经济博弈论第五章 离散博弈中的纳什均衡
- 格式:pptx
- 大小:340.58 KB
- 文档页数:47
盘点博弈论&纳什均衡&囚徒困境&零和博弈&智猪博弈1.博弈论是什么博弈论(game theory),又译为对策论,或者赛局理论,经济学的一个分支,1944年冯·诺伊曼与奥斯卡·摩根斯特恩合著《博弈论与经济行为》,标志着现代系统博弈理论的的初步形成,因此他被称为“博弈论之父”。
博弈论被认为是20世纪经济学最伟大的成果之一。
目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。
主要研究公式化了的激励结构(游戏或者博弈)间的相互作用。
是研究具有斗争或竞争性质现象的数学理论和方法。
也是运筹学的一个重要学科。
具有竞争或对抗性质的行为称为博弈行为。
在这类行为中,参加斗争或竞争的各方各自具有不同的目标或利益。
为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。
比如日常生活中的下棋,打牌等。
博弈论就是研究博弈行为中斗争各方是否存在着最合理的行为方案,以及如何找到这个合理的行为方案的数学理论和方法。
2.纳什均衡(Nash equilibrium)3.囚徒困境(Prisoner’s Dilemma)纳什平衡的经典例子就是囚徒困境。
囚徒困境(Prisoner’s Dilemma)是博弈论的非零和博弈中具代表性的例子,反映个人最佳选择并非团体最佳选择。
或者说在一个群体中,个人做出理性选择却往往导致集体的非理性。
虽然困境本身只属模型性质,但现实中的价格竞争、环境保护等方面,也会频繁出现类似情况。
1950年,由就职于兰德公司的梅里尔·弗勒德和梅尔文·德雷希尔拟定出相关困境的理论,后来由顾问艾伯特·塔克以囚徒方式阐述,并命名为“囚徒困境”。
经典的囚徒困境如下:警方逮捕甲、乙两名嫌疑犯,但没有足够证据指控二人有罪。
于是警方分开囚禁嫌疑犯,分别和二人见面,并向双方提供以下相同的选择:若一人认罪并作证检控对方(相关术语称“背叛”对方),而对方保持沉默,此人将即时获释,沉默者将判监10年。
不会令人后悔的均衡在纳什均衡中,你不一定满意其他的策略,但你的策略是回馈对手招数的最佳策略。
从囚徒困境中我们会发现,作为博弈各方的行动就是针对对方行动而确定的最佳对策,而一旦知道对方在做什么,就没人愿意改变自己的做法。
博弈论学把这么一个结果称为均衡。
这个概念是有普林斯顿大学数学家约翰·纳什提出的,因此被称为纳什均衡。
诺贝尔经济学奖获得者萨缪尔森有句名言,你可以将一只鹦鹉训练成经济学家,因为它所需要学习的只有两个词,供给与需求。
博弈论专家坎多瑞引申说:“要成为现代经济学家,这只鹦鹉必须再多学一个词,这个词就是纳什均衡”。
1950年,还是一名研究生的纳什写了一篇论文,题为《n人博弈的均衡问题》,该文只有短短一页纸,可就这短短一页纸成了博弈论的经典文献。
纳什的贡献是,他证明了在这一类的竞争中,在很广泛的条件下是有稳定解存在的,只要是别人的行为确定下来,竞争者就可以有最佳的策略。
那么,什么纳什均衡呢?简单说,就是一策略组合中,所有的参与者面临这样的一种情况:给定你的策略,我的策略是我最好的策略。
给定我的策略,你的策略也是你最好的策略,即双方在对方给定的策略下不愿意调整自己的策略。
纳什均衡从此成为经济学家用来分析商业竞争到贸易谈判现象的有力工具,所以纳什均衡是对冯诺依曼和摩根斯坦的合作博弈论的重大发展,甚至说是一场革命。
纳什均衡首先对亚当斯密“看不见的手”的原理提出挑战,按照斯密的理论,在市场经济中,每一个人都从利己的目的出发,而最终全社会达到利他的效果,从纳什均衡引出一个悖论:从利己的目的触发,结果损人不利己。
“囚徒困境”就是如此,从这个意义说,纳什均衡提出的悖论实际上动摇了西方经济学的基石。
纳什的想法成为我们指导“同时行动博弈”的最后一个法则的基础。
这个法则如下:走完寻找优势策略和剔除劣势策略的捷径之后,下一步就是寻找这个博弈的均衡。
所谓博弈均衡,它是一稳定的博弈结果。
均衡是博弈的一结果,但不是说博弈的结果都能成为均衡。
关于纳什与纳什均衡纳什是一个天才的数学家,早在上大学时就开始从事纯数学的博弈论研究。
1948 年进入普林斯顿大学后更是如鱼得水,20岁出头已成为闻名世界的数学家。
特别是在经济博弈论领域,他作出了划时代的贡献,是继冯·诺依曼之后最伟大的博弈论大师之一。
他提出的著名的纳什均衡的概念在非合作博弈理论中起着核心的作用。
后续的研究者对博弈论的贡献,都是建立在这一概念之上的。
纳什均衡的提出和不断完善为博弈论广泛应用于经济学、管理学、社会学、政治学、军事科学等领域奠定了坚实的理论基础。
纳什也因此被授予诺贝尔经济学奖。
纳什的主要贡献是1950至1951年在普林斯顿读博士学位时做出的。
那两年他发表的两篇关于非合作博弈论的重要论文(包括一篇博士论文),彻底改变了人们对竞争和市场的看法。
因为他在文中证明了非合作博弈及其均衡解,并证明了均衡解的存在性,即著名的纳什均衡,从而揭示了博弈均衡与经济均衡的内在联系。
然而,他的天才发现——非合作博弈的均衡,即“纳什均衡”并不是一帆风顺的。
1948年纳什到普林斯顿大学读数学系的博士。
那一年他还不到20岁。
当时普林斯顿可谓人杰地灵,大师如云。
纳什不是一个按步就班的学生,据他的同学们回忆,他们根本想不起来曾经什么时候和纳什一起完完整整地上过一门必修课,但纳什广泛涉猎数学王国的每一个分支,如拓扑学、代数几何学、逻辑学、博弈论等等,深深地为之着迷。
纳什经常显示出他与众不同的自信和自负,充满咄咄逼人的学术野心。
1950年整个夏天纳什都忙于应付紧张的考试,他的博弈论研究工作被迫中断,他感到这是莫大的浪费。
殊不知这种暂时的“放弃”,使原来模糊、杂乱和无绪的若干念头,在潜意识的持续思考下,逐步形成一条清晰的脉络,突然来了灵感!这一年的10月,他骤感才思潮涌,梦笔生花。
其中一个最耀眼的亮点就是日后被称之为“纳什均衡”的非合作博弈均衡的概念。
1950年纳什才把自己的研究成果写成题为“非合作博弈”的长篇博士论文,1950 年11月刊登在美国全国科学院每月公报上,立即引起轰动。
《博弈论与纳什均衡理论》姓名张贺祺学号 2010010404 专业政治经济学指导老师张秉云摘要博弈论是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题,具有斗争或竞争性质现象的数学理论和方法,也是运筹学的一个重要学科。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。
即在给定别人策略的情况下,没有人有足够理由打破这种均衡。
纳什均衡,从实质上说,是一种非合作博弈状态。
关键字:博弈论;纳什均衡;合作博弈;非合作博弈目录摘要 (2)关键字 (2)一、引言 (4)二、博弈论与纳什均衡的主要内容 (4)(一)博弈论的主要思想 (4)(二)博弈论的分类 (5)三、经典案例 (7)(一)博弈论的经典案例 (7)(二)纳什均衡经典案例 (7)四、博弈论和纳什均衡的重要影响 (8)(一)博弈论的重要影响 (8)(二)纳什均衡的重要影响 (8)参考文献 (9)博弈论与纳什均衡理论一、引言近代对于博弈论的研究,开始于策墨咯(Zermelo),波雷尔(Borel)及冯·诺伊曼(von Neumann)。
1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。
1950~1951年,约翰·福布斯·纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。
纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。
今天博弈论已发展成一门较完善的学科。
西方经济学(微课版第2版)对于夫妻之争博弈首先可以确定的是,严格下策反复消去法无法运用,因为两个博弈方都没有严格下策。
用划线法分析这个夫妻之博弈,不难得到图7-21。
丈夫时装足球妻子时装2,1 0,0足球0,0 1,3图7-21 划线法分析夫妻之争根据图7-21可以看出,这个博弈中有两个策略组合,(时装,时装)和(足球,足球),都是所对应的得益数组的两个数字下都划有短线,这意味着这两个策略组合中的双方策略都是对对方策略的最佳对策。
因此,如果一个博弈方选择了这两个策略组合中某一个的策略,另一个博弈方也会愿意选择该策略组合的策略,这两个策略组合都具有内在的稳定性。
但是,由于具有上述特征的策略组合在本博弈中存在两个,而不是唯一的一个,两个策略组合中哪个出现都是合理的,因此我们反而无法确定哪个结果会出现。
对于这样的博弈,划线法显然也没有完全解决问题。
值得强调的是,虽然在猜硬币博弈和夫妻之争博弈中,划线法也没有完全解决博弈的最终结果的问题,但它至少已经使我们对它们博弈方策略偏好之间的一致不一致、共同利益和矛盾冲突的情况有了更加清楚的认识,这对进一步解析这些博弈中博弈方的行为有很重要的意义。
因此,与在这些博弈问题中根本无法运用的严格下策反复消去法相比,划线法还是有优势的,这一点在分析更复杂的博弈模型时会表现得更加明显。
另外还有一种与划线法的分析思路有所不同,但效果与划线法相同,而且对理解博弈关系很有好处的寻找博弈中具有相对稳定性策略组合的分析方法,称为“箭头法”,有兴趣的同学可阅读谢识予《经济博弈论》第三版相关内容。
7.2.2 纳什均衡通过划线法找出的具有稳定性的策略组合,不管是否唯一,都有一个共同的特性,就是其中每个博弈方的策略都是针对其他博弈方策略或策略组合的最佳对策。
事实上,具有这种性质的策略组合,正是非合作博弈理论中最重要的一个解概念,即博弈中的“纳什均衡”。
本节要对这个概念的定义、部分重要性质和它在博弈分析中的作用等,进行一些讨论。
第五章重复博弈在这一章中,我们将围绕着人类的合作为什么产生这一命题来展开。
人与人之间合作生产的一个原因(从经济学的角度来看)是这种做法对于参与者双方而言是一个有利可图的事,为什么说明这一点我们将用到重复博弈。
另一个解释合作生产的方法就是引入信息不对称,在这种情况下,一个人装作是好人是有利可图的(因为好名声能够给他带来收益),这在信息不对称中会加以介绍。
第一节 重复博弈的定义及扩展式 给出重复博弈定义之前,需要做若干准备,一个准备就是由于重复博弈有可能会进行一个很长的时期,甚至是无穷期,因而必须考虑收益的时间价值。
相应的表达偏好的收益函数也需要给出一定的限制。
一、贴现因子与偏好明天的一元钱和今天的一元钱价值是不一样的,最简单的理由是今天的一元钱如果存入银行那么在明天会变成1+ r ,所以明天的一元钱只相当于今天的1/(1+ r )元钱,1/(1+ r )实际上就是经济学中的贴现率。
如果假设未来没有不确定性,定义11r δ=+,未来存在收益流R 1,R 2,R 3,…,那么这个未来收益流的贴现值之和就为V =211231t t t R R R R δδδ∞-=+++=∑L(5-1)其中(0,1)δ∈称为贴现因子(Discount factor)。
严格讲,贴现因子并不等于贴现率,但贴现因子与贴现率一定是同方向变动的。
例如,我们考虑一个特殊的重复博弈,其结束之前重复进行的次数是随机的,即在博弈的每一阶段完成之后,都要通过抛若干枚(加权的)硬币的方式来决定博弈是否结束,如果硬币朝上那么博弈结束(即概率为p),如果是其他情况,那么博弈继续(即概率为1 –p)。
如果下一阶段能得到的收益为R1,那么在当前阶段硬币未抛之前的价值(即贴现后的期望值)为(1 –p)R1/(1+ r);如果下两阶段能得到的收益为R2,在当前阶段硬币未抛之前的价值为(1 –p)2R2/(1+ r)2;下三阶段、四阶段等等的收益,照此类推。
纳什博弈论摘要:1.纳什简介2.博弈论概述3.纳什博弈论的主要贡献4.纳什均衡的应用场景5.纳什均衡在现实生活中的案例分析6.纳什均衡的局限性与挑战7.总结正文:【1】纳什简介约翰·纳什(John Nash,1928-2015)是一位美国数学家,他在博弈论、微分几何和数论等领域取得了卓越的成就。
他年轻时就表现出非凡的数学天赋,年仅21岁便获得了普林斯顿大学的博士学位。
纳什一生充满传奇,他的故事被改编成了电影《美丽心灵》,该片讲述了他与精神分裂症斗争的一生。
【2】博弈论概述博弈论是研究多个理性决策者在相互竞争或合作过程中的决策行为的一门学科。
它旨在分析不同决策者之间的互动,以及这些互动对各决策者的利益和整体结果的影响。
博弈论的应用范围广泛,包括经济学、社会学、政治学、生物学等领域。
【3】纳什博弈论的主要贡献纳什在博弈论领域的最重要贡献是他提出了“纳什均衡”的概念。
1950年,他在《数学心理学》杂志上发表了一篇题为《对策论与经济行为》的论文,其中阐述了纳什均衡的基本思想。
纳什均衡是指在一个博弈游戏中,每个参与者都选择了最优策略,使得任何一个参与者改变自己的策略,都无法获得更好的结果。
【4】纳什均衡的应用场景纳什均衡在许多现实场景中有广泛的应用,如经济学、社会学、政治学等。
以下是一些具体的案例:1.价格竞争:两个竞争对手在确定价格时,会考虑到对方的反应。
如果双方都选择降价,那么双方都将损失利润。
在这种情况下,双方都可能选择保持原价,以维持现有的市场份额。
这种竞争格局可以看作是一个纳什均衡。
2.选举投票:选民在投票时,会考虑到其他选民的投票行为。
如果大多数选民都认为某候选人会赢得选举,那么他们可能不会投票给这位候选人。
这种投票行为可以看作是一个纳什均衡。
【5】纳什均衡在现实生活中的案例分析囚徒困境博弈是纳什均衡的一个经典案例。
两个被捕的囚徒需要决定是否合作或背叛对方,以获得可能的最低刑期。
在这种情况下,无论另一个囚犯选择合作还是背叛,每个囚犯都倾向于背叛对方。
博弈均衡名词解释引言博弈均衡是博弈论中的一个重要概念,用于描述博弈参与者之间的策略选择和结果分配。
在博弈论中,博弈均衡是指在给定的博弈规则下,参与者选择某种策略后,无法通过改变单方策略来获得更好的结果。
本文将对博弈均衡进行详细解释,并探讨其在不同类型博弈中的应用。
什么是博弈均衡博弈均衡是指在博弈过程中,参与者选择策略后所达到的一种稳定状态。
在博弈均衡状态下,每个参与者都无法通过改变自己的策略来获得更好的结果。
换句话说,博弈均衡是一种策略组合,使得任何一个参与者都没有动机去单方面改变自己的策略。
博弈均衡通常包括纳什均衡、帕累托均衡、混合策略均衡等概念。
纳什均衡是最常见的博弈均衡类型,指的是在参与者选择策略后,不存在其他策略组合可以使得任何一个参与者获得更好的结果。
帕累托均衡是指在纳什均衡的基础上,无法通过改变资源分配来使任何一个参与者获得更好的结果。
混合策略均衡则是指参与者以一定的概率选择不同的策略,使得其他参与者无法通过改变自己的策略来获得更好的结果。
博弈均衡的应用博弈均衡概念在经济学、政治学、生物学等领域都有广泛的应用。
下面将分别介绍博弈均衡在不同领域的应用情况。
经济学中的博弈均衡在经济学中,博弈均衡被广泛应用于描述市场竞争和价格形成等问题。
例如,在某个市场中存在两家公司,它们可以选择不同的价格来销售相同的产品。
如果两家公司都选择低价,那么它们将面临价格战,利润都会受到损害;如果两家公司都选择高价,那么它们将面临需求不足的问题,销量较低。
在这种情况下,纳什均衡是指两家公司选择相同的中间价格,从而达到一种稳定状态,任何一家公司都没有动机去单方面改变价格策略。
政治学中的博弈均衡在政治学中,博弈均衡被应用于描述政治决策和国际关系等问题。
例如,在两个国家之间的外交博弈中,每个国家都可以选择合作或者对抗。
如果两个国家都选择合作,那么它们可以共同获得利益;如果两个国家都选择对抗,那么它们将面临冲突和损失。