阿基米德三角形及其性质
- 格式:pptx
- 大小:1.66 MB
- 文档页数:22
双曲线阿基米德三角形的性质补充
双曲线阿基米德三角形是指一类具有特殊性质的三角形,它的两个顶点在双曲线上,第三个顶点在双曲线的渐近线上。
关于双曲线阿基米德三角形的一些性质补充如下:
●双曲线阿基米德三角形的两条角平分线交于双曲线的焦
点。
●双曲线阿基米德三角形的内心在双曲线的渐近线上。
●双曲线阿基米德三角形的边长和角度均为双曲线的函数。
●双曲线阿基米德三角形的外接圆和内接圆均为双曲线的
渐近线的圆。
阿基米德三角形及其性质一、阿基米德三角形的概念过圆锥曲线上任意两点作两条切线交于点Q ,则称△QAB 为阿基米德三角形.二、抛物线的阿基米德三角形的性质:(以抛物线22y px =为例) 性质1 阿基米德三角形底边上的中线平行于抛物线的轴.证明:设112200(,),(,)(,)A x y B x y Q x y ,,弦AB 的中点为(,)M M M x y , 则过A 的切线方程为11()y y p x x =+,过B 的切线方程为22()y y p x x =+, 联立两切线方程,解得1212,22y y y y x y p +==,所以1202y y y +=, 又122M y y y +=,所以0M y y =,即QM 平行于x 轴. 性质2 底边长为a 的阿基米德三角形的面积的最大值为38a p. 证明:Q 到AB 的距离为2121212()224x x y y y y d QM p p+-≤=-=,设AB 方程为x my n =+, 则23222221211(1)()()428a a AB a m y y y y a d S ad p p ==+-⇒-≤⇒≤⇒=≤. 性质3 若阿基米德三角形底边AB 过抛物线内定点00(,)C x y ,则顶点Q 的轨迹方程为00()y y p x x =+.证明:设(,)Q x y ,则由性质1有1212,22y y y y x y p +==, 由AB AC k k =10122221210222y y y y y y y x p p p--⇒=--,化简得1201202()y y px y y y +=+, 即0000222()px px yy yy p x x +=⇒=+为Q 点的轨迹方程.推论 若阿基米德三角形底边AB 过焦点,则Q 点的轨迹为准线,且QA QB ⊥.性质4 阿基米德三角形底边的中线QM 的中点P 在抛物线上,且O 处的切线与AB 平行.证明:由性质1得12121212,,,2222y y y y x x y y Q M p p ⎛⎫+++⎛⎫ ⎪ ⎪⎝⎭⎝⎭,QM 中点21212(),82y y y y P p ⎛⎫++ ⎪⎝⎭, 显然P 在抛物线上,过P 的斜率为122AB p k y y =+,故P 处的切线与AB 平行.性质5 在阿基米德三角形中,QFA QFB ∠=∠.证明:作','AA BB 垂直于准线,垂足分别为','A B ,如图,对22y px =两边求导得12'2'QA p p yy p y k y y =⇒=⇒=, 又1'FA y k p-=,所以'1'QA FA k k QA FA ⋅=-⇒⊥,又'AA AF =,设'A F 与QA 交于C , 则'''','ACA ACF QAA QAF QAA QAF QA QF QA A QFA ∆≅∆⇒∠=∠⇒∆≅∆⇒=∠=∠, 同理可证'''90''90'QA A QA B QB A QB B QFA QFB ∠=∠+=∠+=∠⇒∠=∠ 性质6 在阿基米德三角形中有2AF BF QF ⋅=.证明:222221212121212()()()()2224244y y y y p p p p p AF BF x x x x x x p +⋅=++=+++=++, 2221212()()222y y y y p QF p p +=-+=22221212()244y y y y p p +++,所以2AF BF QF ⋅=. 三.阿基米德焦点三角形的性质把底边过焦点的阿基米德三角形称之为阿基米德焦点三角形.性质1 AB 过焦点F ,则PA ⊥PB ,PF ⊥AB ,△PAB 面积的最小值为2p .性质2 P 是椭圆22221(0)x y a b a b+=>>过右焦点F 的弦在两端点处切线的交点,则P 在椭圆右准线上,且PF ⊥AB ,△PAB 面积的最小值为4b ac. 性质3 P 是双曲线22221x y a b-=过右焦点F 的弦在两端点处切线的交点,则P 在双曲线右准线上,且PF⊥AB,△PAB面积的最小值为4bac.【拓展】当阿基米德三角形的顶角为直角时,有如下性质:对于圆222x y r+=,其阿基米德三角形顶点Q的轨迹为2222x y r+=对于椭圆22221(0)x ya ba b+=>>,其阿基米德三角形顶点Q的轨迹为2222x y a b+=+;对于双曲线22221(0)x ya ba b-=>>,其阿基米德三角形顶点Q的轨迹为2222x y a b+=-.。
阿基米德三角形常用结论及证明嘿,伙计们!今天我们要聊聊一个超级有趣的数学问题——阿基米德三角形!你们知道吗?这个名字来源于古希腊的伟大科学家阿基米德,他可是解决了无数难题呢!那么,阿基米德三角形到底是个啥东西呢?别着急,我们一起来揭开它的神秘面纱吧!咱们来简单介绍一下阿基米德三角形。
它是一个特殊的三角形,每条边上的三个顶点都在一个圆上。
这个圆心就是三角形的重心。
你们可能听过一个成语叫做“百折不挠”,其实就是形容阿基米德三角形的特点。
因为无论你怎么旋转这个三角形,它的形状都不会改变,永远都是一个特殊的三角形。
现在,我们来说说阿基米德三角形的一些常用结论。
第一个结论是:阿基米德三角形的内切圆半径等于外接圆半径。
这个结论有点儿难理解,我们来举个例子说明一下。
假设我们有一个阿基米德三角形ABC,其中AB=AC=3,BC=4。
我们可以用勾股定理求出这个三角形的高AD=√(AC^2-CD^2)=√5。
接下来,我们用正弦定理求出外接圆的半径R:R=√(AD^2+BD^2)/2=(√5+2)/2。
然后,我们用面积公式求出内切圆的半径r:S=1/2(BC+AC+AB)*r=1/2*9*r,解得r=(4-√5)/2。
所以,阿基米德三角形的内切圆半径等于外接圆半径,都等于(4-√5)/2。
第二个结论是:阿基米德三角形的周长等于三条边的和。
这个结论很简单,因为周长就是三条边的长度之和嘛!所以,如果我们知道一条边AB的长度,那么另外两条边的长度之和就等于AB。
这就像我们在生活中遇到的一些问题一样,只要知道了一部分信息,就能推导出其他的信息。
接下来,我们来说说阿基米德三角形的一个重要性质:当一个角的对边与另一个角的邻边成比例时,这两个角相等。
这个性质有时候在解决几何问题时非常有用。
比如,我们知道一个角的对边与另一个角的邻边成比例,那么我们就可以用正弦定理求出这两个角的大小。
具体方法是:设这两个角分别为A和B,那么根据正弦定理,有sin(A)/sin(B)=对边/邻边。
专题4 阿基米德三角形专题3 阿基米德三角形 微点1 阿基米德三角形 【微点综述】在近几年全国各地高考的解析几何试题中可以发现许多试题涉及到与一个特殊的三角形——由抛物线的弦及过弦的端点的两条切线所围成的三角形有关的问题,这个三角形常被称为阿基米德三角形. 阿基米德三角形包含了直线与圆锥曲线相交、相切两种位置关系,聚焦了轨迹方程、定值、定点、弦长、面积等解析几何的核心问题,“坐标法”的解题思想和数形结合方法的优势体现得淋漓尽致,能很好的提升学生解决圆锥曲线问题的能力,落实逻辑推理、数学抽象、数学运算等核心素养.鉴于此,微点研究阿基米德三角形。
一、预备知识——抛物线上一点的切线方程(1)过抛物线()220y px p =>上一点()00,M x y 的切线方程为:()00y y p x x =+;(2)过抛物线()220y px p =−>上一点()00,M x y 的切线方程为:()00y y p x x =−+;(3)过抛物线()220x py p =>上一点()00,M x y 的切线方程为:()00x x p y y =+; (4)过抛物线()220x py p =−>上一点()00,M x y 的切线方程为:()00x x p y y =−+.下面仅以情形(3)为例给出证明,同理可证其余三种情形。
证法1:设抛物线()220x py p =>上一点()00,M x y 的切线方程为:()00y y k x x −=−,代入22x py =,整理得2002220x pkx py pkx −−+=,由0x ∆=,得()222000044220,220,p k py pkx pk x k y +−=∴−+=抛物线上一点处的切线唯一,∴ 关于k 的一元二次方程200220pk x k y −+=有两个相等的实数根,0,x k p∴=∴所求的切线方程为()000x y y x x p−=−,即2000x x x py py =+−,又2002x py =,∴过抛物线()220x py p =>上一点()00,M x y 的切线方程为:()00x x p y y =+。
解析几何——阿基米德三角形知识点:抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形。
因为阿基米德最早利用逼近的思想证明了:抛物线的弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的2/3预备知识:1.过抛物线px y 22=上一点),(00y x M 的切线方程为:)(00x x p y y +=2.过抛物线px y 22-=上一点),(00y x M 的切线方程为:)(00x x p y y +-=3.过抛物线py x 22=上一点),(00y x M 的切线方程为:)(00y y p x x +=4.过抛物线py x 22-=上一点),(00y x M 的切线方程为:)(00y y p x x +-=阿基米德三角形有一些有趣的性质:性质1:阿基米德三角形底边上的中线平行于抛物线的轴.证明:设11(,)A x y ,22(,)B x y ,M 为弦AB 中点,则过A 的切线方程为11()y y p x x =+,过B 的切线方程为22()y y p x x =+,联立方程组得1122211222()()22y y p x x y y p x x y px y px =+⎧⎪=+⎪⎨=⎪⎪=⎩解得两切线交点Q (122y y p ,122y y +),进而可知QM ∥x 轴.性质2:QM 的中点P 在抛物线上,且P 处的切线与AB 平行.证明:由性质1知Q (122y y p ,122y y +),M 1212(,22x x y y ++,易得P 点坐标为21212()(,82y y y y p ++,此点显然在抛物线上;过P 的切线的斜率为121222p p y y y y =++=ABk ,结论得证.性质3如图,连接AI 、BI ,则△ABI 的面积是△QST 面积的2倍.证明:如图,这里出现了三个阿基米德三角形,即△QAB 、△TBI 、△SAI ;应用阿基米德三角形的性质:弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的23;设BI 与抛物线所围面积为1S ,AI 与抛物线所围面积为2S ,AB 与抛物线所围面积为S ,则123322ABI QAB QST S S S S S =--- =12333222QST S S S S --- =123()2QST S S S S --- =32ABI QST S S - ,∴ABI S = 2QST S .性质4:若阿基米德三角形的底边即弦AB 过抛物线内的定点C ,则另一顶点Q 的轨迹为一条直线证明:设Q (x ,y ),由性质1,x =122y y p ,y =122y y +,∴122y y px=由A 、B 、C 三点共线知10122221210222y y y y y y y x p p p--=--,即21121020y y y y x y x +--2102y py =-,将y =122y y +,122y y px =代入得00()y y p x x =+,即为Q 点的轨迹方程.性质5:抛物线以C 点为中点的弦平行于Q 点的轨迹.利用两式相减法易求得以C 点为中点的弦的斜率为0p y ,因此该弦与Q 点的轨迹即直线l 平行.性质6若直线l 与抛物线没有公共点,以l 上的点为顶点的阿基米德三角形的底边过定点.证明:如上图,设l 方程为0ax by c ++=,且11(,)A x y ,22(,)B x y ,弦AB 过点C 00(,)x y ,由性质2可知Q 点的轨迹方程00()y y p x x =+,该方程与0ax by c ++=表示同一条直线,对照可得00,c bp x y a a ==-,即弦AB 过定点C (c a ,bp a-).性质7(1)若阿基米德三角形的底边过焦点,则顶点Q 的轨迹为准线;反之,若阿基米德三角形的顶点Q 在准线上,则底边过焦点.(2)若阿基米德三角形的底边过焦点,则阿基米德三角形的底边所对的角为直角,且阿基米德三角形面积的最小值为2p .证明(2):若底边过焦点,则00,02p x y ==,Q 点轨迹方程为2p x =-即为准线;易验证1QA QB k k ⋅=-,即QA ⊥QB ,故阿基米德三角形为直角三角形,且Q 为直角顶点;∴|QM |=122x x ++2p =22124y y p++2p ≥122||4y y p +2p =224p p +2p =p ,而121||()2QAB S QM y y =- ≥12||||QM y y ⋅≥2p性质8底边长为a 的阿基米德三角形的面积的最大值为38a p.证明:|AB |=a ,设Q 到AB 的距离为d ,由性质1知1212||22x x y y d QM p +≤=-221212244y y y y p p +=-=212()4y y p-,设直线AB 方程为:x my n =+,则2221(1)()a m y y =+-∴221()y y -≤2a ,∴d ≤24a p ,即S =12ad ≤38a p.性质9在阿基米德三角形中,∠QFA =∠QFB .证明:如图,作AA '⊥准线,BB '⊥准线,连接QA '、QB '、QF 、AF 、BF ,则1'FA y k p=-,显然'1FA QA k k ⋅=-,∴FA '⊥QA ,又∵|AA '|=|AF |,由三角形全等可得∠QAA '=∠QAF ,∴△QAA '≅△QAF ,∴|QA '|=|QF |,∠QA 'A =∠QFA ,同理可证|QB '|=|QF |,∠QB 'B =∠QFB ,∴|QA '|=|QB '|,即∠QA 'B '=∠QB 'A '∴∠QA 'A =∠QA 'B '+900=∠QB 'A '+900=∠QB 'B ,∴∠QFA =∠QFB ,结论得证.特别地,若阿基米德三角形的底边AB 过焦点F ,则QF ⊥AB.性质10|AF |·|BF |=|QF |2.证明:|AF |·|BF |=12(()22p p x x +⋅+=21212()24p p x x x x +++=212(2y y p +22124y y ++24p ,而|QF |2=221212()()222y y y y p p +-+=212()2y y p +22124y y ++24p =|AF |性质11在抛物线上任取一点I (不与A 、B 重合),过I 作抛物线切线交QA 、QB 于S 、T ,则△QST 的垂心在准线上.证明:设211(2,2)A pt pt 、222(2,2)B pt pt 、233(2,2)I pt pt ,易求得过B 、I 的切线交点T 2323(2,())pt t p t t +,过T 向QA 引垂线,其方程为1231232()4t x y p t t pt t t +=++,它和抛物线准线的交点纵坐标123123()4y p t t t pt t t =+++,显然这个纵坐标是关于123,,t t t 对称的,因此从S 点向QB 引垂线,从Q 点向ST 引垂线,它们与准线的交点也是上述点,故结论得证.例1:(2019年台州高三期末21)设点P 为抛物线2:y x Γ=外一点,过点P 作抛物线Γ的两条切线PA ,PB ,切点分别为A ,B .(Ⅰ)若点P 为(1,0)-,求直线AB 的方程;(Ⅱ)若点P 为圆22(2)1x y ++=上的点,记两切线PA ,PB 的斜率分别为1k ,2k ,求1211||k k -的取值范围.解:(Ⅰ)设直线PA 方程为11x m y =-,直线PB 方程为21x m y =-.由121,,x m y y x =-⎧⎨=⎩可得2110y m y -+=.因为PA 与抛物线相切,所以21=40m ∆-=,取12m =,则1A y =,1A x =.即(1,1)A .同理可得(1,1)B -.所以AB :1x =.(Ⅱ)设00(,)P x y ,则直线PA 方程为1100y k x k x y =-+,直线PB 方程为2200y k x k x y =-+.由11002,,y k x k x y y x =-+⎧⎨=⎩可得211000k y y k x y --+=.因为直线PA 与抛物线相切,所以1100=14()k k x y ∆--+20101=441=0x k y k -+.同理可得20202441=0x k y k -+,所以1k ,2k 时方程200441=0x k y k -+的两根.所以0120y k k x +=,12014k k x =.则12k k -==.又因为2200(2)1x y ++=,则031x -≤≤-,所以1211||=k k -1212=k k k k-4,⎡∈⎣.P A B Oxy例2:已知点H (0,-8),点P 在x 轴上,动点F 满足PF ⊥PH ,且PF 与y 轴交于点Q ,Q 是线段PF 的中点.(1)求动点F 的轨迹E 的方程;(2)点D 是直线l :x-y-2=0上任意一点,过点D 作E 的两条切线,切点分别为A ,B ,证明:直线AB 过定点.解:(1)设F (x ,y ),y ≠0,P (m ,0),Q (0,n ),则 =(-m ,-8), =(-m ,n ),∵PF ⊥PH ,∴m 2-8n=0,即m 2=8n ,=0, ,∴ =− , = 2,代入m 2=8n ,得x 2=4y (y ≠0).故轨迹E 的方程为x 2=4y (y ≠0).(2)证明:设D (x 0,x 0-2),A (x 1,y 1),B (x 2,y 2),∵直线DA 与抛物线相切,且y'= 2,∴k DA = 12,∴直线DA 的方程为y= 12x-y 1,∵点D 在DA 上,∴x 0-2= 12x 0-y 1,化简得x 0x 1-2y 1-2x 0+4=0.同理,可得B 点的坐标满足x 0x 2-2y 2-2x 0+4=0.故直线AB 的方程为x 0x-2y-2x 0+4=0,即x 0(x-2)-2(y-2)=0,∴直线AB 过定点(2,2).练习1.已知点A(﹣4,4)、B(4,4),直线AM 与BM 相交于点M,且直线AM 的斜率与直线BM 的斜率之差为﹣2,点M 的轨迹为曲线C.(1)求曲线C 的轨迹方程;(2)Q 为直线y=﹣1上的动点,过Q 做曲线C 的切线,切点分别为D、E,求△QDE 的面积S 的最小值.练习2.如图,点F 是抛物线τ:22x py =(0p >)的焦点,点A 是抛物线上的定点,且()2,0AF = ,点B ,C 是抛物线上的动点,直线AB ,AC 斜率分别为1k ,2k .(1)求抛物线τ的方程;(2)若212k k -=,点D 是抛物线在点B ,C 处切线的交点,记BCD ∆的面积为S ,证明S 为定值.欢迎扫码关注公众号“数学HOME”,获取本文(包括练习详解)及更多资料的WORD版。
数学高考中的阿基米德三角形一、主要概念及性质1、定义:圆锥曲线的弦与过弦的端点的两条切线所围成的三角形叫做阿基米德三角形。
它的一些基本性质有:2、主要性质:性质1 阿基米德三角形底边上的中线平行于抛物线上的轴。
证明:设1122(,),(,)A x y B x y ,M 为弦AB 中点,则过A 的切线方程为11()y y p x x =+,过B 的切线方程为:22()y y p x x =+,联立方程组得:1122211222()()22y y p x x y y p x x y px y px =+⎧⎪=+⎪⎨=⎪⎪=⎩ 解得两切线交点1212,22y y y y Q p⎛⎫+⎪⎝⎭,进而可知QM x 轴。
性质2:若阿基米德三角形的底边即弦AB 过抛物线内定点C ,则另一顶点Q 的轨迹为一条直线。
证明:设(,)Q x y ,由性质1,1212,22y y y y x y p +==,所以有 122y y px =。
由 ,,A B C 三点共线知10122221210222y y y y y y y x p p p--=-- 即 221121020102y y y y x y x y py +--=-将 1212,22y y y y y px +== 代入得 00()y y p x x =+,即为Q 点的轨迹方程。
性质3:抛物线以C 点为中点的弦平行于Q 点的轨迹。
性质4:若直线l 与抛物线没有公共点,以l 上的点为顶点的阿基米德三角形的底边过定点。
证明:设l 方程为0ax by c ++=,且1122(,),(,)A x y B x y ,弦AB 过点00(,)C x y ,由性质2可知Q 点的轨迹方程为00()y y p x x =+,该方程与0ax by c ++=表示同一条直线,对照可得00,c bp x y a a ==-,即弦AB 过定点,c bp C aa ⎛⎫- ⎪⎝⎭。
性质5:底边长为a 的阿基米德三角形的面积的最大值为38a p。
阿基米德三角形常用结论及证明嘿,伙计们!今天我们要聊聊一个超级有趣的数学问题——阿基米德三角形!这个名字听起来就很酷炫,是不是?那你知道阿基米德三角形有哪些常用结论和证明吗?别着急,让我们一起来揭开它的神秘面纱吧!我们来了解一下什么是阿基米德三角形。
阿基米德三角形是一个古老的几何图形,它的每个顶点都是一个等边三角形的内切圆与外接圆的交点。
这个图形看起来有点像一个金字塔,但是它有很多神奇的性质和结论哦!1. 阿基米德三角形的内角之和是180度。
这个结论很简单,因为每个小三角形的内角都是60度,而一个大三角形的内角之和就是3个小三角形的内角之和,也就是180度。
2. 阿基米德三角形的边长比是一个恒定的值。
具体来说,如果一个大三角形的边长分别是a、b、c,那么它的内切圆半径r、外接圆半径R和边长比之间的关系就是:(a+b+c)/2 = R + r = (a+b+c)/2R。
这个关系式告诉我们,无论阿基米德三角形的大小如何变化,它的边长比总是保持不变。
3. 阿基米德三角形的面积可以通过海伦公式计算。
海伦公式是一个关于三角形面积和三边长之间关系的公式,它的形式是:S = sqrt(p*(p-a)*(p-b)*(p-c)),其中S是三角形的面积,a、b、c分别是三角形的三边长。
阿基米德三角形的面积可以通过将大三角形的面积除以9得到,即:S = (a+b+c)/2 * R^2 / 9。
4. 阿基米德三角形可以用来计算任意多边形的面积。
这个结论可能有点难以理解,但是它可以帮助我们解决很多实际问题。
比如说,我们知道一个正方形的面积是边长的平方,那么我们可以通过阿基米德三角形的方法计算出任意多边形的面积。
具体做法是先将多边形划分成若干个小三角形,然后根据阿基米德三角形的性质计算出每个小三角形的面积,最后将这些小三角形的面积相加就可以得到整个多边形的面积了。
5. 阿基米德三角形可以用来求解复杂的数学问题。
比如说,我们知道一个圆的周长是πd,其中d是直径。
阿基米德三角形常用结论及证明导言:阿基米德三角形是指在一个等边三角形内分别连接三个顶点到相对边的中点,形成的小三角形和原大三角形的比例。
这个特殊的几何形态在数学和物理学中有许多重要的应用,因此我们有必要深入研究它的性质和结论。
本文将通过多个结论的简单证明,来展示阿基米德三角形在实践中的重要性和丰富的数学内涵。
一、阿基米德三角形的定义及性质阿基米德三角形是在一个等边三角形的内部,连接三个顶点到相对边的中点,得到的三个边长相等的小三角形。
它是以古希腊数学家阿基米德的名字命名,是一种特殊的三角形形态。
阿基米德三角形有许多重要的性质,其中最重要的包括:1)它是一个等边三角形;2)它内部的三个小三角形形成的比例是1:2。
二、阿基米德三角形的常用结论1、三个小三角形的面积比例阿基米德三角形内部的三个小三角形的面积比例是1:2。
证明:设等边三角形的边长为a,那么每个小三角形的底边长为a/2,高为a乘以sin(60°),即a*√3/2。
设三角形的底边为a,那么三个小三角形的面积可以表示为:S1 = 1/2 * (a/2) * (a*√3/2) = a^2√3/8S2 = S1 = a^2√3/8S3 = S1 = a^2√3/8所以三个小三角形的面积比例是1:1:1,即1:2:1。
2、外接圆半径与等边三角形边长的比阿基米德三角形内切于一个圆,该圆即等边三角形的外接圆。
它的半径r与等边三角形的边长a之间的比例是,r = a/√3。
证明:由于外接圆于三角形的三个顶点相切,所以三角形的高等于外接圆的半径。
因此阿基米德三角形中小三角形的高也等于外接圆的半径。
在三角形中,高等于底边长度乘以sin(60°),即a*√3/2。
所以外接圆的半径r等于a*√3/2,即r = a/√3。
三、阿基米德三角形的应用阿基米德三角形在实际中有许多重要的应用。
其中包括:1、物体的密度计算在物理学中,我们可以利用阿基米德三角形的性质来计算物体的密度。
初探圆的阿基米德三角形性质
提炼出一个千年古图——阿基米德三角形.归纳出阿基米德三角形的一些基本性质.利用这些性质剖析多道源于阿基米德三角形的题目,探究同宗同源问题的命题规律和解题规律.
特殊的阿基米德三角形:过抛物线焦点f作抛物线的弦,与抛物线交于a、b两点,分别过a、b两点做抛物线的切线l1,l2相交于p点。
那么阿基米德三角形pab满足以下特性:
1、p点必在抛物线的准线上
2、△pab为直角三角形,且角p为直角
3、pf⊥ab(即为合乎射影定理)
另外,对于任意圆锥曲线(椭圆,双曲线、抛物线)均有如下特性
1、过某一焦点f搞弦与曲线处设a、b两点,分别过a、b两点搞圆锥曲线的切线
l1,l2平行于p点。
那么,p必在该焦点所对应的准线上。
2、过某准线与x轴的交点q做弦与曲线交于a、b两点,分别过a、b两点做圆锥曲线的切线l1,l2相交于p点。
那么,p必在一条垂直于x轴的直线上,且该直线过对应的焦点。
阿基米德三角形的性质及应用——2021年高考全国乙卷理科
压轴题背景探究
阿基米德三角形是一种具有特殊性质的三角形,它由阿基米德提出,在几何学中有着广泛的应用。
阿基米德三角形的性质有:
1、阿基米德三角形的三个内角相等,每个内角等于
$60^{\circ}$;
2、阿基米德三角形的三条边满足勾股定理,即两边之和大于
第三边;
3、阿基米德三角形的三条边满足比例关系,即两边之比等于
第三边。
阿基米德三角形的应用:
1、在建筑学中,阿基米德三角形用来构建桥梁、楼梯、屋顶
等建筑物;
2、在航海学中,阿基米德三角形用来测定船只在海上的位置;
3、在机械学中,阿基米德三角形用来设计齿轮系统、传动系
统等;
4、在几何学中,阿基米德三角形用来推导许多几何定理,如勾股定理、三角形内角和定理等。
阿基米德三角形性质及证明
阿基米德三角形(又称坐标三角形)是由阿基米德在其名著《几何原本》中派生的,它的特征是三边的长度都是正数,可以由三个向量的组合构成,例如从原点出发的三条实轴,阿基米德三角形有很多著名性质,其中最重要的两个是阿基米德定理(Pythagorean Theorem)和三角形和外接圆的关系,它们证明了阿基米德三角形具有非凡的性质。
阿基米德定理(Pythagorean Theorem)指出,在任何一个直角三角形中,斜边的平方总是等于两个直角边的平方之和,简记为a^2+b^2=c^2。
用向量语言表达为,对于向量a,b,c,有‖a‖^2+‖b‖^2=‖c‖^2,由它可以证明,在任何一个阿基米德三角形中,斜边的长度总是大于等于其它两边的两倍之和。
另一个著名的性质就是三角形和它的外接圆的关系,即任何一个阿基米德三角形,可以根据三条边的长度,求得该三角形的外接圆半径,即,外接圆的半径等于三边长度的和除以二,即R=a+b+c/2,即三角形的重心落在外接圆上,这也就叫做三角形的外心,它的位置在外接圆和内心的两个角的交点处。
通过以上介绍,可以看出,阿基米德三角形有着特殊的性质,包括阿基米德定理(Pythagorean Theorem)和三角形和外接圆的关系,它们都是三角几何中最为经典的定理之一。
高考解析几何热点——阿基米德三角形阿基米德三角形 圆锥曲线的弦与过弦的端点的两条切线所围成的三角形.一条弦与抛物线交于A ,B 两点,过A ,B 分别作抛物线的切线交于Q 点,△ABQ 即为阿基米德三角形.证明以下性质所需要的结论:抛物线的切线与切点弦抛物线)0(22>=p px y 上一点),(00y x P 处的切线方程是)(00x x p y y +=; 抛物线)0(22>=p px y 外一点),(00y x P 所引两条切线,切点为A 、B ,则切点弦AB 所在直线方程为 )(00x x p y y +=.抛物线)0(22>=p py x 上一点),(00y x P 处的切线方程是 )(00y y p x x +=; 抛物线)0(22>=p py x 外一点),(00y x P 所引两条切线,切点为A 、B ,则切点弦AB 所在直线方程为:)(00y y p x x +=.性质1 阿基米德三角形底边上的中线平行于抛物线的轴.证明:设1122(,),(,)A x y B x y ,M 为弦AB 中点,则过A 的切线方程为11()y y p x x =+,过B 的切线方程为:22()y y p x x =+,联立方程组得:1122211222()()22y y p x x y y p x x y px y px =+⎧⎪=+⎪⎨=⎪⎪=⎩解得两切线交点1212,22y y y y Q p⎛⎫+ ⎪⎝⎭,进而可知x QM //轴. 性质2:若阿基米德三角形的底边即弦AB 过抛物线内定点C ,则另一顶点Q 的轨迹为一条直线.证明:设(,)Q x y ,),(00y x C 由性质1得1212,22y y y y x y p +==,所以 122y y px =。
由,,A B C 三点共线知 10122221210222y y y y y y y x p p p--=-- 即 221121020102y y y y x y x y py +--=-将 1212,22y y y y y px +== 代入得 00()y y p x x =+,即为Q 点的轨迹方程. 特别地,弦AB 过抛物线的焦点)0,2(p F ,Q 点的轨迹方程为抛物线准线:2p x -=.性质3:若直线l 与抛物线没有公共点,点Q 直线l 上的动点,则切点弦AB 一定过抛物线内的某一定点.证明:设l 方程为0ax by c ++=,且1122(,),(,)A x y B x y ,弦AB 过点00(,)C x y ,由性质2可知Q 点的轨迹方程为00()y y p x x =+,该方程与0ax by c ++=表示同一对照可得00,c bp x y a a ==-,即弦AB 过定点,c bp C aa ⎛⎫- ⎪⎝⎭. 特别地,若点Q 是准线:2p x -=上的动点,则切点弦AB 一定过焦点)0,2(p F .l性质4:在阿基米德三角形中,QFA QFB ∠=∠.证明:如图,作AA '⊥准线,BB '⊥准线,连接,,,,AQ QB QF AF BF '',则1FA y k p '=-, 显然1'-=⋅QA FA k k ,所以 FA QA '⊥,又因为 AA AF '=,由三角形全等可得 QAA QAF '∠=∠,所以,QAA QAF QA QF QA A QFA '''≅⇒=∠=∠ 同理可得 ,QB QF QB B QFB QA QB QA B QB A ''''''''=∠=∠⇒=⇒∠=∠ 所以 009090QA A QA B QB A QB B QFA QFB ''''''∠=∠+=∠+=∠⇒∠=∠ 性质5:2AF BF QF ⋅=证明:2121212()2224p p p p AF BF x x x x x x ⎛⎫⎛⎫⋅=+⋅+=+++ ⎪ ⎪⎝⎭⎝⎭ 22221212244y y y y p p ⎛⎫+=++ ⎪⎝⎭而222222212121212222244y y y y y y y y p p QF AF BF p p p ⎛⎫⎛⎫⎛⎫++=-+=++=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭。
阿基米德三角形9个结论嘿,大家好!今天我们来聊聊一个有趣的数学话题,那就是阿基米德三角形。
别急,听上去可能有点高深,但其实它跟我们的日常生活还真有点儿关系。
阿基米德,那个古老的数学家,不仅会拉水,还会玩三角形!他总结出了关于三角形的九个结论,这可不是随便说说的哦,背后可是有大智慧呢。
1. 三角形的基本特性好吧,我们先从三角形的基本特性说起。
说到三角形,首先想到的就是它的三个边和三个角。
说白了,三角形就是由三条线段围成的一个小空间。
大家可能听说过,三角形的内角和是180度,这可真是个金科玉律。
你要是学数学的话,绝对能在考试中遇到!而且,三角形的边越长,所对应的角也越大,这跟咱们生活中的道理很像——力量和能量总是相辅相成的,对吧?1.1. 直角三角形的神奇接着咱们来说说直角三角形,这可是个特别的家伙。
只要一个角是90度,其他两个角自然就成了锐角。
阿基米德说,直角三角形的面积计算起来可简单得很,只要把两条直角边相乘,再除以二,简直就是个数学小白都能搞定的公式!这就像你去做菜,只要把材料混在一起,结果就能香喷喷地出锅。
1.2. 相似三角形的奥秘再来聊聊相似三角形,哇,这可是个神奇的现象!如果两个三角形的角相等,那它们的形状就完全一样,但大小可以不同,就像兄弟姐妹,一个高一个矮。
这个性质在建筑设计、艺术创作中可都用得上,甚至在生活中选衣服的时候,你总是会挑选合适的款式对吧?这就是相似的魅力!2. 三角形的面积与周长好的,接下来我们再深入一点,聊聊三角形的面积和周长。
大家都知道,周长就是把三条边加起来,而面积则有几种不同的计算方法。
比如,对于一般的三角形,可以用赫龙公式,这个名字听起来很高大上,但其实就是把三边加起来除以2,得到半周长,然后再进行一系列计算,最后得出结果。
听起来复杂,但只要动动脑筋就能搞定。
2.1. 运动中的三角形有趣的是,三角形在运动中也有它的身影。
想象一下,在跑步比赛中,运动员的起跑线和终点线形成了一个三角形,这个三角形的高和底边就决定了运动员的速度和跑道的设计。
阿基米德三角形的性质及其应用
阿基米德三角形是一种重要的数学概念,由古希腊数学家阿基米德最早提出。
它是个有顶点的三角形,不论其形状是什么,其三条边被称为顶点。
在数学中,它是一种数学形式的四边形,它的每个顶点都有一个对应的角度,用来限制角度的大小。
阿基米德三角形的性质极为丰富,它可以有几何变换的不同属性,如改变顶点
的角度,改变形状,改变边长等。
它有一些著名的性质,如“例外”、“三边子角”、“中间角定理”等。
其中最令人熟悉的是“例外”定理,它指出在一个三角形中,任何两个角的大小总和不超过180度。
阿基米德三角形应用广泛,它有重要的应用价值。
在物理学方面,它用于测量
物体的大小、形状和距离,也可用于判断一个物体的动态和静态重力等。
在力学方面,它可用于计算结构的强度和稳定性,比如桥梁、建筑物等,广泛运用于建筑学,工程学,航空航天等领域。
同时,它还在天文学、生物学、军事学等领域得到应用。
综上所述,阿基米德三角形对许多领域有着重大的影响,它的应用占据着不可
替代的地位。
在基础教育中,学习者应该全面理解和掌握阿基米德三角形的性质和应用,以此来提高自己的知识水平。
阿基米德三角形斜率之和是-1。
阿基米德三角形是指圆锥曲线的弦与过弦的端点的两条切线所围成的三角形。
对于任意圆锥曲线均有个特性,过某一焦点F做弦与曲线交于A、B两点,分别过A、B两点做圆锥曲线的切线L1L2相交于P点,那么PAB称作阿基米德三角形,该三
角形满足以下特性:
1.P点必在抛物线的准线上。
2.三角形为直角三角形。
3.切线互相垂直。
4.过某焦点F做弦与曲线交于A、B两点,分别过A、B两点做圆锥曲线的切线
L1L2相交于P点,那么有PF⊥AB。
5.过某焦点F做弦与曲线交于A、B两点,分别过A、B两点做切线,切点分别为
D、E,连结DE与该焦点F相交,那么该焦点的切线互相垂直,即EF⊥DE。