液晶高分子材料
- 格式:doc
- 大小:18.00 KB
- 文档页数:6
液晶高分子材料
液晶高分子材料是一种具有特殊结构和性能的材料,它融合了液晶和高分子两种材料的特点,具有优异的光学、电学和力学性能,被广泛应用于液晶显示器、光学器件、电子材料等领域。
首先,液晶高分子材料具有优异的光学性能。
由于其分子结构的特殊性,液晶高分子材料能够表现出液晶态和高分子态的双重性质,使其在光学器件中具有重要的应用价值。
例如,在液晶显示器中,液晶高分子材料能够通过外加电场调节其分子排列,从而实现液晶分子的定向排列和光学性质的调控,使得显示器能够呈现出丰富的色彩和清晰的图像。
其次,液晶高分子材料还具有优异的电学性能。
由于其分子结构的特殊性,液晶高分子材料在外加电场作用下能够发生液晶相变,从而实现电光调制和电场调控等功能。
这使得液晶高分子材料在电子材料领域具有广泛的应用前景,例如在智能光电器件、电光调制器件和光电器件等方面都有着重要的应用价值。
此外,液晶高分子材料还具有优异的力学性能。
由于其分子结构的特殊性,液晶高分子材料在外力作用下能够发生形变和结构调控,使其在材料加工和力学性能方面具有独特的优势。
例如在材料加工领域,液晶高分子材料能够通过外力调控其分子排列和结构,从而实现材料的定向排列和力学性能的调控,使得材料具有更好的加工性能和应用性能。
总的来说,液晶高分子材料具有优异的光学、电学和力学性能,具有广泛的应用前景。
随着科学技术的不断发展和进步,相信液晶高分子材料将在液晶显示器、光学器件、电子材料等领域发挥越来越重要的作用,为人类社会的发展和进步做出更大的贡献。
光致形变液晶高分子(lcp)材料一、材料概述光致形变液晶高分子(LCP)材料是一种具有特殊性能的高分子材料,因其具有优异的机械性能、耐高温、耐腐蚀等特性,被广泛应用于多个领域。
本文将介绍LCP材料的性质、特点、制备方法及其应用领域。
二、材料性质LCP材料的主要特点包括其独特的液晶高分子结构,这种结构使得材料在加热时能形成有序的晶体结构,具有高强度、高模量和高耐热性等特性。
此外,LCP材料还具有光致形变性能,即在光照下,材料会发生微小的形状改变。
这种性能使得LCP材料在光学、机械等领域具有广泛的应用前景。
三、制备方法LCP材料的制备方法主要包括溶液浇铸法和熔融挤出法。
溶液浇铸法是将前驱体溶液倒入模具中,经固化、脱模和后处理得到成品。
熔融挤出法是将预聚物和交联剂混合熔融,通过挤出机塑化后浇入模具中,经固化、脱模和后处理得到成品。
制备过程中需要严格控制反应温度、压力和反应时间等参数。
四、应用领域1.电子设备:LCP材料可用于制造电子设备零部件,如连接器、传感器等,其优异的耐高温、耐腐蚀性能使得LCP材料成为电子设备中的理想材料。
2.航空航天:LCP材料可用于制造飞机零部件、仪表盘等高端产品,其高强度、高模量特性使得LCP材料在航空航天领域具有广泛应用前景。
3.医疗器械:LCP材料可用于制造医疗器械,如注射器针头、手术缝合线等,其良好的生物相容性和耐腐蚀性能使得LCP材料成为医疗器械领域的热门材料。
4.光学器件:LCP材料的独特性能使其在光学器件领域具有广泛应用前景,如光路指示器、激光器反射镜等。
其光致形变性能使得LCP 材料在光学器件中具有独特的应用价值。
五、未来展望随着科技的不断发展,LCP材料的应用领域还将不断扩大。
未来,LCP材料有望在更多领域发挥重要作用,如新能源汽车、可穿戴设备等领域。
同时,随着LCP材料的制备技术的不断改进,有望实现规模化生产,降低成本,进一步拓宽其应用领域。
总之,光致形变液晶高分子(LCP)材料作为一种具有优异性能的高分子材料,具有广泛的应用前景和市场潜力。
宝理液晶高分子LCP材料液晶高分子(Liquid Crystal Polymers, LCPs)是一种具有特殊结构和性质的高分子材料。
宝理液晶高分子(Liquid Crystal Polymer, LCP)是市场上的一种优质LCP材料。
宝理液晶高分子具有许多独特的性能,适用于广泛的应用领域,如电子、电气、汽车和航空航天等。
首先,宝理液晶高分子具有优异的热稳定性。
它具有极高的玻璃化转变温度和熔融温度,使其能够在高温环境中保持稳定性。
这种热稳定性使宝理LCP成为电子和电气元件的理想选择,因为这些元件通常需要在高温下工作。
其次,宝理液晶高分子具有出色的机械性能。
它具有高强度和高刚度,能够承受较大的拉伸、压缩和弯曲力。
这使得宝理LCP在汽车和航空航天等领域中被广泛应用于结构零件,以提供必要的强度和稳定性。
此外,宝理液晶高分子还具有良好的化学稳定性和阻燃性。
它对化学品的抗性较高,能够抵御腐蚀和溶解。
另外,在高温下宝理LCP材料能够保持较低的燃烧速度和几乎无烟的燃烧特性,大大降低了火灾的危险。
宝理液晶高分子还有很多其他优点。
它具有较低的线膨胀系数和优异的尺寸稳定性,能够在变温环境下保持几乎恒定的尺寸。
这使得宝理LCP在精密仪器、光纤通信等领域中被广泛使用。
此外,宝理LCP还具有良好的电绝缘性,可以用于电子元件的绝缘层或封装材料。
值得一提的是,宝理液晶高分子可以通过流延、注射成型和挤塑等加工方法加工成各种形状和尺寸。
这使得宝理LCP不仅适用于传统的制造和加工方法,也能够满足复杂构件和小尺寸产品的要求。
总的来说,宝理液晶高分子是一种具有特殊结构和性能的高分子材料。
其独特的热稳定性、机械性能、化学稳定性和阻燃性使其在电子、电气、汽车、航空航天等领域得到广泛应用。
宝理LCP材料的加工灵活性和多样化形状也为各种应用提供了便利。
宝理液晶高分子在未来的发展中有望继续拓宽应用领域,并在各个领域中发挥更大的作用。
液晶高分子材料液晶高分子材料是一类结构复杂、性质卓越的高分子材料,具有液晶性质和高分子特性的综合性材料。
液晶高分子材料的结构由高分子主链和液晶侧链构成,液晶侧链通过伸展和收缩,可以调控高分子主链的排列方式,从而影响材料的物理和化学性质。
液晶高分子材料具有很多独特优势。
首先,它们可以改变液晶分子的排列方式和空间取向,实现自组装和自组织,形成复杂的结构和多级层次组织。
其次,液晶高分子材料具有优异的光电、机械和热学性质,常用于制备液晶显示器、电子产品、名片式显示器等。
另外,液晶高分子材料还可以用于制备新型离子导体、光导体和电子传输材料。
液晶高分子材料的设计和制备需要结合化学、物理、材料科学等多个学科知识。
目前,主要的液晶高分子材料包括液晶聚合物、液晶弹性体、液晶嵌段共聚物、液晶有机-无机杂化材料等。
液晶聚合物是一种高分子链上带有液晶侧链的高分子。
液晶侧链与高分子主链之间通过共价键相互连接,构成一种新型的高分子结构。
液晶聚合物通常采用自由基聚合、阴离子聚合和阳离子聚合等方法制备。
液晶聚合物的液晶性质由液晶侧链决定,而机械、热学和光学性质则受到高分子主链的影响。
因此,液晶聚合物的物理和化学性质比较复杂,需要综合考虑多个因素。
液晶弹性体是一种具有液晶和弹性性质的综合性材料。
其结构由液晶分子、高分子主链和交联结构三部分组成,其中液晶分子和高分子主链通过共价键连接,而交联结构通过物理交联相互连接。
液晶弹性体的性质可通过调控液晶分子的排列方式、高分子主链的构型和交联结构的密度来实现。
由于具有液晶和弹性双重性质,液晶弹性体的应用领域非常广泛。
例如,可以用于制作医疗、航空航天和纺织品等材料。
液晶嵌段共聚物是一种由高分子块和液晶块交替排列组成的高分子材料。
液晶块和高分子块通过共价键或非共价键相互连接,构成一种新型的高分子结构。
液晶嵌段共聚物的性质和结构主要受到高分子块和液晶块的比例、序列和空间位置制约。
其物理和化学性质随比例和序列的变化而发生改变。
液晶高分子材料液晶高分子材料是一种具有特殊结构和性能的材料,它在液晶状态下具有液体的流动性,同时又具有固体的有序性。
液晶高分子材料通常由高分子主链和液晶基团组成,通过特殊的加工工艺可以制备成具有特定性能的材料,广泛应用于显示器件、光学材料、传感器等领域。
本文将从液晶高分子材料的结构特点、制备工艺和应用领域等方面进行介绍。
首先,液晶高分子材料的结构特点。
液晶高分子材料的主链通常是由碳、氢等元素组成的高分子链,而液晶基团则是具有液晶性质的分子单元。
这些液晶基团在高分子主链上的排列方式和空间取向对材料的性能具有重要影响。
通常液晶高分子材料可以分为低分子液晶高分子和高分子液晶高分子两类,它们的结构特点和性能表现有所不同。
其次,液晶高分子材料的制备工艺。
液晶高分子材料的制备通常包括原料选择、聚合反应、加工成型等步骤。
在原料选择方面,需要选择具有液晶性能的液晶基团和适合的高分子主链,通过化学合成或物理混合的方式将它们组装成液晶高分子材料。
在聚合反应中,需要控制反应条件和聚合度,以获得理想的分子结构和分子量。
在加工成型中,需要利用特殊的加工设备和工艺,将液晶高分子材料制备成薄膜、纤维、片材等形式,以满足不同领域的需求。
最后,液晶高分子材料的应用领域。
液晶高分子材料具有优异的光学性能、电学性能和机械性能,因此在显示器件、光学材料、传感器等领域有着广泛的应用。
在液晶显示器件中,液晶高分子材料作为液晶材料可以实现信息的显示和传输,广泛应用于电视、电脑显示屏等设备中。
在光学材料领域,液晶高分子材料可以制备成具有特殊光学性能的材料,用于制备偏光片、光学波片等光学元件。
在传感器领域,液晶高分子材料可以利用其对外界环境的敏感性,制备成温度传感器、压力传感器等传感器元件。
总之,液晶高分子材料具有特殊的结构和性能,通过合理的制备工艺可以制备成具有特定性能的材料,广泛应用于显示器件、光学材料、传感器等领域。
随着科学技术的不断发展,相信液晶高分子材料在未来会有更广阔的应用前景。
液晶高分子材料液晶聚合物(LCP)是2O世纪70年代开发出的一类具有优异性能的高性能聚合物(主要用来制作特种合成纤维和特种工程塑料~其分子具有自发取向的特征(就其液晶行为通常可分为溶致LCP和热致LCP。
按其化学结构又可分为主链LCP和侧链LCP。
LCP制品具有高强度、高模量~尺寸稳定性、阻燃性、绝缘性好~耐高温、[1]耐辐射、耐化学药品腐蚀、线膨胀率低~并有良好的加工流动性等优异性能。
预计在电子电器、航空航天、光纤通讯、汽车工业、机械制造和化学工业等领域[2] 具有广阔的应用前景。
一(国内外液晶高分子的研究概况低分子液晶的发现可追溯至19世纪末~而高分子液晶的发现则始于2O世纪中叶。
1950年Elliott和Ambrose在聚氨基甲酸酯的氯仿溶液制膜过程中发现溶液为[3]胆甾相液晶~从而在高分子领域中产生了液晶相的概念。
迄今为止~世界上已有十多家公司实现了工业化~年产量已超过10000 t。
主要生产国有美国和日本。
1(1 美国1972年美国Du Pont公司研究成功的Kevlar系列溶致液晶纤维标志着合成高分子液晶开始走向市场。
井引起人们广泛的兴趣。
1984年Darto和Manufacturing 公司开发聚芳酯热致LCP并首次实现热致LCP的工业化(1 985年Hoechst Clanese 公司提出了一种易加工的热致LCP产品。
1986年East—maD。
公司开发丁另外两种成本较低的LCP产品XTG 和Ekono。
进入9O年代后LCP更是前所末有的惊人速度发展。
1994年Du Pont公司开发了新型的Zeinte LCP~其生产能力达3000 t,a~[4]Dartc。
公司开发的新型Xydar将LCP的价格降到11$,kg以下。
AMOCO研制成功了LCP中热变形温度高达(375?)的新品种。
Hoechst Clanese公司最近开发了一种满足特高性能电子部件要求的新品种vec—trae130~具有很高的流动性,而新开发的电镀级LCP是世界上首次开发成功的可电镀LCP。
液晶高分子材料一、概述液晶 LCD(Liquid Crystal Display)对于许多人而言已经不是一个新鲜的名词。
从电视到随身听的线控,它已经应用到了许多领域。
液晶现象是1888年奥地利植物学家F.Reintizer在研究胆甾醇苯甲酯时首先发现的。
研究表明,液晶是介于液体和晶体之间的一种特殊的热力学稳定相态,它既具有晶体的各相异性,又有液态的流动性,液晶高分子就是具有液晶性的高分子,大多数由小分子量基元键结合而成,它是一种结晶态,既具有液体的流动性又具有晶体的各向异性特征。
二、分类1、主链型液晶高分子主链型高分子液晶是指介晶基元处于主链中的一类高分子材料。
在20世纪70 年代中期以前,它们多是指天然大分子液晶材料。
自从Dupont 公司首次获得聚芳香酰胺的溶液型主链型高分子液晶性质的应用以来,主链型高分子液晶材料的合成、结构与性能关系和应用等都得以很大发展。
按液晶形成过程,主链型高分子液晶可以分为溶液型主链高分子液晶和热熔型主链高分子液晶。
(1)溶液型主链高分子液晶其研究最多的则是聚芳香酰胺类和聚芳香杂环类聚合物。
酰胺为代表的一类溶液型高分子液晶而言,就必须借助于极强的溶剂,例如,通常使用质量分数大于99%的浓硫酸等。
除了聚肽、聚芳香酰胺和聚芳香杂环类溶液主链高分子液晶以外,纤维素及其衍生物也能形成溶液型液晶。
主要用于制备超高强度、高模量的纤维和薄膜。
材料的高强度、高模量来源于聚合物链在加工过程中,在一些特殊的溶剂中形成了各向异性的向列态液晶。
(2)热熔型主链高分子液晶其高分子液晶材料与普通的高分子材料相比,有较大的性质差别。
良好的热尺寸稳定性;透气性非常低;对有机溶剂的良好耐受性和很强的抗水解能力。
基于热熔型主链液晶高分子的上述性质,它特别适用于上述各性质综合在一起的场合。
在电子工业中制作高精度电路的多接点部件,另外,易流动和低曲翘也使得它能制成较复杂的精密铸件,同时能抗强溶剂。
除了电子工业中的应用以外,它还可用于制备化学工业中使用的阀门等。
功能高分子——高分子液晶材料高分子液晶材料是一种由高分子化合物组成的材料,具有液晶相特性的特殊分子结构和性质。
由于高分子液晶材料具有优异的物理、化学和光学性能,广泛应用于光电显示、光学器件、生物医学、纳米技术等领域。
本文将重点介绍高分子液晶材料的特性、合成方法以及应用前景。
高分子液晶材料的特性主要包括以下几个方面。
首先,高分子液晶材料具有高的机械强度和化学稳定性,可以在广泛的环境下使用。
其次,高分子液晶材料具有自组装性能,可以形成有序排列的分子结构,展示出特殊的液晶相。
此外,高分子液晶材料还具有优异的导电、发光、感光等性能,可广泛应用于光电显示和光学器件领域。
高分子液晶材料的合成方法主要有两种。
一种是通过聚合反应合成高分子液晶材料,包括自由基聚合、阴离子聚合、阳离子聚合等反应方式。
另一种方法是通过高分子功能化合成高分子液晶材料,即在已有的高分子链上引入液晶基团或共聚物中含有液晶单体。
合成高分子液晶材料需要考虑合成的效率、纯度和控制精度等方面的问题。
高分子液晶材料的应用前景十分广阔。
首先,在光电显示领域,高分子液晶材料可以应用于液晶显示器、有机发光二极管(OLED)等设备的制备。
其次,在光学器件领域,高分子液晶材料可以应用于光电调制器、偏振器、光纤等设备的制造。
此外,高分子液晶材料还可以应用于生物医学领域,如用于组织工程材料、药物传递系统等方面的研究。
总之,高分子液晶材料以其独特的性能和结构在科学研究和工业应用中发挥着重要作用。
随着科技的进步和社会的发展,高分子液晶材料在光电显示、光学器件、生物医学等领域的应用前景将进一步拓展,有望在未来的科学研究和工业生产中得到更广泛的应用。
液晶高分子材料一、液晶高分子材料的概念和特点液晶高分子材料是一类具有液晶性质的高分子材料,它融合了高分子材料和液晶材料的优点。
液晶高分子材料具有以下特点:1.液晶性质:液晶高分子材料在一定条件下表现出液晶相,即具有流动性但又有一定的有序性。
它的分子排列可表现为各种各样的液晶相,如列型液晶、层型液晶等。
2.高分子性质:液晶高分子材料由高分子结构构成,具有高分子材料的特点,如分子量大、多样性、可塑性等。
这使得液晶高分子材料具有良好的可加工性和机械性能。
3.光学性质:液晶高分子材料的分子排列具有一定的光学性质,可通过外界电场、温度等条件的改变而改变其光学性能。
这使得液晶高分子材料具有潜在的应用于光学显示器件、光学调节器等领域的可能性。
二、液晶高分子材料的应用领域液晶高分子材料具有多样的应用领域,主要包括以下几个方面:2.1 光学显示器件液晶高分子材料在光学显示器件领域有广泛的应用。
例如,液晶高分子材料可以制备柔性显示屏幕,具有轻薄、可弯曲、低功耗的特点,使得其成为可折叠手机、可弯曲电子纸等设备的关键材料。
2.2 光学调节器液晶高分子材料的光学性质可以通过外界电场、温度等条件的改变而调节,因此在光学调节器领域具有潜在的应用前景。
例如,液晶高分子材料可用于制造可调节焦距的透镜,在光学成像、眼镜等领域具有重要作用。
2.3 传感器液晶高分子材料的液晶相具有高度敏感性,当外界条件发生变化时,液晶相的结构和性质也会相应改变。
这使得液晶高分子材料在传感器领域有广泛的应用,可以制造温度、压力、湿度等类型的传感器。
2.4 生物医学材料液晶高分子材料在生物医学领域也具有应用潜力。
例如,液晶高分子材料可用于制造人工关节、缓释药物等医疗器械,提升病人的生活质量和治疗效果。
三、液晶高分子的制备方法液晶高分子材料的制备方法多种多样,常见的制备方法包括以下几种:3.1 合成法液晶高分子的合成是制备液晶高分子材料的关键步骤。
合成方法可以是传统的聚合方法,如自由基聚合、阴离子聚合等,也可以是特殊的合成方法,如液晶高分子的液相结晶聚合法。
液晶高分子材料液晶高分子材料是一种具有液晶结构的高分子材料,具有独特的物理和化学性质,广泛应用于液晶显示器、光学器件、传感器、生物医学材料等领域。
本文将对液晶高分子材料的结构特点、性质和应用进行详细介绍。
液晶高分子材料的结构特点主要表现在分子排列上。
液晶高分子材料分子链通常呈现出有序排列,这种有序排列使得材料具有液晶相。
液晶相是介于固体和液体之间的一种物态,具有流动性和有序性。
液晶高分子材料的分子排列可以分为向列型、扭曲型、螺旋型等不同结构,这些结构决定了材料的性质和应用。
液晶高分子材料具有许多独特的物理和化学性质。
首先,液晶高分子材料具有良好的光学性能,具有双折射、偏振、色散等特点,适用于制造液晶显示器、偏光片、光学棱镜等光学器件。
其次,液晶高分子材料具有流动性和可塑性,可以通过加热或加压改变分子排列,使材料在不同温度、压力下呈现出不同的性质,适用于制造形状记忆材料、变色材料等功能性材料。
此外,液晶高分子材料还具有热稳定性、化学稳定性、生物相容性等优良性质,适用于制造传感器、生物医学材料等高端应用产品。
液晶高分子材料在液晶显示器领域有着广泛的应用。
液晶显示器是一种利用液晶高分子材料的光学特性来显示图像的平面显示设备,广泛应用于电视、电脑、手机等电子产品中。
液晶高分子材料作为液晶显示器的关键材料,其性能直接影响着显示器的分辨率、对比度、色彩饱和度等指标。
目前,随着显示技术的不断发展,对液晶高分子材料的要求也越来越高,需要具有更高的透光率、更快的响应速度、更宽的视角等性能。
除了液晶显示器,液晶高分子材料还在光学器件领域有着重要的应用。
例如,偏光片是一种利用液晶高分子材料的偏振特性来调节光线方向的光学器件,广泛应用于太阳眼镜、相机镜头、液晶投影仪等产品中。
此外,液晶高分子材料还可以制备光学棱镜、偏光镜、光学滤波器等光学器件,用于调节光线的传播方向、波长选择等光学功能。
液晶高分子材料还在传感器领域有着重要的应用。
液晶高分子材料液晶高分子材料是一种具有特殊光学性质的材料,广泛应用于电子设备、光学仪器和显示技术等领域。
它的出现极大地推动了科技的发展和人们生活的便利性。
本文将从液晶高分子材料的定义、特性、应用以及未来发展等方面进行介绍。
一、液晶高分子材料的定义和特性液晶高分子材料是一种由高分子化合物构成的液晶材料。
液晶是介于液体与固体之间的一种物质状态,具有流动性和一定的有序性。
液晶高分子材料具有以下几个主要特性:1. 具有可塑性:液晶高分子材料具有良好的可塑性,可以通过加热和拉伸等方式改变其形态和性质,使其适应不同的应用需求。
2. 具有光学性能:液晶高分子材料的分子排列结构对光的传播和反射具有很大影响,因此可以用于制造光学仪器和显示器件。
3. 具有电学性能:液晶高分子材料在电场作用下可以改变其分子排列结构,从而实现电光效应和液晶显示。
4. 具有热学性能:液晶高分子材料具有较低的熔点和热传导性能,可以在较宽的温度范围内保持其液晶特性。
液晶高分子材料在电子设备、光学仪器和显示技术等领域有着广泛的应用。
以下是几个常见的应用领域:1. 液晶显示器:液晶高分子材料作为液晶显示器的关键材料,广泛应用于电视、电脑显示器、手机屏幕等消费电子产品中。
其优点是体积小、重量轻、功耗低,同时也可以实现高分辨率和广视角。
2. 光学仪器:液晶高分子材料可以制成光学调制器、偏振器、光学滤波器等光学元件,用于调节和控制光的传播和反射,广泛应用于激光器、光纤通信等领域。
3. 电子设备:液晶高分子材料还可以用于制造电子元件和电子器件,如电容器、电阻器、传感器等,以及柔性电子设备,如可弯曲显示屏、可穿戴设备等。
4. 其他领域:液晶高分子材料还可以应用于医学、太阳能电池、光催化等领域,具有广阔的发展前景。
三、液晶高分子材料的发展趋势随着科技的不断进步和人们对高清晰度、高亮度、高能效的要求不断提高,液晶高分子材料也在不断发展和创新。
未来液晶高分子材料的发展趋势主要包括以下几个方面:1. 高清晰度:研发更高分辨率和更高亮度的液晶高分子材料,以满足人们对图像质量的要求。
液晶高分子材料
:现代人的生活处处都有液晶。
液晶高丹子是一类较新的高分子材料,具有许多独特的优良性能。
液晶是一些化合物所具有的介于固态晶体的三维有序和无
规液态之间的一种中间相态,又称介晶相(mesophase),是一种取向有序流体,
既具有液体的易流动性,又有晶体的双折射等各向异性的特征。
1888年奥地利植物学家F Reinitzer在研究胆甾醇苯甲酸酯在145.6?熔化时,先变成小透明的浑浊液体,继续加热至178.5C变为清亮的各向同性液体在I45.5? 至l78.5? 之问胆甾醇苯甲酸酯呈现了一种新的物质形态,即液晶。
液晶既具有晶体的各相异性,又有液态的流动性。
小分子液晶的这种神奇状态引起了人们浓厚兴趣,现已发现多种液晶材料。
这些主要是些有机材料,形成液晶的物质通常具有刚性的分子结构,分子的长宽比例大于一,呈棒状构象,同时还具有在液相下维持分子某种排序所必需的凝聚力。
这种凝聚力通常是由结
构中的强极性基团,高度可极化基团或氢键提供。
在小分子液晶研究的基础上科学家不难联想到大分子液晶,1937年Bawden和Pirie在研究烟草花叶病病毒时,发现其悬浮液具有液晶的特性。
这是人们第一次发现生物高分子的液晶特性,其后1950年,Elliott 与Ambrose第一次合成了液晶高分子,溶致型液晶的研究工作至此展开。
50年代到7O年代,美国Duponnt公司投入大量人力才力进行液晶高分子发面的研究,取得r极大成就,1959年推出芳香酰胺液晶,但分子量较低,1963年,用低温溶液缩聚法合成全芳香聚酰胺,
并制成阻燃纤维Nomex,1972年研制出强度优于玻璃纤维的超高强.高模量的Kevlar纤维,并付注实用,以后,液晶高分子的研究则从溶致型转向为热致型。
在这一方面Jackson等做出了较大贡献,他们合成了对苯二甲酸已二醇酯与对羟
基苯甲酸的共聚物,可注塑成型,这是一种模量极高的自增强液晶材料。
同一时
期其他国家也相继展开研究,此后液晶高分子的合成应用领域又出现一个新的高
潮。
向列型液晶(nematic liquid crystals1):液晶分子刚性部分平行排列,重心排
列无序,保持一维有序性,液晶分子沿其长轴方向可移动,不影响晶相结构,是
流动性最好的液晶
近晶型液晶(smectic liquid crystals):在所有液晶中近固体晶体而得名,分
子刚性部分平行排列,构成垂直于分子长轴方向的层状结构,具二维有序性。
胆甾型液晶(cholestic liquid crystals):构成液晶的分子是扁平型的,依靠端基的相互作用平行排列成层状结构,但它们的长轴与层面平行而不是乖直。
在
相邻两层之问,由于伸出半面外的光学活性基团的作用,分了长轴取向依次规则
地旋转一定角度,层层旋转构成螺旋结构。
此类液品可使反射的白光发生色散而
呈现彩虹般得颜色.
丰链型液晶高分子:液品基元存高分子主链上,如kelvar纤维;侧谜型液晶高分子:液晶基元通过柔性链与主链相连.大多数功能性液晶高分子属于此类天然高分子液晶:天然高分子在特定条件下表现为液晶态,如烟花卓病毒、棱酸
细胞膜和纤维素等一
新型液晶高分子:甲壳型液晶高分子和树枝状液高分子
大多数的商业化LCP产品都具有这一特性。
与柔性链高分子相比,分子主链或侧链带有介晶基元的LCP,最突出的特点是在外力场中很容易发生分子链取向。
经实验研究表明,LCP处于液晶态时,无论是熔体还是溶液,都具有一定的取向
度。
LCP液体流经喷丝孔、模口、流道的时候,即使在很低剪切速率下获得的取
向,在大多数的情况下,不再进行后拉伸,就能达到一般柔性链高分子经过后拉
伸的分子取向度。
因此即使不添加增强材料也能达到甚至是超过普通工程材料用
百分之十几玻纤增强后的机械强度,表现出高强度高模量的特性。
由于LCP介晶基元大多由芳环构成,其耐热性相对比较突出。
例如Xydar熔点为421?,空气中的分解温度达到560"C,其热变形温度可达350"C,明显高于绝
大多数塑料。
此外LCP还有很高的锡焊耐热性,例如Ekonol的锡焊耐热性为300"--340?/60s
由于其取向度高,LCP在其流动方向的膨胀因数要比普通工程塑料低一个数量级,达到一般金属的水平,甚至出现负值的情况,这样LCP在加工成型过程中不收缩或收缩很低,保证了制品尺寸的精确和稳定。
LCP分子链由大量芳香环所构成,除了含有酰肼键的纤维外,都特别难以燃烧,燃烧后炭化,表示聚合物耐燃烧性指标——极限氧指数(L0I)相当高,如Kevlar在火焰中有很好的尺寸稳定性,若在其中添加少量磷等,LCP的L0I值可达40以上。
LCP绝缘强度高和介电常数低,而且两者都很少随温度的变化而变化,并导热和导电性能低,其体积电阻一般可高达1013Ω?in,抗电弧性也较高。
另外LCP的熔体粘度随剪切速率的增加而下降,流动性能好,成型压力低,因此可用普通
的塑料加工设备来注射或挤出成型,所得成品的尺寸很精确。
此外,LCP具有高抗冲性和抗弯模量,蠕变性能很低,其致密的结构使其在很宽的温度范围内不溶于一般的有机溶剂和酸碱,具有突出的耐化学腐蚀性。
当然,LCP尚存在制品的机械性能各向异性、接缝强度低、价格相对较高等缺点,这些都有待于进一步的改进。
分子主链或侧链带有介品基元的液晶高分子,在外力场容易发生分子链取
向,利用这种特性可制得高强度高模量材料.例如,聚对苯二甲酸对苯二胺(PPTA)在用浓硫酸溶液纺丝后,可以得到Kevlar纤维,比强度为钢丝的6至7倍,比模最为钢丝或玻纤的2至3倍,而比重只有钢丝的五分之一。
此纤维可在~45?—200? 使用.阿波罗登月飞船软着陆降落伞带就是用Kevlar~29制备的.Kevlar纤维还可用于防弹背心,飞机、火箭外壳材料和雷达天线罩等
液晶高分子分子复合材料(Molecular composite)是新型的高分子复合材料,它通常是指将纤维与树脂基体的宏观复合扩展到分子水平的微观复合,也就是用刚性高分子链或微纤作增强剂,并以接近分子水平的分散程度分散到柔性高
分子基体中的复合材料。
树脂基复合材料通常是以玻璃纤维、碳纤维等宏观纤维
作为增强成分,以热固性或热塑性树脂为基质复合而成的。
其产品的品质等级很
多,用途十分广泛,但仍存在一些问题。
例如纤维与基质材料间的粘合力不够理
想,以及两者的热膨胀因数相差较大,而这两个问题正是材料破坏的关键,导致
其冲击性能较低。
此外,特别是在使用玻璃纤维作为增强体的场合,配料的高粘
度和高摩擦不仅要求很高的能量消耗,而且很容易造成设备的损坏。
由于传统纤
维增强复合材料的这些局限性,人们开始寻求一种新的复合材料体系。
液晶高分
子分子复合材料的出现为人们获得具有高模量、高性能、易加工的新型复合材料
提供了一条崭新的途径和方法。
由液晶高分子制成的膜材料具有较强的选择渗透性,可用于气、液相体系组
分的分离分析。
如聚碳酸酯(PC)与液晶EBBA制成的复合膜可用于气体分离。
高分子一液晶一冠醚复合膜在紫外(360nm )和可见光(460nm)照射下,钾离子(K )会
发生可逆扩散,因此它可用于人工肾脏和环境保护工程。
细胞膜中的磷脂可形成溶致型液晶;构成生命的基础物质DNA和RNA属于生物性胆甾液晶,它们的螺旋结构表现为生物分子构造中的共同特征;植物中起光合
作用的叶绿素也表现液晶的特性。
英国著名生物学家指出:“生命系统实际上就
是液晶,更精确地说,液晶态在活的细胞中无疑是存在的”。
液晶高分子是一类
全新的功能材料,在高科技领域具有广阔的应用前景,随着研究的深入和应用的
拓展,我们期待更高更强功能液晶材料的问世。