高二数学平均变化率2
- 格式:ppt
- 大小:293.00 KB
- 文档页数:17
平均变化率一.教学内容分析:内容解析:本节课是北师大版高中数学(选修2-2)第二章变化率及导数第一节变化快慢及变化率。
本节内容通过分析研究记忆问题、温度变化问题,总结归纳出一般函数的平均变化率概念,在此基础上,要求学生掌握函数平均变化率解法的一般步骤。
平均变化率是个核心概念,它在整个高中数学中占有及其重要的地位,是研究瞬时变化率及其导数概念的基础。
在这个过程中,注意特殊到一般、数形结合等数学思想方法的渗透。
学生认知困难有两个:1.学生首次研究非线性的量的变化过程,需要“局部”以直代曲的辩证思维2.从粗糙的,生活的语言上升到定量的用符号的数学语言表达较难。
二.目标和目标解析新课标对“导数及其应用”内容的处理有了较大的变化,它不介绍极限的形式化定义及相关知识,而是按照:平均变化率—瞬时变化率—导数的概念—导数的几何意义这样的顺序来安排,用“逼近”的方法定义导数,这种概念建立的方式形象、直观、生动又容易理解,突出了导数概念的本质。
平均变化率是本章的一个重要的基本概念,本节课是《变化率及导数》的起始课,对导数概念的形成起着奠基作用。
目标:理解平均变化率的概念及内涵,掌握求平均变化率的一般步骤。
目标解析:1.经历从生活中的变化率问题抽象概括出函数平均变化率概念的过程,体会从特殊到一般的数学思想,体现了数学知识来源于生活,又服务于生活。
2.通过函数平均变化率几何意义的教学,让学生体会数形结合的思想。
3.通过例题的解析,让学生进一步理解函数平均变化率的概念,了解平均变化率的几何意义,会计算函数在某个区间上的平均变化率;重点平均变化率及应用难点对平均变化率的抽象概括三.教学过程设计一.新课讲授(一)问题提出一、创设情境,课题引入我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?我校举行学生运动会,已知学生甲跑了100米用时13秒,学生乙跑了100米用了14秒,请问那个学生跑的更快?若学生乙跑了200米用了25秒,那个学生跑的更快?引导学生借助寻找共同量“平均速度”比较大小量化:100200,1325,引出st并表示解释含义设计意图:使学生了解生活中的变化率问题,直观感性认识变化率问题 为归纳函数平均变化率提供更多的实际背景。
1.1.1 函数的平均变化率明目标、知重点 1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的一些实际问题.1.函数的平均变化率已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx =x 1-x 0,Δy =y 1-y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0),则当Δx ≠0时,商f (x 0+Δx )-f (x 0)Δx =ΔyΔx 叫做函数y =f (x )在x 0到x 0+Δx (或[x 0+Δx ,x 0])之间的平均变化率. 2.函数y =f (x )的平均变化率的几何意义Δy Δx =f (x 2)-f (x 1)x 2-x 1表示函数y =f (x )图象上过两点(x 1,f (x 1)),(x 2,f (x 2))的割线的斜率.某市2013年5月30日最高气温是33.4℃,而此前的两天5月29日和5月28日最高气温分别是24.4℃和18.6℃,短短两天时间,气温“陡增”14.8℃,闷热中的人们无不感叹:“天气热得太快了!”但是,如果我们将该市2013年4月28日最高气温3.5℃和5月28日最高气温18.6℃进行比较,可以发现二者温差为15.1℃,甚至超过了14.8℃,而人们却不会发出上述感慨,这是什么原因呢?显然原因是前者变化得“太快”,而后者变化得“缓慢”,那么在数学中怎样来刻画变量变化得快与慢呢? 探究点一 函数的平均变化率思考1 如何用数学反映曲线的“陡峭”程度?答 如图,表示A 、B 之间的曲线和B 、C 之间的曲线的陡峭程度,可以近似地用直线的斜率来量化.如用比值y C -y Bx C -x B 近似量化B 、C 这一段曲线的陡峭程度,并称该比值是曲线在[x B ,x C ]上的平均变化率.思考2 什么是平均变化率,平均变化率有何作用?答 如果问题中的函数关系用y =f (x )表示,那么问题中的变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率,平均变化率可以描述一个函数在某个范围内变化的快慢.思考3 平均变化率有什么几何意义?答 设A (x 1,f (x 1)),B (x 2,f (x 2))是曲线y =f (x )上任意不同的两点,函数y =f (x )的平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1=f (x 1+Δx )-f (x 1)Δx 为割线AB 的斜率.x 1,x 2是定义域内不同的两点,因此Δx ≠0,但Δx 可正也可负;Δy =f (x 2)-f (x 1)是相应Δx =x 2-x 1的改变量,Δy 的值可正可负,也可为零.因此,平均变化率可正可负,也可为零. 例1 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率.解 从出生到第3个月,婴儿体重平均变化率为 6.5-3.53-0=1(千克/月).从第6个月到第12个月,婴儿体重平均变化率为 11-8.612-6=2.46=0.4(千克/月). 反思与感悟 求平均变化率的主要步骤: (1)先计算函数值的改变量Δy =f (x 2)-f (x 1). (2)再计算自变量的改变量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.跟踪训练1 如图是函数y =f (x )的图象,则: (1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 答案 (1)12 (2)34解析 (1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎨⎧x +32,-1≤x ≤1x +1,1<x ≤3.所以函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.探究点二 求函数的平均变化率例2 已知函数f (x )=x 2,分别计算f (x )在下列区间上的平均变化率: (1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001]. 解 (1)函数f (x )在[1,3]上的平均变化率为 f (3)-f (1)3-1=32-122=4;(2)函数f (x )在[1,2]上的平均变化率为 f (2)-f (1)2-1=22-121=3;(3)函数f (x )在[1,1.1]上的平均变化率为f (1.1)-f (1)1.1-1=1.12-120.1=2.1;(4)函数f (x )在[1,1.001]上的平均变化率为f (1.001)-f (1)1.001-1=1.0012-120.001=2.001.反思与感悟 函数的平均变化率可以表现出函数的变化趋势,自变量的改变量Δx 取值越小,越能准确体现函数的变化情况.跟踪训练2 求函数y =x 2在x =1,2,3附近的平均变化率,判断哪一点附近平均变化率最大? 解 在x =1附近的平均变化率为 k 1=f (1+Δx )-f (1)Δx =(1+Δx )2-1Δx =2+Δx ;在x =2附近的平均变化率为k 2=f (2+Δx )-f (2)Δx =(2+Δx )2-22Δx =4+Δx ;在x =3附近的平均变化率为k 3=f (3+Δx )-f (3)Δx =(3+Δx )2-32Δx =6+Δx ;对任意Δx 有,k 1<k 2<k 3,∴在x =3附近的平均变化率最大.思考 一次函数y =kx +b (k ≠0)在区间[m ,n ]上的平均变化率有什么特点?答 根据函数平均变化率的几何意义,一次函数图象上任意两点连线的斜率是定值k ,即一次函数的平均变化率是定值. 探究点三 平均变化率的应用例3 甲、乙两人走过的路程s 1(t ),s 2(t )与时间t 的关系如图,试比较两人的平均速度哪个大?解 由图象可知s 1(t 0)=s 2(t 0),s 1(0)>s 2(0), 则s 1(t 0)-s 1(0)t 0<s 2(t 0)-s 2(0)t 0,所以在从0到t 0这段时间内乙的平均速度大.反思与感悟 平均变化率的绝对值反映函数在给定区间上变化的快慢,平均变化率的绝对值越大,函数在区间上的变化越快;平均变化率的绝对值越小,函数在区间上的变化越慢.跟踪训练3 甲用5年时间挣到10万元,乙用5个月时间挣到2万元,如何比较和评价甲、乙两人的经营成果? 解 甲赚钱的平均速度为105×12=1060=16(万元/月),乙赚钱的平均速度为25(万元/月).因为乙平均每月赚的钱数大于甲平均每月赚的钱数, 所以乙的经营成果比甲的好.1.如果质点M 按规律s =3+t 2运动,则在一小段时间[2,2.1]中相应的平均速度是( ) A .4 B .4.1 C .0.41 D .3 答案 B解析 v =(3+2.12)-(3+22)0.1=4.1.2.一物体的运动方程是s =3+2t ,则在[2,2.1]这段时间内的平均速度为________. 答案 23.已知函数h (x )=-4.9x 2+6.5x +10.(1)计算从x =1到x =1+Δx 的平均变化率,其中Δx 的值为①2;②1;③0.1;④0.01. (2)根据(1)中的计算,当|Δx |越来越小时,函数h (x )在区间[1,1+Δx ]上的平均变化率有怎样的变化趋势?解 (1)∵Δy =h (1+Δx )-h (1) =-4.9(Δx )2-3.3Δx , ∴ΔyΔx=-4.9Δx -3.3. ①当Δx =2时,ΔyΔx =-4.9Δx -3.3=-13.1;②当Δx =1时,ΔyΔx =-4.9Δx -3.3=-8.2;③当Δx =0.1时,ΔyΔx =-4.9Δx -3.3=-3.79;④当Δx =0.01时,ΔyΔx=-4.9Δx -3.3=-3.349.(2)当|Δx |越来越小时,函数f (x )在区间[1,1+Δx ]上的平均变化率逐渐变大,并接近于-3.3.1.函数的平均变化率可以表示函数值在某个范围内变化的快慢;平均变化率的几何意义是曲线割线的斜率,在实际问题中表示事物变化的快慢. 2.求函数f (x )的平均变化率的主要步骤: (1)先计算函数值的改变量Δy =f (x 2)-f (x 1); (2)再计算自变量的改变量Δx =x 2-x 1; (3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.。
1.1.1 平均变化率2.会求平均变化率.平均变化率一般地,函数f (x )在区间[x 1,x 2]上的平均变化率为__________. 预习交流1在平均变化率的定义中,自变量的改变量Δx ______0. 预习交流2已知函数y =x 2+1的图象上一点(1,2)及邻近一点(1+Δx,2+Δy ),则ΔyΔx=__________.预习交流3函数f (x )在区间(x 1,x 2)上的平均变化率可以等于0吗?若平均变化率等于0,是否说明f (x )在(x 1,x 2)上没有变化或一定为常数?答案: f (x 2)-f (x 1)x 2-x 1预习交流1:≠预习交流2:提示:Δy =f (1+Δx )-f (1)=(1+Δx )2+1-(12+1)=2Δx +(Δx )2, ∴Δy Δx =2Δx +(Δx )2Δx =2+Δx . 预习交流3:提示:函数f (x )在区间(x 1,x 2)上的平均变化率可以等于0,这时f (x 1)=f (x 2);平均变化率等于0,不能说f (x )在区间(x 1,x 2)上没有变化,也不能说明f (x )一定为常数,例如f (x )=x 2-1在区间(-2,2)上.一、求函数在某区间内的平均变化率某物体做自由落体运动,其位移s 与时间t 的关系为s (t )=12gt 2(单位:m),计算t 从3 s到3.1 s,3.01 s,3.001 s 各时间段内s (t )的平均变化率.思路分析:求各时间段内s 的平均变化率,即求相应的平均速度,就是求s (t 2)-s (t 1)t 2-t 1,即ΔsΔt,为此需求出Δs ,Δt .1.若质点的运动方程为s =-t 2,则该质点在t =1到t =3时的平均速度为________.2.求函数f (x )=1x +2在区间(-1,0),(1,3),(4,4+Δx )上的平均变化率.求函数y =f (x )在区间[x 1,x 2]上的平均变化率的步骤:(1)求自变量的改变量Δx =x 2-x 1; (2)求函数值的改变量Δy =f (x 2)-f (x 1);(3)求平均变化率Δy Δx =f (x 1+Δx )-f (x 1)Δx =f (x 2)-f (x 1)Δx.二、求函数在某点附近的平均变化率求函数y =5x 2+6在区间[2,2+Δx ]上的平均变化率. 思路分析:∵函数f (x )=y =5x 2+6, ∴f (2)=5×4+6=26.当x 由2变化到2+Δx 时,f (2+Δx )=5(2+Δx )2+6,则Δy =f (2+Δx )-f (2).1.已知函数y =f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx ,f (1+Δx )),则ΔyΔx =__________.2.当x 0=2,Δx =14时,求y =1x在[x 0,x 0+Δx ]上的平均变化率.Δy =f (x 0+Δx )-f (x 0)是函数的自变量由x 0改变到x 0+Δx 时的变化量,而平均变化率就是ΔyΔx.1.函数f (x )=x 3在区间(-1,3)上的平均变化率为__________.2.已知某质点的运动规律为s (t )=5t 2(s 的单位为m ,t 的单位为s),则在1 s 到3 s 这段时间内,该质点的平均速度为__________.3.一质点的运动方程为s =2t 2,则此质点在时间[1,1+Δt ]内的平均速度为__________. 4.函数y =2x 2+5在区间[2,2+Δx ]内的平均变化率为__________.5.圆的半径r 从0.1变化到0.3时,圆的面积S 的平均变化率为__________.答案:活动与探究1:解:设t 在[3,3.1]上的平均变化率为v 1,则Δt 1=3.1-3=0.1(s),Δs 1=s (3.1)-s (3)=12g ×3.12-12g ×32=0.305g (m),∴Δs 1Δt 1=0.305g 0.1=3.05g (m/s). 同理Δs 2Δt 2=0.030 05g 0.01=3.005g (m/s),Δs 3Δt 3=0.003 000 5g 0.001=3.000 5g (m/s). 迁移与应用:1.-4 解析:平均速度为Δs Δt =-32-(-1)23-1=-4.2.解:f (x )=1x +2在区间(-1,0)上的平均变化率为Δy Δx =f (0)-f (-1)0-(-1)=12-11=-12; f (x )=1x +2在区间(1,3)上的平均变化率为Δy Δx =f (3)-f (1)3-1=15-132=-115; f (x )=1x +2在区间(4,4+Δx )上的平均变化率为Δy Δx =f (4+Δx )-f (4)(4+Δx )-4=16+Δx -16Δx =-16(6+Δx ). 活动与探究2:解:∵f (x )=y =5x 2+6,∴Δy =f (2+Δx )-f (2)=5(2+Δx )2+6-26=5[4+4Δx +(Δx )2]-20=20Δx +5(Δx )2. ∴Δy Δx =20Δx +5(Δx )2Δx =20+5Δx . 迁移与应用:1.2Δx +4 解析:Δy =f (1+Δx )-f (1)=2(1+Δx )2-1-2+1=2(Δx )2+4Δx ,所以ΔyΔx=2Δx +4.2.解:x 0=2,Δx =14时,Δy =12+14-12=-118,∴平均变化率为Δy Δx =-11814=-29.当堂检测1.7 解析:Δy Δx =f (3)-f (-1)3-(-1)=27-(-1)4=7.2.20 m/s3.4+2Δt 解析:Δs Δt =2(1+Δt )2-2Δt=4+2Δt .4.8+2Δx 解析:Δy Δx =2(2+Δx )2+5-(2×22+5)Δx =8Δx +2(Δx )2Δx=8+2Δx .5.0.4π 解析:∵S =πr 2,∴ΔS Δr =S (0.3)-S (0.1)0.3-0.1=0.09π-0.01π0.2=0.4π.。
变化率问题一、教学设计意图客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着,因此,在数学中引入变量的概念(函数)后,就有可能把运动现象用数学来加以描述了.随着对函数的研究的不断深化,产生了微积分,它是数学发展史上重要的里程碑,导数是微积分的核心概念之一,导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度。
变化率问题的发展具有丰富的历史背景,涉及类比、抽象、符号化等重要的数学思想,是典型的数学抽象过程.1.教材分析“变化率问题”是高中导数教学的开始,是导数概念建立的核心,是研究瞬时变化率及其导数概念的基础,在整个导数学习中占有极其重要的地位.教材通过研究学生熟悉的“气球膨胀率”、“高台跳水”这两个生活实例,归纳出它们的共同特征,抽象出一般函数平均变化率概念,使学生理解平均变化率刻画了函数在某一区间上的变化情况,并掌握求平均变化率的一般步骤,在这一过程中,渗透从特殊到一般的化归思想,数形结合思想,让学生体会数学抽象的过程.2.学情分析学习本节内容之前,学生具备了一定的函数知识,可以通过表格、图像、关系式三种不同的函数表现形式,求解函数在某一区间内“因变量的增量与自变量的增量的比值,并能从图像中看出函数变化的快与慢.同时学生已在物理中学习了平均速度、瞬时速度、加速度等概念,比较容易理解可以用“平均速度”刻画物体在一段时间内的速度.3.教学任务教学目标:(1)知识与技能通过丰富的实例,让学生经历平均变化率概念的形成过程,体会平均变化率是刻画变量变化快慢程度的一种数学模型.(2)过程与方法理解平均变化率的概念,了解平均变化率的几何意义,会计算函数在某个区间上的平均变化率.(3)情感、态度与价值观感受数学模型刻画客观世界的作用,体会数学抽象的过程,进一步领会变量数学的思想,提高分析问题、解决问题的能力.教学重点:函数平均变化率的概念.教学难点:函数平均变化率的概念形成过程的抽象. 二、教学过程设计 【问题情境】 情境1:(1)在经营某商品中,甲挣到10万元,乙挣到2万元,如何比较和评价甲、乙两人的经营成果;(2)在经营某商品中,甲用5年时间挣到10万元,乙用5个月时间挣到2万元,如何比较和评价甲、乙两人的经营成果.师生活动:学生小组讨论后一致认为,问题(1)不能很好的评价两人的经营成果,因为只有一个变量,而问题(2)有两个变量,通过计算甲、乙两人的月平均收入,发现乙的经营成果好于甲.设计意图:通过两个实例分析,让学生明白,仅仅比较一个变量的变化是不科学的,引导学生从平均变化去分析问题. 情境2:现有株洲市某年3月18日-4月20日每天气温最高温度统计图:1、你从图中获得了哪些信息?2 、在“4月18日到20日”,株洲市市民普遍感觉“气温骤增”,而在“3月18日到4月18日”却没有这样的感觉,这是什么原因呢?3、 怎样从数学的角度描述“气温变化的快慢程度”呢?师生讨论,教师板书总结:分析:这一问题中,存在两个变量“时间”和“气温”, 当时间从1到32,气温从3.5o C 增加到18.6o C ,气温平均变化5.01325.36.18≈--,(注: 3月18日为第一天)当时间从32到34,气温从18.6o C 增加到33.4o C ,气温平均变化4.732346.184.33≈--,因为7.4>0.5, 所以,从32日到34日,气温变化的更快一些. 教师过渡:“18.6 3.50.5321-≈- 表示时间从“3月18日到4月18日”时,气温的平均变化率.提出问题:先说一说“平均”的含义,再说一说你对 “气温平均变化率”的理解。
“平均变化率”的教学反思1.对教学设计的反思(1)对“平均变化率”概念在整章中的地位的认识在教学设计时,我把“平均变化率”当成本节课的核心概念。
经过课后研讨,综合课题组成员的点评意见,经过自己的不断反思,发现“平均变化率”仅仅是个辅助性概念,它是为“导数”这个核心概念作铺垫的,当然这其中过渡性概念是“瞬时变化率”。
课堂教学中忽视了“平均变化率”与“导数”的联系,定位不准确导致这一概念的教学目的不明确。
为此,修改教学设计时必须突出“从平均变化率到瞬时变化率”的过程,引入“瞬时变化率”概念,同时指出“瞬时变化率”就是本章研究的“导数”。
(2)问题1的科学性在教学设计时,我设计了如下问题作为整节课的引入:问题1:甲用5年时间挣到10万元, 乙用5个月时间挣到2万元, 如何比较和评价甲、乙两人的经营成果?设计意图是:这是学生熟悉的问题,能较快地解决,同时也有利于引出本节课的核心概念“平均变化率”。
从上课效果看也确实达到了我预想的目标,但课后点评后才发现,这一问题缺乏科学性,有待修改。
经反复思考,觉得改为:“甲用5年时间挣到10万元, 乙用5个月时间挣到2万元,假设资本在单位时间的扩张速度保持不变,如何比较和评价甲、乙两人的经营成果?”可能效果会更好。
(3)问题2与问题3的教学顺序在教学设计时,按照课本的顺序,把“气球膨胀率问题”和“高台跳水问题”分别作为问题2和问题3。
当时觉得问题2(即气球膨胀率)的背景是学生比较熟悉的,有生活体验,从此处入手更加贴近生活,况且教材也是这样安排的。
但从教学实践看,问题2并没有起到应有的效果。
经过研讨和反思,觉得“高台跳水”是运动问题,函数模型是二次函数,比问题2的幂函数模型更简单、熟悉。
因此将问题2与问题3教学顺序交换后,教学效果会更好。
2.对教学过程的反思(1)对学生认知基础的关注问题课堂教学中发现,学生的反应与自己的预想相差甚远。
经了解实际情况,原因是学生还不知道两点连线的斜率公式,从而导致“思考:观察函数的图象平均变化率表示什么?”的教学设计意图不能完全展现。