大跨度空间结构概述
- 格式:ppt
- 大小:2.77 MB
- 文档页数:25
大跨度空间结构在建筑设计和工程中,大跨度空间结构是指那些跨度较大、内部空间较为宽阔的建筑结构。
这种结构通常需要特殊的设计和施工技术,以确保建筑物能够稳定、安全地承受各种荷载,并满足功能需求。
大跨度空间结构的设计涉及到结构力学、材料科学、施工工艺等多个领域,是建筑工程中的重要研究课题。
设计原则设计大跨度空间结构时,需要考虑以下几个方面的原则:结构稳定性大跨度空间结构的稳定性是设计过程中首要考虑的问题。
在结构设计中,需要充分考虑荷载传递、应力分布、挠度控制等因素,确保结构在各种外部荷载作用下保持稳定。
施工可行性由于大跨度空间结构通常体量较大,施工过程中需要考虑施工机械设备、施工工艺、作业空间等因素,确保施工过程安全、高效。
功能需求大跨度空间结构往往会用于会展中心、体育馆、机场等场所,因此需要充分考虑建筑功能需求,如观赏性、照明、通风等方面。
常见结构形式大跨度空间结构常见的结构形式包括:•穹顶结构:利用曲面形式来实现大跨度封闭空间,典型的代表是圆顶体育馆。
•悬索桥:利用悬索来支撑桥面,跨度较大,适用于跨越河流、峡谷等场景。
•桁架结构:由杆件和节点组成的桁架结构具有良好的承载能力和稳定性,适用于大跨度空间屋顶结构。
•拱形结构:借助弧形结构来实现大跨度空间的覆盖,适用于建筑物的支撑结构。
实际应用大跨度空间结构在现代建筑中有着广泛的应用,如:•体育馆:体育馆的设计往往要求大跨度空间结构,以容纳体育比赛和观众席。
•机场候机厅:现代机场的候机厅通常采用大跨度空间结构,提供宽敞的候机区域。
•会展中心:会展中心需要大型展览空间,大跨度结构能够提供灵活的展览空间。
•火车站站厅:为了满足高铁的乘客流量需求,火车站的站厅通常采用大跨度空间结构,提供宽敞的候车区域。
结语大跨度空间结构在现代建筑设计中扮演着重要的角色,它不仅体现了建筑技术的发展和创新,也为人们提供了更加舒适、宽敞的室内体验。
设计和建造大跨度空间结构需要多学科的综合知识和团队合作,只有这样才能打造出稳定、安全、美观的建筑作品。
摘要:随着技术的发展,大跨度空间结构越来越多的在各领域运用,本文先对大跨度空间结构的起源与历史进行介绍,再对空间结构委员会成立三十年来在空间结构领域作了介绍,重点系统论述了三十年来各时期大跨度空间结构发展与应用情况。
全面阐述了我国大跨度空间结构近期发展的特点,包括在各类公共建筑中的应用情况、空间结构体系的发展与技术进步。
关键词:发展历程,我国进展1.简介:横向跨越60米以上空间的各类结构可称为大跨度空间结构。
常用的大跨度空间结构形式包括折板结构、壳体结构、网架结构、悬索结构、充气结构、篷帐张力结构等。
大跨度空间结构是国家建筑科学技术发展水平的重要标志之一。
世界各国对空间结构的研究和发展都极为重视,例如国际性的博览会、奥运会、亚运会等,各国都以新型的空间结构来展示本国的建筑科学技术水平,空间结构已经成为衡量一个国家建筑技术水平高低的标志之一。
2.大跨度发展历程:实际上,人类很早以前就认识到穹隆具有用最小的表面封闭最大的空间的优点。
效仿洞穴穹顶,人们建造了许多砖石穹顶,如我国东汉时期河南洛阳的地下砖砌墓穴,公元前1185年古希腊迈西尼国王墓等。
古罗马最著名的穹顶是万神殿,也是建筑史上最早、最大跨度的拱建筑。
被誉为展现穹力的杰作。
然而,在尚无力学与结构理论以前,凭借已有的经验与大胆探索来建造房屋,难免发生事故。
公元537年东罗马帝国建造的圣索亚教堂,还有公元1612年建造的罗马圣彼得教堂都出现多较严重问题。
1742年罗马教皇下令检查圣彼得教堂问题原因,三位科学家经过认真调研和计算分析后,作出了解决方案。
这工程实例表明工程结构经验时代的结束和科学时期的到来。
工程结构的发展推动了理论研究的进步,理论成果的指导完善了工程实践,这是建筑结构科学得以不断进步的历史规律。
19世纪的工业革命促使科学技术飞快进步。
生铁材料出现以后引起了建筑结构革命性的变化。
1787年英国出现机扎熟铁条,1831年英国有出现机扎出角铁,1845年法国人碾压出熟铁工字梁。
大跨度空间管桁架结构施工技术随着社会经济的发展和科技的进步,大跨度空间管桁架结构在建筑工程中得到了广泛的应用。
这种结构的施工过程涉及到多个环节和复杂的工艺,因此对施工技术提出了较高的要求。
本文将探讨大跨度空间管桁架结构的施工技术。
一、大跨度空间管桁架结构概述大跨度空间管桁架结构是一种具有独特魅力的建筑形式,其优美的曲线和宏伟的跨度为城市景观增添了新的元素。
这种结构由许多直杆或弧形杆组成,通过节点连接,形成了一种既具有刚度又具有美感的结构形式。
在建筑工程中,大跨度空间管桁架结构被广泛应用于体育场馆、会展中心、机场等大型公共建筑。
二、施工技术要点1、施工准备施工准备是确保工程顺利进行的前提。
在大跨度空间管桁架结构的施工过程中,首先要进行技术准备,包括熟悉图纸、编制施工方案、进行技术交底等。
同时,还要进行现场准备,包括平整场地、布置材料和设备等。
2、钢构件制作钢构件的制作是大跨度空间管桁架结构施工的关键环节之一。
钢构件的制作精度和质量直接影响到结构的安全性和稳定性。
因此,在制作过程中,要严格控制钢材的材质、尺寸、焊接质量等。
同时,要对制作好的钢构件进行质量检验,确保符合设计要求。
3、钢构件运输及安装钢构件运输及安装是大跨度空间管桁架结构施工的关键环节之二。
由于钢构件具有重量大、尺寸大、形状复杂等特点,因此对运输和安装提出了较高的要求。
在运输过程中,要合理安排运输路线和运输方式,确保钢构件的安全到达。
在安装过程中,要采用专业的起重设备和安装工人进行操作,确保钢构件安装的位置和精度符合设计要求。
4、现场焊接现场焊接是大跨度空间管桁架结构施工的关键环节之三。
由于大跨度空间管桁架结构的节点较多,因此需要大量的现场焊接工作。
在焊接过程中,要采用高质量的焊接材料和焊接工艺,确保焊接质量和安全性。
同时,要对焊接完成的焊缝进行质量检验,确保符合设计要求。
5、结构调试与验收结构调试与验收是大跨度空间管桁架结构施工的最后环节。
简述大跨度空间结构的主要形式及特点摘要:大跨度空间结构往往是衡量一个国家或地区建筑技术水平的重要标志。
其结构形式主要包括网架结构、网壳结构、悬索结构、膜结构、薄壳结构等五大空间结构及各类组合空间结构。
形态各异的空间结构在体育场馆、会展中心、影剧院、大型商场、工厂车间等建筑中得到了广泛的应用。
关键词:大跨度空间结构形式特点1网架结构由多根杆件按照某种规律的儿何图形通过节点连接起来的空间结构称之为网格结构,其中双层或多层平板形网格结构称为网架结构或网架。
它通常是采用钢管或型钢材料制作而成。
1.1网架结构的形式(1)平而桁架系组成的网架结构。
主要有:两向正交正放网架、两向斜交斜放网架、两向正交斜放网架、三向网架等型式。
(2)四角锥体组成的网架结构。
主要有:正放四角锥网架、斜放四角锥网架、正放抽空四角锥网架、棋盘形四角锥网架、星型四角锥网架、单向折线型网架等型式。
(3)三角锥组成的网架结构。
主要有:三角锥网架、抽空三角锥网架(分1型和11型)、蜂窝形三角锥网架等型式。
(4)六角锥体组成的网架结构。
主要形式有:正六角锥网架。
1.2网架结构的主要特点空间工作,传力途径简捷;重量轻、刚度大、抗震性能好;施工安装简便;网架杆件和节点便于定型化、商品化、可在工丨中成批生产,有利于提高生产效率;网架的平而布置灵活,屋盖平整,有利于吊顶、安装管道和设备;网架的建筑造型轻巧、美观、大方,便于建筑处理和装饰。
2网壳结构曲而形网格结构称为网壳结构,有单层网壳和双层网壳之分。
网壳的用材主要有钢网壳、木网壳、钢筋混凝土网壳等。
2.1网壳结构的形式主要有球而网壳、双曲而网壳、圆柱而网壳、双曲抛物而网壳等。
2.2网壳结构主要特点兼有杆系结构和薄壳结构的主要特性,杆件比较单一,受力比较合理;结构的刚度大、跨越能力大;可以用小型构件组装成大型空间,小型构件和连接节点可以在工)预制;安装简便,不需大型机具设备,综合经济指标较好;造型丰富多彩,不论是建筑平而还是空间曲而外形,都可根据创作要求任意选取。
水平长悬臂和大跨度结构概念概述说明以及解释1. 引言1.1 概述水平长悬臂和大跨度结构是现代建筑工程中的一种重要设计概念。
这些结构以其宽阔的跨度和极富创意的设计,成为建筑界一个引人注目的焦点。
它们代表了工程技术和建筑设计的最新进展,往往可以实现超出传统建筑限制范围的巨大空间。
1.2 文章结构本文将对水平长悬臂和大跨度结构进行全面而深入地探讨。
首先,我们将介绍这两个概念的定义与特点,帮助读者更好地理解它们在建筑领域中的重要性。
接下来,我们将探讨应用领域,包括这些结构在桥梁、体育馆、舞台等方面的广泛使用。
然后,我们将深入研究设计原则和考虑因素,以揭示成功实施这些结构所需的关键因素。
1.3 目的本文旨在通过案例分析和解释,探索水平长悬臂和大跨度结构背后所带来的挑战及解决方案,并展望未来在此领域的发展前景。
通过对这一主题进行研究,我们希望能够为建筑工程师、设计师和学者提供有价值的见解,以推动建筑技术的不断创新和进步。
2. 水平长悬臂和大跨度结构概念:2.1 定义与特点:水平长悬臂和大跨度结构是指具有较长支撑悬挑长度和横跨距离的建筑或桥梁结构。
其特点包括以下几个方面:- 长悬臂:该结构以一个或多个支点为基础,向外延伸较远的水平投影部分,形成具有较大挑出长度的结构。
- 大跨度:该结构的主要承载部分在空间中具有较大的跨越范围,通常用于越过河流、峡谷、道路或其他障碍物。
2.2 应用领域:水平长悬臂和大跨度结构广泛应用于各个领域,包括以下方面:- 建筑领域:用于设计和建造高楼、展览馆、体育场馆等建筑物,以提供更宽敞的内部空间。
- 桥梁工程:用于设计和建造桥梁,以实现较远的路线连接,并克服自然或人为障碍。
- 航空航天领域:用于设计和制造飞机、卫星和天线等空中设施,以支持载荷并保持结构稳定性。
- 能源工程:用于设计和建造输电塔、风力发电机塔和太阳能发电场等,以提供可靠的能源供应。
2.3 设计原则和考虑因素:在设计水平长悬臂和大跨度结构时,需要考虑以下原则和因素:- 结构强度与稳定性:确保结构足够强大,并能通过适当的支撑系统来分散载荷,以防止倒塌或失稳。
建筑结构大跨度结构大跨度结构是指横跨较长的距离,一般大于50米的建筑结构。
大跨度结构在现代建筑中得到了广泛应用,不仅可以提供更大的空间,还能够提高建筑的整体美观性、功能性和可持续性。
本文将介绍大跨度结构的定义、分类、应用以及在设计中的考虑因素等内容。
一、大跨度结构的定义大跨度结构是指横跨较长的距离的建筑结构。
它们通常用于一些需要较大空间的场所,如会展中心、机场终端楼、体育馆等。
大跨度结构的建造需要考虑跨度、荷载、材料和施工等因素。
跨度越大,结构的自重越大,所需的材料和施工难度也越大。
因此,在设计大跨度结构时需要进行充分的工程计算和结构分析,以确保结构的稳定性和安全性。
二、大跨度结构的分类根据结构的形式和功能,大跨度结构可以分为以下几种类型:1.單元系統結構:单元系统结构是一种由标准化部件组成的结构体系,其主要特点是模块化。
这种结构适用于大型工业厂房、仓库等场所。
常见的单元系统结构包括钢桁架结构和桁架梁结构。
2.点支撑结构:点支撑结构是一种通过柱子或支撑点将荷载传递到地面的结构。
它适用于要求大空间的建筑,如机场终端楼、体育场馆等。
点支撑结构常见的形式有网壳结构和空间桁架结构。
3.地铁结构:地铁结构主要用于地铁车站和地下通道等场所,其特点是地下结构、强度高和防水性能好。
地铁结构主要由混凝土和钢材构成,以提供足够的强度和稳定性。
4.悬索桥结构:悬索桥结构主要由悬索和桥塔组成,适用于跨越较长距离的桥梁。
悬索桥结构具有较好的承载能力和抗震能力,广泛用于桥梁工程中。
三、大跨度结构的应用大跨度结构在现代建筑中得到了广泛应用,主要体现在以下几个方面:1.会展中心:会展中心是大跨度结构的代表之一,其特点是空间大、无柱和灵活布局。
通过合理的结构设计和使用大跨度结构,可以提供更大的展示面积和灵活的空间分配。
2.机场终端楼:机场终端楼一般需要提供较大的空间,以应对大量旅客的需求。
大跨度结构可以提供无柱的空间,不仅能够提供较大的空间容量,还能使旅客获得更好的使用体验。
大跨度空间结构空间结构与高耸结构空间结构与平面结构梁、拱等,所承受的壳、网架等,荷载、空间结构与航天结构•太阳帆板可展结构•雷达天线结构生活中的空间结构蜘蛛网强度相当于钢材的50倍直径几微米1:120“形态学”(Morphology)起源于古希腊,Morphology一词由希腊语Morphe(形态)和Ology (科学)构成。
形态学最初是一门研究人体、动物、植物的形式和结构的科学。
结构形态学作为形态学的一个分支是一门从整体上研究建筑形状与结构受力之间关系的学科,目的在于寻求二者的协同统一。
“形”关注的是结构的外形,即结构的几何形状;“态”关注的是结构的受力,可以延伸为“力流”、连接方式或是一种变化。
蜂窝Eden Project(British)Polyhedron (Platonic and Archimedean)Frei Otto’s greenhouseP. Drew, Frei Otto Form und Konstruktion, Verlag Gerd Hatje, Stuttgart, 1976The fly’s eye dome (Buckminster Fuller)1895-1983American architect,systemstheorist, author,designer, inventor,and futuristSPUNT’S MODULAR DOMECSU at Northridge, CA, USA. Design by Leonard Spunt in the 1970’s.Geodesic dome (Paris)2002年美国盐湖城冬奥会颁奖广场舞台Hoberman拱门Basket with fabric空间结构的主要形式空间结构发展简史皮革、木材智能结构2008鸟巢结构1856智能材料1986索穹顶膜结构19751970网格结构1957混凝土薄壳悬索结构1953A. D123拱壳B.C3000帐篷钢筋混凝土1864B.C2000largest span masonry domesSt Peter’s Basilica in Rome (1588–93)圣母百花大教堂Santa Maria del Fiore in Florence (1420–34),approximately 42 m diameter世界上跨度最大的薄壳(边长218m,矢高48m)法国巴黎国家工业与技术中心陈列大厅(1959)深圳国际机场广东省人民体育场Xian Gymnasium(1999)96mX96m,4 supports上海美罗城D=48mCoal storage(Beijing,2004, span:120m)天津新体育馆(直径135m )1994首都机场T3航站楼北京首都国际机场新航站楼T3A(180,000m2)属铝板。
大跨度空间结构的主要形式及特点大跨度建筑通常是指跨度在30米以上的建筑,我国现行钢结构规范则规定跨度在60米以上结构为大跨度结构。
大跨度空间结构往往是衡量一个国家或地区建筑技术水平的重要标志。
其结构形式主要包括拱结构、刚架结构、桁架结构、网架结构、折板结构、网壳结构、悬索结构、膜结构、薄壳结构等空间结构及各类组合空间结构。
形态各异的空间结构在体育场馆、会展中心、影剧院、大型商场、工厂车间等建筑中得到了广泛的应用。
结构是房屋的骨架,是形成建筑内部空间和外部形式的物质基础,结构是在特定的材料和施工技术条件下运用力学原理创造出来的。
某种新的结构一丹产生并在工程实践中反复出现时,便会逐渐形成一种崭新的建筑形式。
上面所提到的空间结构也可以分成:一实体结构类——薄壳结构、折板结构;二网格结构——网架结构、网壳结构;三张力结构——悬架结构、薄膜结构;四其他新型大跨度空间结构——可展开折叠式结构、开合屋顶、张拉整体结构、张弦结构、整体张拉预应拱架结构。
下面我就各空间结构作分析。
1拱结构1.1定义与特点拱结构是一种主要承受轴向压力并由两端推力维持平衡的曲线或折线形构件。
拱结构由拱圈及其支座组成。
拱是古代大跨度建筑的主要结构形式。
由于拱呈曲面形状,在外力作用下,拱内的弯矩可以降低到最小限度,主要内力变为轴向压力,且应力分布均匀,能充分利用材料的强度,比同样的梁结构断面小,能承受较大空间。
但是拱结构在承受荷载后将产生横向推力,为了维持结构的稳定性,必须设置宽厚坚固的拱脚支座抵抗横推力。
常见的方式是在拱的两侧作两道后墙来支承拱,墙厚随拱跨增大而加厚。
这样就会使建筑的平面空间组合受到约束。
1.2拱结构形式拱结构应用广泛,形式多种多样。
按建造的材料分类,有砖石砌体拱结构、钢筋混凝土拱结构、钢拱结构、胶合木拱结构等;按结构组成与支承方式分类,有无铰拱、两铰拱和三铰拱,无拉力杆拱和有拉杆拱;按拱轴的形式分类,常见的有半圆拱和抛物线拱;按拱身截面分类,有实腹式和格构式、等截面和变截面等。
大跨度空间结构是目前发展最快的结构类型。
大跨度建筑及作为其核心的空间结构技术的发展战况是代表一个国家建筑科技水平的重要标志之一。
而大跨度结构的表现形式是多种多样的。
大跨度空间结构;拱券结构及穹隆结构;椼架结构与网架结构;壳体结构;悬索结构;膜结构一、拱券结构及穹隆结构从迄今还保存着的古希腊宏大的露天剧场遗迹来看,人类大约在两千多年前,就有扩大室内空间的要求。
古代建筑室内空间的扩大是和拱结构的演变发展紧密联系着的,从建筑历史发展的观点来看,一切拱结构-包括各种形式的券、筒形拱、交叉拱、穹隆-的变化和发展,都可以说是人类为了谋求更大室内空间的产物。
券拱技术是罗马建筑最大的特色及成就,它对欧洲建筑做出了巨大的贡献,影响之大无与伦比。
罗马建筑典型的布局方法、空间组合、艺术形式和风格以及某些建筑的功能和规模等等都是同券拱结构有密切联系。
拱形结构在承受荷重后除产生重力外还要产生横向的推力,为保持稳定,这种结构必须要有坚实、宽厚的支座。
例如以筒形拱来形成空间,反映在平面上必须有两条互相平行的厚实的侧墙,拱的跨度越大,支承它的墙则越厚。
很明显,这必然会影响空间组合的灵活性。
为了克服这种局限,在长期的实践中人们又在单向筒形拱的基础上,创造出一种双向交叉的筒形拱。
而之后为了建筑的发展热门又创造出了穹隆结构穹隆结构也是一种古老的大跨度结构形式,早在公元前14世纪建造的阿托雷斯宝库所运用的就是一个直径为14.5米的叠涩穹隆。
到了罗马时代,半球形的穹隆结构已被广泛地运用于各种类型的建筑,其中最著名的要算潘泰翁神庙。
神殿的直径为43.3米,其上部覆盖的是一个由混凝土做成的穹隆结构。
在大跨度结构中,结构的支点越分散,对于平面布局和空间组合的约束性就越强;反之,结构的支承点越集中,其灵活性就越大。
从罗马时代的筒形拱衍变成高直式的尖拱拱肋结构;从半球形的穹隆结构发展成带有帆拱的穹隆结构,都表明由于支承点的相对集中而给空间组合带来极大的灵活性。
大跨度建筑结构体系简述各种大跨度结构类型大跨度建筑结构体系是指横跨较大距离的建筑结构系统,以其独特的设计和建造方式,为人们提供了更广阔的室内空间和更舒适的居住环境。
大跨度结构通常用于体育馆、展览中心、机场终端、会议中心等大型场所。
本文将简要介绍几种常见的大跨度结构类型。
1.钢结构钢结构是应用最广泛的大跨度结构类型之一,其特点是轻巧、强度高、施工方便,适用于跨度较大的建筑。
钢结构使用钢材作为主要构件,通过焊接、螺栓连接等方式进行安装。
钢结构的优点包括重量轻、可塑性好、耐腐蚀等,缺点则包括易受火灾影响、维护成本高等。
常见的钢结构类型包括钢桁架、钢索悬挂结构等。
2.混凝土结构混凝土结构是另一种常见的大跨度结构类型,其特点是稳定性好、防火性能优异。
混凝土结构使用混凝土作为主要构件,通过浇筑成型,或者采用预制件的方式进行安装。
混凝土结构的优点包括耐久性好、抗震性好、隔热性能好等,缺点则包括重量重、施工周期长等。
常见的混凝土结构类型包括空间壳体结构、空中梁板结构等。
3.张拉结构张拉结构是一种通过张拉钢索或者预应力混凝土来形成稳定结构的建筑。
张拉结构的特点是跨度大、自重轻、构件适应性强。
张拉结构通过预应力钢索或者混凝土进行张拉,使结构产生压应力,从而提高结构的稳定性和承载能力。
张拉结构的优点包括大跨度、轴向力分布均匀、形式多样,缺点则包括施工复杂、工期长等。
常见的张拉结构类型包括张拉拱结构、张拉平板结构等。
4.空间网壳结构空间网壳是一种由柱、梁、网架等构成的三维网格结构,其特点是刚性好、稳定性好。
空间网壳结构通过三维网格结构的组合,使得结构能够均匀分布荷载,提高承载能力。
空间网壳的优点包括大跨度、稳定性好、形式美观等,缺点则包括施工复杂、构件连接困难等。
常见的空间网壳结构类型包括球面网壳结构、大跨度格构结构等。
总之,大跨度建筑结构体系是一种为了满足大型场所空间需求的特殊结构设计和建造方式。
钢结构、混凝土结构、张拉结构和空间网壳结构都是常见的大跨度结构类型,每种类型都具有独特的优点和缺点,设计师在选择结构类型时需要根据具体情况进行考虑。