Petri网详细介绍与学习
- 格式:ppt
- 大小:11.83 MB
- 文档页数:90
Petri网的原理及应用1. 什么是Petri网Petri网是一种用于描述并发系统和并发性行为的图形化工具和形式化方法。
它由德国数学家Carl Adam Petri于1962年提出,被广泛应用于系统建模、并发系统分析、协议验证等领域。
Petri网可以模拟并发系统的并发行为、状态转换以及资源分配等关键方面,通过图形化的方式直观地展示系统的结构和行为,并支持形式化的数学分析。
2. Petri网的基本元素Petri网由以下基本元素组成:2.1. 位置(Place)位置表示系统中的状态或者条件,通常通过一个圆圈表示。
位置可以存储某种资源或者表示某种变量的取值。
2.2. 过渡(Transition)过渡表示系统中的某种事件或者操作,通常通过一个矩形表示。
过渡可以触发或消耗位置中的资源,改变系统的状态。
2.3. 弧(Arc)弧表示位置和过渡之间的联系,通常通过一条带箭头的线表示。
弧可以表示资源的流动或者触发条件的关系,连接位置和过渡。
2.4. 标识(Marking)标识是位置中的资源的数量,可以通过在位置内部的小圆圈中填写数字来表示。
标识表示系统的状态,在Petri网中可以不断变化。
3. Petri网的建模方法Petri网可以通过以下步骤完成建模:3.1. 确定系统的功能和行为首先,需要明确系统的功能和行为,清楚系统中的位置、过渡以及它们之间的关系。
例如,一个简单的交通信号灯系统中可以有位置表示红绿灯状态、过渡表示信号灯变换的事件或操作。
3.2. 绘制Petri网图根据系统的功能和行为,使用标识符绘制位置和过渡,并用弧表示它们之间的联系。
根据需要,可以使用不同的符号和颜色来表示不同类型的位置和过渡。
3.3. 设定初始标识确定初始状态下位置中的资源数量,填写在位置的小圆圈中。
这可以表示系统的初始状态,即Petri网的初始标识。
3.4. 定义触发条件和行为规则根据系统的功能和行为,定义位置和过渡之间的触发条件和行为规则。
掌握软件设计师的Petri网建模Petri网是一种广泛应用于系统建模与分析的数学工具,而作为软件设计师,掌握Petri网建模技术对于设计、分析和优化软件系统具有重要意义。
本文将探讨如何通过学习和应用Petri网建模,提升软件设计师的能力和水平。
一、什么是Petri网Petri网是由卡尔·亨利克·佩特里于1962年提出的一种图形模型,用于描述并发系统中的事件和状态变迁。
Petri网由一组表示事件(称为变迁)的圆圈和表示状态(称为位置)的长方形组成,并通过有向弧线连接起来。
Petri网具有严格的数学定义和规则,可以通过转移规则和变迁条件来模拟和分析实际系统中的行为。
二、Petri网的应用领域Petri网作为一种强大的建模工具,被广泛应用于多个领域,包括软件工程、通信网络、制造业等。
在软件工程领域,Petri网可以用于描述和分析软件系统的并发行为、流程控制、死锁检测等问题,在软件架构设计、系统优化等方面发挥重要作用。
三、软件设计中的Petri网建模在软件设计师的工作中,Petri网可以用来描述软件系统的各个组件之间的关系和交互行为。
通过使用Petri网建模,可以更清晰地了解软件系统的整体结构和功能,从而更好地进行系统设计和优化。
1. 描述系统组件关系:软件系统通常由多个模块、子系统组成,而这些组件之间的交互关系是软件系统设计的关键。
通过使用Petri网,可以将每个组件表示为一个位置,将组件之间的数据传递和调用关系表示为变迁,并通过弧线连接起来,从而形成一个完整的Petri网模型。
2. 模拟与验证系统行为:软件系统设计必须考虑到各种可能的情况和交互行为。
通过使用Petri网建模,可以模拟和验证系统在不同场景下的行为。
比如,通过添加约束条件和转移规则,可以验证系统是否存在死锁、资源竞争等问题,并进一步进行问题排查和解决。
3. 性能优化与改进:在软件设计过程中,性能是一个重要的考虑因素。
8.4.1 Petri网基本知识简介Petri网库所 place 变迁 transistionPetri网由两类元素组成:库所(place)和变迁(transistion),前者表示状态,后者反映状态的变化。
变迁的作用是改变系统的状态,库所的作用则是决定变化能否发生。
两者的这种相互依赖关系用有向弧(流关系)表示。
网是系统的静态结构。
图8-22给出了一个Petri网和网系统的例子。
图中用圆圈表示库所,用短横表示变迁(也有用方框表示的)。
库所中的黑点称为托肯(token),用以表示某类资源,反映了系统的局部状态,托肯在库所中的分布,给出了各状态元素的初态,称为初始标识(initial marking),反映出系统初始情况下的全局状态。
如果库所中的托肯数不多于一个,与布尔型变量类似的库所只有两种状态:有托肯(成真)和无托肯(成假)。
我们把这样的网系统称为条件(condition)/事件(event)系统,简称C/E系统。
当网系统中的托肯在网中流动时,就反映了网的动态行为。
托肯是沿有向弧指示的方向流动的。
图8-22中,对于变迁e3来说,从库所b1有一条指向它的有向弧,用(b1,e3)表示,称为输入弧;同时还有另外两条输出弧,用(e3,b3)、(e3,b4)表示。
网论中将b1称为e3的输入库所,b3、b4称为它的输出库所,由输入库所组成的集合叫输入库所集,又称为前集,记为*e3={b1};由输出库所组成的集合叫做输出库所集,又称后集,记为e3*={b3,b4}。
同理,对于库所b1,它的输入变迁集(前集)为*b1={e2},输出变迁集(后集)为b1*={e1,e3}。
一个变迁,如果它的每一个输入库所都包含至少一个托肯时,则这个变迁有发生权,当这个变迁发生时,将导致在其每个输入库所中减少一个托肯,而在每个输出库所中增加一个托肯。
图8-22中,变迁e3的发生将“消耗”b1中的一个资源,同时产生b3类和b4类各一个资源,这就是变迁规则。
Petri 网的基本理论1. 基本定义定义1.1 一个Petri 网(结构)N 是一个四元组),,,(W F T P ,P 和T 分别成为库所和变迁的集合,P 和T 非空、有限且不相交。
即φφφ≠≠T ,≠T P P ,。
φ≠⨯⨯⊆)()(P T T P F 称为流关系或有向弧的集合。
N →⨯⨯)()(:P T T P W 是一个映射,该映射为每一条弧分配一个权值,即若,F f ∈0)(>f W 若F f ∉,0)(=f W 。
称W 为Petri 网N 的权函数。
从图论上讲,Petri 网是一种双枝有向图,库所和变迁成为Petri 网的节点。
用图形表示Petri 网时,库所用圆圈表示,变迁用矩形或杠表示。
库所和变迁之间用有向弧连接,同一类型的节点间不能用有向弧连接。
定义1.2 若1)(,=∈∀f W F f ,Petri 网),,,(W F T P N =成为普通网。
否则N 称为一般网。
一个普通网可记作),,(F T P N =。
定义1.3 若1),(,),(=∈∀t p W F t p ,Petri 网称为PT-普通网。
定义1.4 Petri 网),,,(W F T P N =的标识M 是一个从P 到N 的映射。
),(0M N 称为网系统或标识网,0M 称为N 的初始标识。
在不引起混淆的情况下,简单称),(0M N 为Petri 网,),(0M N 有时也写成),,,,(0M W F T P 。
库所中的标识用称之为托肯的小黑点表示。
当托肯数较多时直接用数字表示。
定义1.5 令P p ∈是Petri 网),,,(W F T P N =的库所。
当且仅当0)(>p M 时称p 在M 下是被标记的。
当且仅当D 中至少有一个库所被标记时,称库所集P D ⊆在M 下是被标记的。
称∑∈=D p p M D M )()(为库所子集D 在M 下的托肯总和。
定义 1.6 令T P x ∈是Petri 网),,,(W F T P N =的节点。
Petri网的综述及应用蔡振宇摘要:一、Petri网的发展Carl Adam Petri于1962年在他的博士论文中首次提出了有关Petri网的概念。
自上世纪八十年代第一次Petri网理论和应用的国际研讨会的召开以来,与之相关研讨会在世界范围内就开始以一年一度的频率召开。
人们通常称赞Petri网描述异步并发与图形表示的能力,而这两个特点来源于其网状结构。
世间万物皆由网构成,只是这个网是有形的或是无形的,万事万物在这些网上发生着变化。
事物间依赖关系,正是Petri网的完美体现。
描述物理世界的客观存在,使客观存在成为论文的研究对象,同时还必须保证凡是用其描述的系统都能转换为客观存在。
前者称为系统模型的仿真性,后者则是系统模型的可实现性。
目前Petri 网己扩展成多种形式,如基础Petri网、时间Petri网、层次Petri网、有色Petri网等等[}z6-3 y。
一个Petri网的结构元素包括:库所(place)、变迁(transition)和弧(acr)。
库所也称位置,它是一个抽象的词语,不是具体指哪个确定位置,而是建模中恰巧画的位置,它主要的作用是描述网中的一个局部资源状态或者是条件。
变迁是用于描述变化着的系统事件,它表示的是一种资源相互作用的事件发生关系。
弧的意义是描述资源的使能转化方向,是库所中消耗和产生的依据。
如图2-1中,以红点来显示的是托肯(token)或者称为标记,它存在于库所中,呈现库所的资源数量,是Petri网中的一个重要概念。
托肯在网中的动态变化意味着网的不同状态。
一个简单的网系统模型,如图2-1所示。
-+Petri网从客观的角度对系统的发生进行定性和定量的描述,并能呈现出有规律的定性和定量的改变。
在Petri网中,把对象统称为资源。
定性相同的资源定为一类,用一个状态元素P来表示。
托肯的数量代表了库所P的状态。
尸的定性和定量的改变也就是上面所称的变迁T。
在建模中库所P用圆圈来表示,变迁T用方框来表示,有向弧用箭头来表示。
petri⽹基础知识Petri⽹的概念:Petri⽹是对离散并⾏系统的数学表⽰。
经典Petri⽹:经典的Petri⽹是简单的过程模型,由两种节点:库所和变迁,有向弧,以及令牌等元素组成的。
Petri⽹的结构:(⼀)、形式化的定义:1.petri⽹的元素:库所(place)圆形节点变迁(transition)⽅型节点有向弧(connection)它是具有⽅向的,是库所和变迁之间的有向弧令牌(token)它是库所中的动态对象,可以从⼀个库所移动到另⼀个库所。
2.Petri⽹的规则:1.有向弧是有⽅向的2.两个库所之间变迁是不允许有弧的。
3.库所可以拥有然⼀数量的令牌。
4.O⾏为如果⼀个变迁的每个输⼊库所(input place)都拥有令牌,该变迁即为被允许(enable)。
⼀个变迁被允许时,变迁将发⽣(fire),输⼊库所(input place)的令牌被消耗,同时为输出库所(output place)产⽣令牌。
5. 变迁的发⽣是原⼦的,也就是说,没有⼀个变迁只发⽣了⼀半的可能性。
6. 有两个或多个变迁都被允许的可能,但是⼀次只能发⽣⼀个变迁。
这种情况下变迁发⽣的顺序没有定义。
7. 如果出现⼀个变迁,其输⼊库所的个数与输出库所的个数不相等,令牌的个数将发⽣变化,也就是说,令牌数⽬不守恒。
8.petri⽹事静态的也就是说,不存在发⽣了⼀个变迁之后忽然冒出另⼀个变迁或者库所,从⽽改变Petri⽹结构的可能。
9. Petri⽹的状态由令牌在库所的分布决定。
也就是说,变迁发⽣完毕、下⼀个变迁等待发⽣的时候才有确定的状态,正在发⽣变迁的时候是没有⼀个确定的状态的。
3.petri⽹的类型:(1)基本petri⽹:每个库所容量为1,这样库所可称为条件,变迁可称为事件。
故⽽⼜称为条件/事件系统C/E CE模型的基本关系顺序关系:并发关系互斥冲突关系:异或关系:死锁关系:(2)低级petri⽹:库所容量和权重>=1的任意整数,称为库所/变迁⽹P/T(3)定时petri⽹:将各事件的持续时间表在库所旁边,库所中新产⽣的标记经过⼀些事件后加⼊到⽹中,或时标在变迁上,经过时间延迟后发⽣。
1.一个经典的Petri网由四元组(库所,变迁,输入函数,输出函数)组成。
2.如果一个变迁的每个输入库所(input place)都拥有托肯,该变迁即为被允许(enable)。
一个变迁被允许时,变迁将发生(fire),输入库所(input place)的托肯被消耗,同时为输出库所(output place)产生托肯。
3.高级模型:为了解决经典Petri网中的问题,研究出了高级Petri网,在以下方面进行了扩展:o 令牌着色一个令牌通常代表具有各种属性的对象,因此令牌拥有值(颜色)代表由令牌建模的对象的具体特征,如一个令牌代表一个工人(张三,28岁,经验3级)。
o 时间为了进行分析,我们需要建模期间,延迟等,因此每一个令牌拥有一个时间戳,变迁决定生产出的令牌的延迟。
(这类Petri网模型规定每个变迁都具有有限的引发时延,其触发规则被修改为:每一个触发变迁都有一个时延过程;一个变迁一旦使能必须立即触发。
)o 层次化构造一个复杂性与数据流图相当的Petri网的机制。
子网是由库所,变迁和子网构成的网络。
o 时序增加时序逻辑的定义,更好的描述行为过程4.两个库所或变迁之间不允许有弧5.有两个变迁都被允许的可能,但是一次只能发生一个变迁6.Petri网络是静态的7.Petri网的状态由托肯在库所的分布决定8.两个变迁争夺一个托肯的情形被称之为冲突9.多个弧连接两个节点的情况。
在输入库所和变迁之间的弧的个数决定了该变迁变为被允许需要的令牌的个数。
弧的个数决定了消耗/产生的令牌的个数10.petri网基本概念:Petri网是一种用有向图及称为初始标识的初始状态表示的特殊的系统模型其中有向图由库所变迁以及从库所到变迁或者从变迁到库所的有向弧组成,称为Petri网结结构。
标识是一个m维数组(m为库所个数),它的一元素对应一库所,取值为非负整数。
标识代表系统的状态。
11.不同类型的资源相应地,变迁的发生就可能不只是简单地复制和传递令牌,而是要对从输入库所取来的令牌经过加工,变成新颜色的令牌后再传递给输出库所这就是有色Petri网的两个特别之处:令牌是有颜色的,变迁的发生可以改变令牌的颜色。
Petri网Petri网是一种图形模型,用于描述并发系统中的并发过程和状态迁移。
它由物理学家Carl Adam Petri在1962年提出,是一种形式化的工具,用于模拟和分析各种并发系统。
1. Petri网的基本概念Petri网由两种基本元素组成:库所(Place)和变迁(Transition)。
库所可以看作是存储资源的位置,变迁表示发生的事件。
这两种元素都是用圆圈表示,并使用有向弧线连接。
•库所:用一个圆圈表示,通常用于存储资源或表示系统的状态。
每个库所都有一个或多个标记(token),表示资源的数量或状态。
•变迁:用矩形或虚线矩形表示,表示一个事件或活动。
变迁可以使得库所中的资源发生变化,即在库所之间转移标记。
此外,Petri网还有一些辅助元素:•弧线:表示库所和变迁之间的关系。
用于指示资源的流动或变迁的触发条件。
•权重:用于限制资源的流动或变迁的触发条件。
2. Petri网的特性Petri网具有以下几个重要的特性:2.1 可视化Petri网通过图形化的方式描述并发系统,并使用直观的图形元素表示资源和事件之间的关系。
这种可视化的特性使得Petri网更容易理解和分析,并且可以有效地交流和共享。
2.2 模块化Petri网可以进行模块化设计,即将一个复杂的系统分解为多个简单的子系统,并使用库所和变迁进行连接。
这样可以方便地对子系统进行分析和调试,并且可以更好地理解整个系统的结构和功能。
2.3 并发性Petri网能够描述并发系统的行为。
通过在变迁周围放置多个库所,可以实现多个资源之间的并发操作。
这样可以提高系统的并发性,提高系统的性能和效率。
2.4 死锁检测Petri网可以用于检测系统中的死锁问题。
当库所和变迁之间的资源流动形成闭环时,可能会导致死锁的发生。
通过分析Petri网的结构和标记状态,可以检测到潜在的死锁情况,并采取相应的措施解决问题。
3. Petri网的应用领域Petri网在各个领域都有广泛的应用,以下是其中一些典型的应用领域:3.1 并发系统分析Petri网可以用于描述和分析各种并发系统,如操作系统调度算法、并行计算系统、通信协议等。
Petri网:模型、理论与应用Petri网,也称为Petri图,是一种用来描述系统事件并发性、同步性和序列性的有向图。
Petri网模型被广泛应用于计算机科学、系统工程、控制工程和化学工程等领域,成为了目前最流行的并发系统建模工具之一。
Petri网的基本元素Petri网由一组有向弧和节点组成,包括以下几个基本元素:1.库所(Place):代表系统中的状态或原料库存等。
2.变迁(Transition):代表系统中的事件或操作,用于改变状态或消耗库存。
3.有向弧(Arc):连接库所和变迁,表示状态之间的转移或原料的消耗。
4.标志(Marking):库所内的标志表示库存的数量或状态。
Petri网的基本形式Petri网可以表示为二元组N=(P, T, F),其中:1. P为库所的集合;2. T为变迁的集合;3. F为弧集合,由以下两种类型的弧组成:a)输入弧(Inhibitor arc):表示一个库所是变迁的前置条件,但是库所中的标志数量必须为零。
b)常规弧(Regular arc):表示一个库所是变迁的前置条件,库所中的标志数量可以为任意值。
Petri网的理论Petri网理论主要研究Petri网的语法、分析和应用。
Petri网具有以下特点:1. 易于可视化:Petri网可以用于描述具有并发性、同步性和序列性的系统,比传统的文本模型更直观。
2. 模型简单:Petri网只包含库所、变迁和有向弧三种基本元素,是一种简单、易于理解的模型。
3. 通用性强:Petri网模型可以表示各种类型的系统,例如工作流、协作系统、并发系统和控制系统等。
Petri网的应用Petri网在计算机科学、系统工程、控制工程和化学工程等领域的应用非常广泛。
1. 生产调度:Petri网可以应用于生产调度中,用于描述生产流程中的各个节点及其状态转移。
2. 工作流管理:Petri网可以应用于工作流管理中,用于描述任务分配、任务执行和任务完成的过程。