,3分)已知实数 m 、n 在数轴上的对应点的位置如图所示,则下列、选择题1. (2011福建泉州,1 , 3分)如在实数0,I — 2 |中,最小的是2. (2011广东广州市, 1, 3分)四个数一1 —0.1,2,3中为无理数的是).A. — 5B.—0.1C.3. (2011山东滨州,3分) 在实数 71、 1、2、sin303,无理数的个数为A.1B.2C.3D.44.(2011福建泉州,3分) (—2)2的算术平方根是(7. (2011山东济宁,1 , 3分)计算一1—2的结果是A 1B . 1C . —3D . 3【答案】C8. (2011四川广安,2, 3分)下列运算正确的是()A ._(_x+1) =x+1B .厲—75 = “C. 羽_2=2—73 D ./ i X2 2 .2(a —b) =a —b【答案】C9. (2011重庆江津,1 ,4分)2—3的值等于()A.1B. —5C.5D. —12【答案】D210. (2011四川绵阳1,3)如计算:-1-2=A.-1B.1C.-3D.3【答案】C11. (2011山东滨州,10,3分)在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算83 9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则83 9=103 7+2=72.那么在计算63 7时,左、右手伸出的手指数应该分别为()A.1,2B.1,3C.4,2D.4,3【答案】A12. (2011湖北鄂州,10, 3分)计算-2^(-2 丫-(--)2 -1=()A. 2B.—2C. 6D. 10【答案】A13. (2011山东荷泽,6, 3分)定义一种运算☆,其规则为a^ b=— + 1,根据这个规则、a b计算2^3的值是A. - B6 15C . 5D . 6【答案】A14. (2011四川南充市,5, 3分) 下列计算不正确的是( )/、3 1 [1、1(C)3 =3(A) —— = _2(B ) ■- =2 21 3丿91 1【答案】A15. (2011浙江温州, 1, 4分)计算:(一1) +2的结果是() A . -1B. 1C. -3 D . 3【答案】B超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是(【答案】A【答案】C16. (2011浙江丽水, 4,3分)有四包真空小包装火腿,每包以标准克数(450克)为基数, A . +2B.C. +3D. +417.(2011台湾台北, 2) 计算(一3)3+ 52- ( — 2)2之值为何?A. 2B . D.— 6【答案】D18.(2011台湾台北,11)计算 4-:-(一1.6)— 7 ■- 2.5之值为何?4A .— 1.1B.— 1.8 C . — 3.2D . — 3.9【答案】C19. ( 2011台湾台北, 19)若a 、b 两数满足a 56 7 3 = 103, a“103= b ,则a b 之值为何?D .匹567【答案】C20. (2011四川乐山 1, 3分)小明家冰箱冷冻室的温度为一5C,调高 4C 后的温度为A . 4C.9C C . —1C D . —9C。
2011全国各省市中考数学试题分类汇编-—函数与一次函数(选择题及答案)一.选择题1.(2011台湾中考)1.坐标平面上,若点(3, b )在方程式923-=x y 的图形上,则b 值为何?( )(A)-1 (B) 2 (C) 3 (D) 92.(2011台湾中考)15.图(三)的坐标平面上有一正五边形ABCDE ,其中C 、D 两点坐标分别为(1,0)、(2,0) 。
若在没有滑动的情况下,将此正五边形沿着 x 轴向右滚动,则滚动过程中,下列何者会 经过点(75 , 0)?( )(A) A (B) B (C) C (D) D3.(2011台湾中考)16.已知数在线A 、B 两点坐标分别为-3、-6,若在数在线找一点C ,使得A 与C 的距离为4;找一点D ,使得B 与D 的距离为1,则下列何者不可能为C 与D 的距离?( ) (A) 0 (B) 2 (C) 4 (D) 64.(2011台湾中考)29.已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走多少公尺后,他与神仙百货的距离为340公尺?( )(A) 100 (B) 180 (C) 220 (D) 2605.(2011台北中考)9.图(三)的坐标平面上,有一条通过点(-3,-2)的直线L 。
若四点(-2 , a )、(0 , b )、(c , 0)、(d ,-1)在L 上,则下列数值的判断,何者正确?( )(A) a =3 (B) b >-2(C) c <-3 (D) d =26.(2011台北中考)17.如图(七),坐标平面上有两直线L 、M ,其方程式分别为y =9、y =-6。
若L 上有一点P ,M 上有一点Q ,PQ 与y 轴平行,且PQ 上有一点R ,PR :RQ =1:2,则R 点与x 轴的距离为何?( )(A) 1 (B) 4 (C) 5 (D) 107.(2011台北中考)21.坐标平面上有一个线对称图形,)25,3(-A 、)211,3(-B 两点在此图形上且互为对称点。
2011河北中考数学试题及答案2011年河北中考数学试题一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 83. 如果一个数的平方等于16,那么这个数是多少?A. ±4B. ±2C. 4D. 24. 一个圆的半径是5,求这个圆的面积。
A. 25πB. 50πC. 75πD. 100π5. 一个数列的前三项是1, 3, 6,求第四项。
A. 10B. 12C. 15D. 206. 一个长方体的长、宽、高分别是2, 3, 4,求其体积。
A. 24B. 26C. 28D. 327. 一个分数的分子是5,分母是8,这个分数化简后是多少?A. 5/8B. 1/2C. 5/4D. 1/18. 一个二次方程x^2 - 5x + 6 = 0的解是什么?A. x = 2, 3B. x = -2, -3C. x = 2, -3D. x = -2, 39. 一个函数f(x) = 2x + 3的反函数是什么?A. f^(-1)(x) = (x-3)/2B. f^(-1)(x) = (x+3)/2C. f^(-1)(x) = (x-2)/3D. f^(-1)(x) = (x+2)/310. 一个正弦函数y = sin(x)的图像,当x增加π时,图像如何变化?A. 向左平移π个单位B. 向右平移π个单位C. 向上平移π个单位D. 向下平移π个单位二、填空题(每题2分,共20分)11. 圆的周长公式是_________。
12. 一个数的绝对值是它到0的距离,例如|-5|=_______。
13. 一个多项式3x^2 - 5x + 2的首项系数是_______。
14. 一个三角形的内角和是_______度。
15. 一个数的对数函数log_a(x),当a=10时,称为_______。
2011中考数学一轮复习要点精练--综合题Ⅰ、综合问题精讲:代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数几何知识解题.Ⅱ、典型例题剖析【例1】(温州,12分)如图,已知四边形ABCD内接于⊙O,A是BDC的中点,AE⊥AC于A,与⊙O及CB的延长线分别交于点F、E,且BF AD=,EM切⊙O于M。
⑴△ADC∽△EBA;⑵ AC2=12BC·C E;⑶如果AB=2,EM=3,求cot∠CAD的值。
解:⑴∵四边形ABCD内接于⊙O,∴∠CDA=∠ABE,∵BF AD=,∴∠DCA=∠BAE,∴△CAD∽△AEB⑵过A作AH⊥BC于H(如图)∵A是BDC中点,∴HC=HB=12BC,∵∠CAE=900,∴AC2=CH·C E=12 BC·CE⑶∵A是BDC中点,AB=2,∴AC=AB=2,∵EM是⊙O的切线,∴EB·E C=EM2 ①∵AC2=12BC·C E,BC·C E=8 ②①+②得:EC(EB+BC)=17,∴EC2=17∵EC2=AC2+AE2,∴AE=17-22=13 ∵△CAD∽△ABE,∴∠CAD=∠AEC,∴cot∠CAD=cot∠AEC=AEAC=132点拨:此题的关键是树立转化思想,将未知的转化为已知的.此题表现的非常突出.如,将∠CAD转化为∠AEC就非常关键.【例2】(自贡)如图 2-5-2所示,已知直线y=2x+2分别与x 轴、y轴交于点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC,∠BAC=90○。
过C作CD⊥x轴,D为垂足.(1)求点 A、B的坐标和AD的长;(2)求过B、A、C三点的抛物线的解析式。
解:(1)在y=2x+2中分别令x=0,y=0.得 A(l,0),B(0,2).易得△ACD≌△BAO,所以 AD=OB=2.(2)因为A(1,0),B(0,2),且由(1),得C(3,l).设过过B、A、C三点的抛物线为2y ax bx c=++所以560172 69312a a b c c b a b c c ⎧=⎪++=⎧⎪⎪⎪==-⎨⎨⎪⎪++=⎩=⎪⎪⎩,解得 所以2517266y x x =-+ 点拨:此题的关键是证明△ACD ≌△BAO .【例3】(重庆,10分)如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似?(3) 当t 为何值时,△APQ 的面积为524个平方单位?解:(1)设直线AB 的解析式为y =kx +b由题意,得b=680k b ⎧⎨+=⎩????解得346k b ⎧=-⎪⎨⎪=⎩????????43x +??.??所以 6t =10210t -???? 解得 t =1130 秒????所以 10t =6210t ???? 解得 t =1350 秒?????? (??)过点Q 作QE 垂直AO 于点E .在Rt △AOB 中,Sin ∠BAO =AB BO=54??????在Rt △AEQ 中,QE =AQ·Si n ∠BAO =t??·54=????-58t 所以,S △APQ =21AP ·QE =21t · ??-58t??????=-254t +??t =524【例4】(南充,10分)如图2-5-7,矩形ABCD 中,AB =8,BC =6,对角线AC 上有一个动点P (不包括点A 和点C ).设AP =x ,四边形PBCD 的面积为y .(1)写出y 与x 的函数关系,并确定自变量x 的范围.(2)有人提出一个判断:“关于动点P ,⊿PBC 面积与⊿PAD 面积之和为常数”.请你说明此判断是否正确,并说明理由. 解:(1)过动点P 作PE ⊥BC 于点E .在Rt ⊿ABC 中,AC =10, PC =AC -AP =10-x .∵ PE ⊥BC ,AB ⊥BC ,∴⊿PEC ∽⊿ABC .故 ACPC AB PE =,即.548,10108x PE x PE -=-= ∴⊿PBC 面积=.5122421x BC PE -=⋅又⊿PCD 面积=⊿PBC 面积=.51224x - 即 y x 52448-=,x 的取值范围是0<x <10.(2)这个判断是正确的. 理由: 由(1)可得,⊿PAD 面积=.512x⊿PBC 面积与⊿PAD 面积之和=24.点拨:由矩形的两边长6,8.可得它的对角线是10,这样PC =10-x ,而面积y 是一个不规则的四边形,所以可以把它看成规则的两个三角形:△PBC 、△PCD .这样问题就非常容易解决了.Ⅲ、综合巩固练习(100分 90分钟)1、如图2-5-8所示,在直角坐标系中,△ABC各顶点坐标分别为A (0,3 ),B (-1,0)、C (0,1)中,若△DEF 各顶点坐标分别为D ( 3 ,0)、E (0,1)、F (0,-1),则下列判断正确的是( )A .△DEF 由△ABC 绕O 点顺时针旋转90○得到;B .△DEF 由△ABC 绕O 点逆时针旋转90○得到;C .△DEF 由△ABC 绕O 点顺时针旋转60○得到;D .△DEF 由△ABC 绕O 点顺时针旋转120○得到2.如图2-5-9,已知直线 y=2x +1与x 轴交于A 点,与y 轴交于B 点,直线y=2x —1与x 轴交于C 点,与y 轴交于D 点,试判断四边形ABCD 的形状.3.如图2-5-10所示,在矩形ABCD 中,BD=20,AD >AB ,设∠ABD=α,已知sin α是方程25z2-35z+ 12=0的一个实根.点E 、F 分别是BC 、DC 上的点,EC+CF=8,设BE=x ,△AEF 面积等于y.⑴ 求出y 与x 之间的函数关系式;⑵ 当E 、F 两点在什么位置时y 有最小值?并求出这个最小值.4.(10分)如图2-5-11所示,直线y=-43x+ 4与x 轴、y 轴分别交于点M 、N .(1)求M 、N 两点的坐标;(2)如果点P 在坐标轴上,以点P 为圆心,125为半径的圆与直线y=-43x+ 4相切,求点P 的坐标.5.(10分)如图2-5-12所示,已知等边三角形ABC中,AB=2,点P是AB边上的任意一点(点P可以与点A重合,但不与点B重合),过点P作PE⊥BC.垂足为E;过点E作EF⊥AC,垂足为F;过点F作FQ⊥AB,垂足为Q.设BP=x,AQ=y.⑴写出y与x之间的函数关系式;⑵当BP的长等于多少时,点P与点Q重合;⑶当线段 PE、FQ相交时,写出线段PE、EF、FQ所围成三角形的周长的取值范围(不必写出解题过程)6.(12分)如图2-5-13所示,已知A由两点坐标分另为(28,0)和(0,28),动点P从A点开始在线段AO上以每秒3个长度单位的速度向原点O运动,动直线 EF从 x轴开始以每秒1个长度单位的速度向上平行移动(即EF∥x轴)并且分别交y轴,线段AB交于E、F点.连接FP,设动点P与动直线EF同时出发,运动时间为t秒.⑴当t=1秒时,求梯形OPFE的面积,t为何值时,梯形OPFE的面积最大,最大面积是多少?⑵当梯形OPFE的面积等于△APF的面积时,求线段 PF的长.⑶设t的值分别取t1,t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2 ,试判断这两个三角形是否相似,请证明你的判断.7.(12分)如图2-5-14所示,在直角坐标系中,矩形ABCD的顶点,A的坐标为(1,0),对角线的交点P的坐标为(52,1)⑴写出B、C、D三点的坐标;⑵若在AB上有一点 E作,’入过 E点的直线‘将矩形ABCD的面积分为相等的两部分,求直线l的解析式;⑶若过C点的直线l将矩形ABCD的面积分为4:3两部分,并与y轴交于点M,求过点C、D、M三点的抛物线的解析式.8.(10分)已知矩形ABCD在平面直角坐标系中,顶点A、B、D的坐标分别为A(0,0),B(m,0),D(0,4)其中m≠0.⑴写出顶点C的坐标和矩形ABCD的中心P点的坐标(用含m的代数式表示)⑵若一次函数y=kx-1的图象l把矩形ABCD分成面积相等的两部分,求此一次函数的解析式(用含m的代数式表示)⑶在⑵的前提下,l又与半径为1的⊙M相切,且点 M(0,1),求此矩形ABCD的中心P点的坐标.9.(10分)如图2-5-15所示,等边三角形ABC的边长为6,点D、E分别在边AB,AC上,且AD=AE=2,若点F从点B开始以每秒二个单位长度的速度沿射线BC方向运动,设点F运动的时间为t秒,当t>0时,直线FD与过点A且平行于BC的直线相交于点G,GE的延长线与BC的延长线相交于点H,AB与GH相交于点O.⑴设△EGA的面积为S,写出S与 t的函数解析式;⑵当t为何值时,AB⊥GH;⑶请你证明△GFH的面积为定值.10. (10分)如图2-5-16,在矩形ABCD中,AB=10。
福建省2011年中考数学试题分类解析汇编专题4:图形的变换一、选择题1. (福建福州4分)在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是A、B、C、D、【答案】A。
【考点】简单几何体的三视图。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形。
球的主视图、左视图、俯视图都是圆形。
故选A。
2.(福建泉州3分)下面如图是一个圆柱体,则它的正视图是A、B、C、D、【答案】A。
【考点】简单几何体的三视图。
【分析】正视图是从物体的正面看得到的视图,从正面看到圆柱体为长方形,故选A。
3.(福建泉州3分)下列正多边形中,不能铺满地面的是A、正三角形B、正方形C、正六边形D、正七边形【答案】D。
【考点】平面镶嵌(密铺),多边形内角和定理。
【分析】由多边形内角和定理分别求出所给图形的内角,根据密铺的性质(内角的度数能被360°整除)进行判断即可:解:A、∵正三角形的内角是60°,6×60°=360°,∴正三角形能铺满地面,故本选项正确;B、∵正方形的内角是90°,4×90°=360°,∴正方形能铺满地面,故本选项正确;C、∵正六边形的内角是120°,3×120°=360°,∴正六形能铺满地面,故本选项正确;D、∵正七形的内角是29007,29007同任何一个正整数相乘都不等于360°,∴正七边形不能铺满地面,故本选项错误。
故选D。
4.(福建漳州3分)如图是由若干个小正方体堆成的几何体的主视图(正视图),这个几何体是【答案】C 。
【考点】由三视图判断几何体【分析】根据题意得:小正方体有两排组成,而A ,B ,D ,都有3排,故只有C 符合。
故选C 。
5.(福建三明4分)由5个大小相同的正方体组成的几何体如图所示,其主视图是【答案】A 。
相似形及应用一、选择题1. (2011贵州毕节,7,3分)两个相似多边形的面积比是16:9,其中较小多边形周长为36cm ,则较大多边形周长为( )A .48cmB .54cmC .56cmD .64cm 【答案】A2. (2011海南省,12,3分)如图3,在△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,则图中相似三角形共有 A .1对 B .2对 C .3对 D .4对【答案】C3. (2011广东深圳,7,3分)如图2, 小正方形的边长均为1, 则下列图中的三角形(阴影部分)与△ABC 相似的是( )【答案】B4. (2011山西,11,2分)如图,△ABC 中,AB =AC ,点D 、E 分别是边AB 、AC 的中点,点G 、F 在BC 边上,四边形DEFG 是正方形.若DE =2㎝,则AC 的长为( )A .33cm B. 4cm C. 23cm D. 25cm【答案】D5. (2011陕西,9,3分) 如图,在□ABCD 中,E 、F 分别是AD 、CD 边上的点,连接BE 、AF ,他们相交于点G ,延长BE 交CD 的延长线于点H ,则图中的相似三角形共有( ) A .2对 B .3对 C .4对 D .5对BG第11题B图3【答案】C6. (2011北京市,4,4分) 如图,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O ,若1AD =,3BC =,则AOCO的值为( )BCA .12B .13 C .14D .19【答案】B7. (2011贵州遵义,10,3分)如图,在直角三角形ABC 中(∠C =900),放 置边长分别3,4,x 的三个正方形,则x 的值为 A. 5 B. 6 C. 7D. 12【答案】C8. (2011广东肇庆,5,3分)如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC = 4,CE = 6,BD = 3,则BF =A . 7B . 7.5C . 8D . 8.5【答案】B9. (2011年铜仁地区,10,4分)已知:如图2,在△ABC 中,∠AED=∠B,则下列等式成立的是( ).a b cA B C DE F m nA.DB ADBC DE =B.AE AD BC BD =C.AB AE CB DE = D.AC AEAB AD =【答案】C10.(2011四川雅安8,3分)已知线段AB =10cm ,点C 是线段AB 的黄金分割点(AC >BC ),则AC 的长为( )A cm )1055(-B cm )5515(-C cm )555(-D cm )5210(- 【答案】 C11. (2011四川雅安9,3分)如图,D 、E 、F 分别为△ABC 三边的中点,则下列说法中不正确的为( )A △ADE ∽△ABCB AFC ABF S S △△= C ABC ADE S S △△41=D DF=EF 【答案】 D12. (2011福建漳州,10,3分)如图,小李打网球时,球恰好打过网,且落在离网4m 的位置上,则球拍击球的高度A 为( )A .0.6mB .1.2mC .1.3mD .1.4m【答案】D13. (2011贵州六盘水,9,3分)“标准对数视力表”对我们来说并不陌生,图3是视力表的一部分,其中最上面较大的“E ”与下面四个较小“E ”中的哪一个是位似图形( )图3A .左上B .左下C .右上D .右下 【答案】B 14. 15. 16. 17. 18.二、填空题1. (2011贵州毕节,17,5分)已知k acb bc a c b a =+=+=+,则k 的值是 。
2011年全国各地中考数学试卷试题分类汇编第3章 整式与因式分解一、选择题1. (2011江苏无锡,3,3分)分解因式2x 2+ 4x + 2的最终结果是( )A .2x (x + 2)B .2(x 2+ 2x + 1) C .2(x +1)2D .(2x + 2)2【答案】C **********2. (2011河北,3,2分)下列分解因式正确的是( )A .)(23a 1-a a a -+=+B .2a-4b+2=2(a-2b )C .()222-a 4-a = D .()221-a 1a 2-a =+【答案】D **********3. (2011浙江省,10,3分)如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”, 图A 3比图A 2多出4个“树枝”, 图A 4比图A 3多出8个“树枝”,……,照此规律,图A 6比图A 2多出“树枝”( )A.28B.56C.60D. 124【答案】C **********4. (2011广东广州市,7,3分)下面的计算正确的是( ). A .3x 2·4x 2=12x 2B .x 3·x 5=x 15C .x 4÷x =x 3D .(x 5)2=x 7【答案】C **********5. (2011江苏扬州,2,3分)下列计算正确的是( )A. 632a a a =∙ B. (a+b)(a-2b)=a 2-2b 2C. (ab 3)2=a 2b 6D. 5a —2a=3 【答案】C **********6. (2011山东日照,2,3分)下列等式一定成立的是( ) (A ) a 2+a 3=a 5(B )(a +b )2=a 2+b 2(C )(2ab 2)3=6a 3b 6(D )(x -a )(x -b )=x 2-(a +b )x +ab 【答案】D **********7. (2011山东泰安,2 ,3分)下列运算正确的是( )A .3a 3+4a 3=7a 6B .3a 2-4a 2=-a2C .3a 2·4a 3=12a3D .(3a 3)2÷4a 3=34a 2【答案】B **********8. (2011山东泰安,5 ,3分)下列等式不成立...的是( ) A.m 2-16=(m-4)(m+4) B.m 2+4m=m(m+4) C.m 2-8m+16=(m-4)2D.m 2+3m+9=(m+3)2【答案】D **********9. (2011山东威海,4,3分)下列运算正确的是( )A .326a a a ⋅= B .336()x x =C .5510x x x +=D .5233()()ab ab a b -÷-=-【答案】D **********10.(2011山东烟台,3,4分)下列计算正确的是( ) A.a 2+a 3=a 5B. a 6÷a 3=a 2C. 4x 2-3x 2=1 D.(-2x 2y )3=-8 x 6y 3【答案】D **********11. (2011四川南充市,1,3分)计算a+(-a)的结果是( )(A )2a (B )0 (C )-a 2(D )-2a【答案】B **********12. (2011浙江杭州,9,3)若2,2a b a b +=-≥且,则( )A .b a 有最小值12 B .b a 有最大值1 C .a b 有最大值2 D .a b 有最小值98- 【答案】C **********13. (2011 浙江湖州,2,3)计算23a a ,正确的结果是A .62aB .52aC .6aD .5a【答案】D **********14. (2011宁波市,2,3分)下列计算正确的是A . (a 2)3= a 6B .a 2+ a 2= a 4C .(3a )·(2a ) =6aD .3a -a =3【答案】A **********15. (2011宁波市,12,3分)把四张形状大小完全相同的小正方形卡片(如图○1)不重叠的放在一个底面为长方形(长为m cm ,宽为n cm )的盒子底部(如图○2)盒子底面未被卡片覆盖的部分用阴影表示,则图○2中两块阴影部分的周长和是 A . 4m cm B . 4n cm C . 2(m +n )cm D . 4(m -n )cm【答案】B **********16. (2011浙江台州,4,4分)计算32)(a 的结果是( )A. 23a B. 32a C. 5a D. 6a**********17. (2011浙江义乌,3,3分)下列计算正确的是( )A .246x x x +=B .235x y xy +=C .632x x x ÷= D .326()x x =【答案】D **********18. (2011四川重庆,2,4分)计算(a 3)2的结果是( )A .aB .a 5C .a 6D .a9【答案】C **********19. (2011浙江省嘉兴,4,4分)下列计算正确的是( ) (A )32x x x =⋅ (B )2x x x =+ (C )532)(x x = (D )236x x x =÷【答案】A **********20.(2011台湾台北,5)计算x 2(3x +8)除以x 3后,得商式和余式分别为何?A .商式为3,余式为8x 2B .商式为3,余式为8C .商式为3x +8,余式为8x 2D .商式为3x +8,余式为0【答案】B **********21. (2011台湾台北,7)化简41(-4x +8)-3(4-5x ),可得下列哪一个结果? A .-16x -10 B .-16x -4 C .56x -40 D .14x -10【答案】D **********22. (2011台湾台北,13)若a :b :c =2:3:7,且a -b +3=c -2b ,则c 值为何?A .7B .63C .221D .421 【答案】C **********24. (2011台湾全区,3)化简)23(4)32(5x x ---之后,可得下列哪一个结果?A .2x -27B .8x -15C .12x -15D .18x -27**********25. (2011台湾全区,8)若949)7(22+-=-bx x a x ,则b a +之值为何?A .18B .24C .39D . 45 【答案】D **********26. (2011台湾全区,10)若(a -1):7=4:5,则10a +8之值为何?A . 54B 66C . 74D . 80 【答案】C **********27. (2011台湾全区,22)计算多项式536223++-x x x 除以(x -2)2后,得余式为何?A . 1B . 3C . x -1D . 3x -3 【答案】D **********28. (2011江西,4,3分)下列运算正确的是( ). 第3题图 A.a +b =ab B.a 2·a 3=a 5C.a 2+2ab -b 2=(a -b )2D.3a -2a =1 【答案】B **********29. (2011湖南邵阳,2,3分)如果□×3ab =3a 2b ,则□内应填的代数式是( ) A.abB.3abC.aD.3a【答案】C **********30. (2011湖南益阳,4,4分)下列计算正确的是A.()222x y x y +=+ B .()2222x y x xy y -=-- C .()()22222x y x y x y +-=- D .()2222x y x xy y -+=-+【答案】D **********31. (2011广东株洲,2,3分)计算x 2·4x 3的结果是( ) A .4x 3B .4x 4C .4x 5D .4x 6【答案】C32. (2011江苏连云港,2,3分)a 2·a 3( )A.a 5B. a 6C.a 8D. a 9【答案】A **********33. (2011江苏连云港,3,3分)计算(x +2)2的结果为x 2+□x +4,则“□”中的数为( )A .-2B .2C .-4D .4【答案】D **********34. (2011江苏苏州,4,3分)若m ·23=26,则m= A.2 B.4 C.6 D.8 【答案】D **********35. (2011江苏宿迁,4,3分)计算(-a 3)2的结果是( )A .-a 5B .a 5C .a 6D .-a 6【答案】C **********36. (2011江苏泰州,2,3分)计算2a 2·a 3的结果是 A .2a 6B .2a 5C .4a 5D .4a 6【答案】B **********37. (2011山东济宁,2,3分)下列等式成立的是A .a 2+a 2=a 5B .a 2-a 2=a C .a 2⋅a 2=a 6D .(a 2)3=a6【答案】D **********38. (2011山东聊城,5,3分)下列运算不正确的是( ) A .5552a a a += B .()32622aa -=-C .2122a a a -⋅= D .()322221a a a a -÷=-【答案】B39. (2011山东聊城,10,3分)如图,用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数是( )A .5nB .5n -1C .6n -1D .2n 2+1 【答案】C **********40. (2011四川成都,5,3分)下列计算正确的是 D (A )2x x x =+ (B)x x x 2=⋅(C)532)(x x =(D)23x x x =÷ 【答案】D **********41. (2011四川宜宾,3,3分)下列运算正确的是( )A .3a-2a=1B .632a a a =⋅C .2222)(b ab a b a +-=-D .222)(b a b a +=+ 【答案】C **********42. (2011江西南昌,4,3分)下列运算正确的是( ). A.a +b =ab B.a 2·a 3=a 5C.a 2+2ab -b 2=(a -b )2D.3a -2a =1 【答案】B **********43. (2011湖南怀化,3,3分)下列运算正确的是 A.a·a 3=a3B.(ab)3=ab3C.a 3+a 3=a 6 D.(a 3)2=a6【答案】D **********44. (2011江苏南京,2,2分)下列运算正确的是A .a 2+a 3=a 5B .a 2•a 3=a 6C .a 3÷a 2=aD .(a 2)3=a 8【答案】C **********45. (2011山东临沂,2,3分)下列运算中正确的是( )A .(-ab )2=2a 2b 2B .(a +1)2=a 2+1 C .a 6÷a 2=a 3D .2a 3+a 3=3a 3【答案】D **********46. (2011四川绵阳2,3)下列运算正确的是 A.a+a²=a³ B. 2a+3b= 5ab C .(a³)2= a 9D. a 3÷a 2= a 【答案】D **********47. (2011安徽芜湖,9,4分)如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为()1a +cm 的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ).A .22(25)cm a a + B .2(315)cm a + C .2(69)cm a + D .2(615)cm a +【答案】D **********48. (2011湖南衡阳,5,3分)下列计算,正确的是( )A .()32628x x = B .623a a a ÷= C .222326a a a ⨯= D .01303⎛⎫⨯= ⎪⎝⎭【答案】A **********50. (2011湖北襄阳,2,3分)下列运算正确的是A.a a a =-2B.632)(a a -=-C.236x x x =÷D.222)(y x y x +=+【答案】B**********51. (2011湖北襄阳,3,3分)若x ,y 为实数,且011=-++y x ,则2011)(yx 的值是A.0B.1C.-1D.-2011【答案】C **********52.(2011湖南永州,9,3分)下列运算正确是( )A .1)1(--=--a aB .222)(b a b a -=-C .a a =2D .532a a a =⋅ 【答案】D **********53. (2011江苏盐城,2,3分)下列运算正确的是 A .x 2+ x 3= x 5B .x 4·x 2 = x 6C .x 6÷x 2 = x3D .( x 2 )3 = x 8【答案】B54. (2011江苏盐城,4,3分)已知a - b =1,则代数式2a -2b -3的值是 A .-1 B .1 C .-5 D .5【答案】A **********55. (2011山东东营,2,3分)下列运算正确的是( )A 3362x x x +=B .824x x x ÷= C .m n mnx x x= D .5420()x x -=【答案】D **********56. (20011江苏镇江,2,2分)下列计算正确的是( )A.236a a a ∙= B. 33y y y ÷= C.3m+3n=6mn D.()236x x =答案【D 】 **********57. (2011内蒙古乌兰察布,2,3分)下列计算正确的是( )A .()236aa = B.2232a a a =+ C. 623a a a =∙ D. 339a a a =÷【答案】A **********58. (2011重庆市潼南,2,4分) 计算3a ⋅2a 的结果是A .6aB .6a 2C. 5aD. 5a 2【答案】B **********59.(2011广东湛江7,3分)下列计算正确的是A 235a a a =B 2a a += C 235()a a = D 22(1)1a a a +=+ 【答案】A **********60. (2011河北,4,2分)下列运算中,正确的是( )A .2x-x=1B .54x x x =+C .()33x 6-x 2-= D .22x y y x =÷【答案】D **********61. (2011山东枣庄,9,3分)如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .m +3B .m +6C .2m +3D .2m +6 【答案】C **********62. (2011湖北荆州,3,3分)将代数式142-+x x 化成q p x ++2)(的形式为A .3)2(2+-x B .4)2(2-+x C .5)2(2-+x D .4)2(2++x 【答案】C **********63. (2011湖北宜昌,7,3分) 下列计算正确的是( ).A.3a -a = 3B. 2a .a 3=a 6C.(3a 3)2=2a 6D. 2a ÷a= 2**********64. (2011浙江金华,3,3分)下列各式能用完全平方式进行分解因式的是( ) A .x 2+1 B.x 2+2x -1 C.x 2+x +1 D.x 2+4x +4 【答案】D **********65. (2011山东济宁,4,3分)把代数式 322363x x y xy -+分解因式,结果正确的是( ) A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -【答案】D **********66. (2011浙江丽水,3,3分)下列各式能用完全平方式进行分解因式的是( ) A .x 2 +1 B.x 2+2x -1C.x 2+x +1D.x 2+4x +4【答案】D67. (2011台湾全区,5)下列四个多项式,哪一个是3522-+x x 的因式?A .2x -1B .2x -3C .x -1D .x -3 【答案】A **********68. (2011浙江省舟山,4,3分)下列计算正确的是( ) (A )32x x x =⋅ (B )2x x x =+ (C )532)(x x = (D )236x x x =÷【答案】A **********69. (2011安徽芜湖,9,4分)如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为()1a +cm 的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ).A .22(25)cm a a + B .2(315)cm a + C .2(69)cm a + D .2(615)cm a +【答案】D二、填空题1. (2011浙江金华,11,4分)“x 与y 的差”用代数式可以表示为.【答案】x –y2. (2011广东东莞,8,4分)按下面程序计算:输入x =3,则输出的答案是__ _ .【答案】263. (2011山东济宁,12,3分)若代数式26x x b -+可化为2()1x a --,则b a -的值是 . 【答案】54. (2011浙江杭州,12,4)当7x =-时,代数式(2x +5)(x +1)-(x -3)(x +1)的值为 . 【答案】-65. (2011浙江省,14,3分)某计算程序编辑如图所示,当输入x= 时,输出的y=3.【答案】12或32-6. (2011浙江省,15,3分)定义新运算“⊕”如下:当a ≥b 时,a ⊕b=ab +b ,当a <b 时,a ⊕b=ab-a ;若(2x -1)⊕(x +2)=0,则x = .【答案】-1或21 7. (2011浙江温州,15,5分)汛期来临前,滨海区决定实施“海堤加固”工程,某工程队承包了该项目,计划每天 加固60米.在施工前,得到气象部门的预报,近期有“台风”袭击滨海区,于是工程队改变计划,每天加固的海堤长度是原计划的1.5倍,这样赶在“台风”来临前完成加固任务.设滨海区要加固的海堤长为a 米,则完成整个任务的实际时间比原计划时间少用了 天(用含a 的代数式表示). 【答案】180a8. (2011浙江丽水,11,4分)“x 与y 的差”用代数式可以表示为.【答案】x –y9. (2011广东株洲,10,3分)当x=10,y=9时,代数式x 2-y 2的值是 . 【答案】1910.(2011江苏泰州,12,3分)多项式 与m 2+m -2的和是m 2-2m . 【答案】-3m+211. (2011广东广州市,16,3分)定义新运算“⊗”,规定:a ⊗b =13a -4b ,则12⊗ (-1)= . 【答案】812. (2011江苏淮安,9,3分)计算: a 4·a 2= . 【答案】a 613. (2011上海,7,4分)计算:23a a ⋅=__________. 【答案】5a14. (2011四川乐山12,3分)体育委员带了500元钱去买体育用品,已知一个足球a 元,一个篮球b 元。
中考数学试题分类汇编
中考数学试题可以分为以下几个分类:
1. 四则运算:包括整数的加减乘除、分数的加减乘除、小数的加减乘除等。
2. 代数与方程:包括代数式的化简、方程的解法、一次方程和二次方程的求解等。
3. 几何图形:包括平面图形的性质、计算面积和周长、相似三角形、圆的性质等。
4. 概率与统计:包括概率的计算、统计图表的解读、抽样调查等。
5. 函数与图像:包括函数的定义、函数图像的绘制、函数的性质等。
6. 空间与立体几何:包括体积的计算、棱柱、棱锥、球等立体图形的性质。
7. 数据分析与运算:包括平均数、中位数、范围、百分比、比例等。
这些是常见的中考数学试题分类,不同地区和学校可能会有略微的差异。
在备考过程中,建议系统地学习和复习各个分类的试题,以全面提高自己的数学水平。
2011中考数学知识点梳理+试题分类汇编(24)相似形按住ctrl 键 点击查看更多中考数学资源知识点:一、比例线段1、比:选用同一长度单位量得两条线段。
a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :n (或nm b a =) 2、比的前项,比的后项:两条线段的比a :b 中。
a 叫做比的前项,b 叫做比的后项。
说明:求两条线段的比时,对这两条线段要用同一单位长度。
3、比例:两个比相等的式子叫做比例,如dc b a = 4、比例外项:在比例d cb a =(或a :b =c :d )中a 、d 叫做比例外项。
5、比例内项:在比例d cb a =(或a :b =c :d )中b 、c 叫做比例内项。
6、第四比例项:在比例dcb a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。
7、比例中项:如果比例中两个比例内项相等,即比例为abb a =(或a:b=b:c 时,我们把b 叫做a 和d 的比例中项。
8、比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么,这四条线段叫做成比例线段,简称比例线段。
9、比例的基本性质:如果a :b =c :d 那么ad =bc 逆命题也成立,即如果ad =bc ,那么a :b =c :d10、比例的基本性质推论:如果a :b=b :d 那么b 2=ad ,逆定理是如果b 2=ad 那么a :b=b :c 。
说明:两个论是比积相等的式子叫做等积式。
比例的基本性质及推例式与等积式互化的理论依据。
11、合比性质:如果d c b a =,那么d d c b b a +=+ 12.等比性质:如果n m d c b a === ,(0≠+++m d b ),那么ban d b m c a =++++++ 说明:应用等比性质解题时常采用设已知条件为k ,这种方法思路单一,方法简单不易出错。
13、黄金分割把一条线段分成两条线段,使较长的线段是原线段与较小的线段的比例中项,叫做把这条线段黄金分割。
说明:把一条线段黄金分割的点,叫做这条线段的黄金分割点,在线段AB 上截取这条线段的215-倍得到点C ,则点C 就是AB 的黄金分割点。
二、平行线分线段成比例1、平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等。
格式:如果直线L1∥L2∥L3,AB=BC,那么:A1B1=B1C1,如图4-l说明:由此定理可知推论1和推论2推论1:经过梯形一腰的中点与底平行的直线必平分另一腰。
格式:如果梯形ABCD,AD∥BC,AE=EB,EF∥AD,那么DF=FC推论2:经过三角形一边的中点与另一边平行的直线必平分第三边。
格式,如果△ABC中,D是AB的中点,DE∥BC,那么AE=EC,如图4—32、平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。
说明:平行线等分线段定理是平行线分线段成比问定理的特殊情况。
3.平行线分线段成比例定理的推论:平行于三角形一边的直线截其它两边,所得的对应线段成比例。
说明1:平行线分线段成比例定理可用形象的语言来表达。
如图4—4说明2:图4-4的三种图形中这些成比例线段的位置关系依然存在。
4、三角形一边的平行线的判定定理。
如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
5、三角形一边的平行线的判定定理:平行于三角形的一边,并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例。
6、线段的内分点:在一条线段上的一个点,将线段分成两条线段,这个点叫做这条线段的内分点。
7、线段的外分点:在一条线段的延长线上的点,有时也叫做这条线段的外分点。
说明:外分点分线段所得的两条线段,也就是这个点分别和线段的两个端点确定的线段。
三、相似三角形1、相似三角形:两个对应角相等,对应边成比例的三角形叫做相似三角形。
说明:证两个三角形相似时和证两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样便于找出相似三角形的对应角和对应边。
2、相似比:相似三角形对应边的比k,叫做相似比(或叫做相似系数)。
3、相似三角形的基本定理:平分于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
说明:这个定理反映了相似三角形的存在性,所以有的书把它叫做相似三角形的存在定理,它是证明三角形相似的判定定理的理论基础。
4、三角形相似的判定定理:(1)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么就两个三角形相似。
可简单说成:两角对应相等,两三角形相似。
(2)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似,可简单说成:两边对应成比例且夹角相等,两三角形相似。
(3)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简单说成:三边对应成比例,两三角形相似。
(4)直角三角形相似的判定定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
说明:以上四个判定定理不难证明,以下判定三角形相似的命题是正确的,在解题时,也可以用它们来判定两个三角形的相似。
第一:顶角(或底角)相等的两个等腰三角形相似。
第二:腰和底对应成比例的两个等腰三角形相似。
第三:有一个锐角相等的两个直角三角形相似。
第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
第五:如果一个三角形的两边和其中一边上的中线与另一个三角形的两边和其中一边上的中线对应成比例,那么这两个三角形.相似。
5、相似三角形的性质:(1)相似三角形性质1:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。
(2)相似三角形性质2:相似三角形周长的比等于相似比。
说明:以上两个性质简单记为:相似三角形对应线段的比等于相似比。
(3)相似三角形面积的比等于相似比的平方。
说明:两个三角形相似,根据定义可知它们具有对应角相等、对应边成比例这个性质。
6、介绍有特点的两个三角形(1)共边三角形指有一条公共边的两个三角形叫做共边三角形。
(2)共角三角形有一个角相等或互补的两个三角形叫做共角三角形,如图4-6(3)公边共角有一个公共角,而且还有一条公共边的两个三角形叫做公边共角三角形。
说明:具有公边共角的两个三角形相似,则公边的平方等于叠在一条直线上的两边的乘积:如图4—7若△ACD ∽△ABC ,则AC 2=AD ·AB 例题:例1、已知:c b b a c b b a -+==:.45,32求的值. 分析:已知等比条件时常有以下几种求值方法:(1)设比值为k;(2)比例的基本性质;(3)方程的思想,用其中一个字母表示其他字母.解:由4532c b b a ==及,得a:b=2:3,b:c=5:4,即a:b:c=10:15:12.设a=10k,b=15k,c=12k, 则(a+b):(b -c)=25:3.例2 已知:如图5-126(a),在梯形ABCD 中,AD ∥BC ,对角线交于O 点,过O 作EF ∥BC ,分别交AB ,DC 于E ,F.求证:(1)OE=OF;(2)EF BCAD 211=+;(3)若MN 为梯形中位线,求证AF ∥MC.分析:(1)利用比例证明两线段相等的方法.①若d c d a =,a=c(或b=d 或a=b),则b=d(或a=c 或c=d); ②若a b da =,则a=b(只适用于线段,对实数不成立); ③若d c d a =,''''d c d a =,a=a ′,b=b ′,c=c ′,则d=d ′. (2)利用平行线证明比例式及换中间比的方法.(3)证明EF BCAD 211=+时,可将其转化为“c b a 111=+”类型后: ①化为1=+b c a c 直接求出各比值,或可用中间比求出各比值再相加,证明比值的和为1;②直接通分或移项转化为证明四条线段成比例.(4)可用分析法证明第(3)题,并延长两腰将梯形问题转化为三角形问题. 延长BA ,CD 交于S ,AF ∥MC∴ AF ∥MC 成立.(5)用运动的观点将问题进行推广. 若直线EF 平行移动后不过点O ,分别交AB ,BD ,AC ,CD 于E ,O1,O2,F ,如图5-126(b),O1F 与O2F 是否相等?为什么?(6)其它常用的推广问题的方法有:类比、从特殊到一般等例3 已知:如图5-127,在ΔABC 中,AB=AC ,D 为BC 中点,DE ⊥AC 于E ,F 为DE 中点,BE 交AD 于N ,AF 交BE 于M.求证:AF ⊥BE.分析:(1)分解基本图形探求解题思路.(2)总结利用相似三角形的性质证明两角相等,进一步证明两直线位置关系(平行、垂直等)的方法,利用ΔADE ∽ΔDCE 得到CF DEDC AD = 结合中点定义得到CE DFBCAD =,结合∠3=∠C,得到ΔBEC ∽ΔAFD ,因此∠1=∠2.进一步可得到AF ⊥BE.(3)总结证明四条线段成比例的常用方法:①比例的定义;②平行线分线段成比例定理;③ 三角形相似的预备定理;④直接利用相似三角形的性质;⑤利用中间比等量代换;⑥利用面 积关系.例4 已知:如图5-128,Rt ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,DE ⊥AC 于E ,DF ⊥BC 于F.求证:(1)CD3=AAE ·BF ·AB ;(2)BC2:AC2=CE:EA;(3)BC3:AC3=BF:AE. 分析:掌握基本图形“Rt ΔABC ,∠C=90°,CD ⊥AB 于D ”中的常用结论.①勾股定理:AC 2+BC 2=AB 2. ②面积公式:AC ·BC=AB ·CD.③三个比例中项:AC 2=AD ·AB,BC 2=BD ·BA,CD 2=DA ·DB.⑤BD ADBCAC =22证明:第(1)题: ∵ CD 2=AD ·BD,∴ CD 4=AD 2·BD 2=(AE ·AC)·(BF ·BC)=(AE ·BF)(AC ·BC) =(AE ·BF)·(AB ·CD). 第(2)题:∵AD BD AB AD BA BD AC BC =∙∙=22,利用ΔBDF ∽ΔDAE ,证得AE CEEA DF AD BD ==,命题得证. 第(3)题:∵AD BDAB AD AB BD ACBC =∙∙=22, ∴AC AE BC BF AD BD ACBC ∙∙==2244,∴AE BF AC BC =33(2010哈尔滨)1.已知:在△ABC 中AB =AC ,点D 为BC 边的中点,点F 是AB 边上一点,点E 在线段DF 的延长线上,∠BAE =∠BDF ,点M 在线段DF 上,∠ABE =∠DBM . (1)如图1,当∠ABC =45°时,求证:AE =2MD ;(2)如图2,当∠ABC =60°时,则线段AE 、MD 之间的数量关系为: 。