一元一次不等式与一次函数、一元一次不等式组
- 格式:doc
- 大小:489.97 KB
- 文档页数:13
一元一次不等式与一次函数
一元一次不等式和一次函数是初中数学中的两个重要概念,它们的关系如下:
一元一次不等式:指只有一个未知数(一元),且方程中未知数的最高次数为1(一次)的不等式,例如:2x+1>5 或者x-3<7。
一次函数:指只有一个未知数(一元),且方程中未知数的最高次数为1(一次)的函数,例如:y=2x+1 或者y=x-3。
这两个概念之间的关系在于,我们可以将一元一次不等式转化为一次函数的形式进行分析和解决。
具体来说,我们可以将不等式中的未知数视为函数的自变量x,将不等式的两边分别视为函数的因变量y,例如:2x+1>5 可以转化为y=2x+1 和y=5 两个函数,我们可以画出这两个函数的图像,通过比较函数图像来解决不等式的解集。
例如,将不等式x-3<7 转化为一次函数的形式,得到y=x-3 和y=7 两个函数,我们可以在坐标系中画出这两个函数的图像,发现两个函数的交点在x=10 处,因此不等式的解集为x<10。
总之,一元一次不等式和一次函数之间有着紧密的联系,将不等式转化为函数的形式可以帮助我们更好地分析和解决问题。
第一章一元一次不等式和一元一次不等式组第一节不等关系一、生活中的不等关系1.不等关系在现实生活中并不少见,大家肯定接触过不少,能举出例子吗?那么,如何用式子表示不等关系呢?请看例题:如图,用两根长度均为l cm的绳子,分别围成一个正方形和圆.1)如果要使正方形的面积不大于25 cm2,那么绳长l应满足怎样的关系式?2)如果要使圆的面积不小于100 cm2,那么绳长l应满足怎样的关系式?3)当l=8时,正方形和圆的面积哪个大?l=12呢?4)你能得到什么猜想?改变l的取值,再试一试.本题中大家首先要弄明白两个问题,一个是正方形和圆的面积计算公式,另一个是了解“不大于”“大于”等词的含意.圆的面积是πR2,其中R是圆的半径.两数比较有大于、等于、小于三种情况,“不大于”就是等于或小于.一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式(inequality).列不等式:不等式表示代数式之间的不等关系,与方程表示的相等关系相对应。
列不等式表示不等关系的方法步骤:(1)分析题意,重点找出题中的各种量;(2)寻找各种量之间的不等关系;(3)用代数式表示各种量(4)用适当的不等号将不等关系连接起来。
例1.用不等式表示(1)a是正数;(2)a是负数;(3)a与6的和小于5;(4)x与2的差小于-1;例2.根据下面的数量关系列不等式试比较3x2-2x+7与4x2-2x+7的大小例3.数形结合题型a,b两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:(1)a______b;(2)|a|______|b|;(3)a+b_________0;(4)a-b_______0;(5)a+b_______a-b;(6)ab______a.练一练:(1)x 的32与5的差不小于1; (2)x 与6的和小于等于9;(3)8与y 的2倍的和是正数; (4)a 的3倍与7的差是非负数;(5)x 的4倍大于x 的3倍与7的差;(6)x 的54与1的和小于-2;(7)x 与8的差的32不大于0. (8)m 与1差的绝对值是非负数。
一元一次不等式与一次函数整理一元一次不等式和一次函数是初中数学中的重要内容,它们在实际生活中有着广泛的应用。
本文将从概念、性质、解法和应用四个方面来介绍一元一次不等式和一次函数。
一、概念一元一次不等式是指只含有一个未知数的一次不等式,例如:ax+b>c,其中a、b、c为已知数,x为未知数。
一次函数是指函数的表达式为y=kx+b,其中k、b为常数,x、y为自变量和因变量。
二、性质1. 一元一次不等式的解集是一个区间,可以用数轴表示出来。
2. 一次函数的图像是一条直线,斜率k表示函数的增长速度,截距b表示函数的起点。
3. 一元一次不等式和一次函数都具有可加性和可减性,即若a>b,则a+c>b+c,a-c>b-c。
三、解法1. 一元一次不等式的解法有两种:图像法和代数法。
图像法是将不等式转化为数轴上的图形,通过观察图形来确定解集。
代数法是通过移项、化简等代数运算来求解。
2. 一次函数的解法是通过求出函数的斜率和截距,然后画出函数的图像,根据图像来确定函数的性质和解析式。
四、应用1. 一元一次不等式和一次函数在经济学中有着广泛的应用,例如:利润、成本、收益等问题都可以用一次函数来描述。
2. 一元一次不等式和一次函数在物理学中也有着重要的应用,例如:速度、加速度、力等问题都可以用一次函数来描述。
3. 一元一次不等式和一次函数在生活中也有着实际的应用,例如:购物打折、优惠券等问题都可以用一元一次不等式来描述,而房价、工资等问题都可以用一次函数来描述。
一元一次不等式和一次函数是初中数学中的重要内容,它们在实际生活中有着广泛的应用。
掌握一元一次不等式和一次函数的概念、性质、解法和应用,对于提高数学素养和解决实际问题都有着重要的意义。
一元一次不等式与一次函数的关系
一元一次不等式与一次函数之间有着密切的联系,这一联系表现在以下几个方面:
一、当令一元一次不等式中等号左边的表达式为一次函数时,可以将其化简为一次函数形式:
1. 一元一次方程组:
a. 当一元一次方程组中等式左右两边分别为一次函数时,可以将其化简为一次函数形式。
b. 两个一次方程涉及到同一个未知数时,可以最终得出结果,即将一元一次不等式化简为一次函数的形式。
2. 一元二次不等式:
a. 当一元二次不等式左边为一次函数时,也可以将其化简为一次函数形式。
b. 二次不等式的解也可以表现为一次函数的形式,即分段函数。
二、求解一元一次不等式可以利用一次函数的性质:
1. 关于一元一次方程:
a. 利用一次函数求函数图像实现一元一次方程的求解,从而得到不
等式的解。
b. 利用一次函数的性质验证不等式的正确性,从而得到不等式的解。
2. 关于一元二次方程:
a. 利用一次函数的对称性,判断不等式的大小,从而得到不等式的解。
b. 利用一次函数的单调性,得到不等式上下界,从而得到不等式的解。
综上所述,一元一次不等式与一次函数有着密切的联系,一元一次不
等式可以化简为一次函数形式,求解一元一次不等式也可以利用一次
函数的性质。
知识回顾:1、定义:不等式:一般地用不等号连接的式子叫做不等式。
2、不等式的基本性质:(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
3、解不等式:把不等式变为x>。
或x<a的形式。
一、知识要点:1、一次函数的定义:若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,kHO)的形式,则称y是x的一次函数(x为自变量)。
当b=0时,y=kx,所以说正比例函数是一种特殊的一次函数.一次函数的解析式:y=kx+b(kH0)注:一次函数的解析式的形式是y=d+b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.一次函数一般形式y=kx+b(k不为零)①k不为零②x指数为1③b取任意实数一次函数y=kx+b的图象是经过(0,b)和(-纟,0)两点的一条直线,我们称它为直线ky=kx+b,它可以看作由直线尸kx平移|b|个单位长度得到.(当b〉0时,向上平移;当b〈0时,向下平移)(1)解析式:(k、b是常数,kHO)(2)必过点:和(3)走向:k>0,b=0,图象经过第象限;k<0,b二0,图象经过象限O直线经过第象限O直线经过第象限Z?>0\b<0<O C>直线经过第象限P<0<=>直线经过第象限\b>Q[b<0(4)增减性:k>0,y随x的增而;k<0,y随x增大而(5)倾斜度:|k|越大,图象越接近于轴;|k|越小,图象越接近于轴.(6)图像的平移:上加下减;左加右减将函数y=kx+b图像向上平移3个单位变为,然后再向右平移3个单位变为;将函数y=kx+b图像向下平移3个单位变为然后再向左平移3个单位变为2、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线, 所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点,.即横坐标或纵坐标为0的点.34、用待定系数法确定函数解析式的一般步骤:(设、列、解、答)(1)设:根据已知条件写出含有待定系数的函数关系式;(2)列:将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解:解方程得出未知系数的值;(4)答:将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.二、典型例题:1、若点(inji)在函数y=2x+l的图象上,则2m-n的值2、己知正比例函数y=kx伙工0),点⑵-3)在函数上,则y随x的增大而3、如果一次函数空+3的图象经过第一、二、四象限,则m的取值范围是4、地面气温是20°C,如果每升高100m,气温下降6°C,则气温t(°C)与高度h(m)的函数关系式是o5、己知一次函数尸kx+b的图象如图所示,则k,b的符号是()(A)k>0,b>0(B)k>0,b<0(C)k<0,b>0(D)k<0,b<06、已知一次函数尸kx+b的图象经过点(-1,-5),且与正比例函数尸**的图象相交于点(2,a),(1)求a的值,(2)k,b的值,(3)这两个函数图象与x轴所围成的三角形的面积。
第四讲一元一次不等式组的应用及一次函数的关系一、知识梳理(一)一元一次不等式组的实际应用:1、列不等式(组)解应用题的一般步骤(1)认真审题,理解题意,分清已知量与未知量(2)找出其中的不等量关系(3)恰当设元(4)列不等式(组)(5)求解不等式(组)(6)检验作答2、列不等式(组)解应用题与列方程(组)解应用题不同的是方程寻找的是等量关系,而不等式(组)寻找的是不等量关系,并且解不等式(组)的结果一般是一个解集,需从解集中找出符合题意的答案3、不等式(组)的实际应用题主要考查学生的应用能力,通常通过不等式(组)解集,来确定最好工作途径、最佳设计方案、获得最大效益等,常以综合题出现。
(二)一元一次方程、一元一次不等式(组)、一次函数之间的关系:一次函数 y=ax+b(a≠0),当y=0时,即ax+b=0就是一元一次方程;当y≠0时,即ax+b>0或ax+b<0就是一元一次不等式。
因此,一元一次方程、一元一次不等式是一次函数的一部分,一次函数统帅了一元一次方程和一元一次不等式。
二、典例剖析例1:某种商品的进价800元,出售时标价1200元,后来该商品积压,商家准备打折出售,但要保持利润不低于5%,你认为该商品可以打几折?即学即练:小明上午8:00,步行出发郊游,10:00小亮在同一地点出发,已知小明的速度是4千米/小时,小亮要在10:40追上小明,小亮的速度至少是多少千米/小时?例2:(2009河南)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台.三种家电的进价和售价如下表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下.如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?即学即练:(2009牡丹江)某冰箱厂为响应国家“家电下乡”号召,计划生产A 、B 两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:型号 A 型 B 型 成本(元/台) 2200 2600 售价(元/台)28003000(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.例3:某高中一新生中,有若干住宿生,分住若干间宿舍,若每间住4人,则有21人无住处;若每间住7人,则有一间不空也不满,求住宿生人数。
2022北师大版八年级数学下册全套教案目录第一章一元一次不等式和一元一次不等式组1不等关系2不等式的基本性质3不等式的解集4一元一次不等式5一元一次不等式与一次函数6一元一次不等式组第二章分解因式1分解因式2提公因式法3运用公式法第三章分式1分式2分式的乘除法3分式的加减法4分式方程第四章相似图形1线段的比2黄金分割3形状相同的图形4相似多边形5相似三角形6探索三角形相似的条件7测量旗杆的高度8相似多边形的性质9图形的放大与缩小第五章数据的收集与处理1每周干家务活的时间2数据的收集3频数与频率4数据的波动第六章证明(一)1你能肯定吗2定义与命题3为什么他们平行4如果两条直线平行5三角形内角和定理的证明6关注三角形的外角第一章一元一次不等式和一元一次不等式组1.1不等关系一、教学目标:理解实数范围内代数式的不等关系,并会进行表示。
能够根据具体的事例列出不等关系式。
二、教学过程:如图:用两根长度均为Lcm的绳子,各位成正方形和圆。
(1)如果要使正方形的面积不大于25㎝2,那么绳长L应该满足怎样的关系式?(2)如果要使原的面积大于100㎝2,那么绳长L应满足怎样的关系式?(3)当L=8时,正方形和圆的面积哪个大?L=12呢?(4)由(3)你能发现什么?改变L的取值再试一试。
在上面的问题中,所谓成的正方形的面积可以表示为(L/4)2,远的面积可以表示为π(L/2π)2(1)要是正方形的面积不大于25㎝2,就是(L/4)2≤25,即L2/16≤25。
(2)要使原的面积大于100㎝2,就是π(L/2π)2>100即L2/4π>100。
(3)当L=8时,正方形的面积为82/16=6,圆的面积为82/4π≈5.1,4<5.1此时圆的面积大。
当L=12时,正方形的面积为122/16=9,圆的面积为122/4π≈11.5,9<11.5,此时还是圆的面积大。
教师得出结论(4)由(3)可以发现,无论绳长L取何值,圆的面积总大于正方形的面积,即L2/4π>L2/16。
教案
科目数学时间学生
3.一块长方形土地的宽是8m ,周长小于50 m ,该地面积至少是120 m 2,求长方形的长的
取值范围.
4.有一个两位数,其个位数字比十位数字大2,如果这个数大于20小于40,求这个两位数.
3.若干苹果分给几只猴子,若每只猴子分3个,则余8个;每只猴分5个,则最后一只
猴分得的数不足5个,问共有多少只猴子?多少个苹果?
三、课堂练习
一、选择题:
2、已知一次函数y =kx +b 的图像,如图所示,当x <0时,y 的取值范围是( •) A 、y >0 B 、y <0 C 、-2<y <0 D 、y <-2
3
O
y 2=x+a
y 1=kx+b
(第2题) (第4题) (第5题) 3、已知y 1=x -5,y 2=2x +1.当y 1>y 2时,x 的取值范围是( ). A 、x >5 B 、x <
1
2
C 、x <-6
D 、x >-6 4、已知一次函数y kx b =+的图象如图所示,当x <1时,y 的取值范围是( ) A 、-2<y <0
B 、-4<y <0
C 、y <-2
D 、y <-4
5、一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论①k <0;②a >0;③当x <3 时,y 1<y 2中,正确的0
2
-4
x
y
14.不等式组⎩
⎨⎧≥+->+0530
32x x 的整数解的个数是 ( )
A 1
B 2
C 3
D 4
15.实数a 和b 在数轴上的位置如图,下列式子中成立的是 ( ) A 0>ab B
0>b
a
C b a >
D 2
2
b a >
16.不等式组⎪⎩⎪⎨⎧
-≤--
>x
x x 24432的最小整数解为 ( )
A -1
B 0
C 1
D 4 17.不等式组⎩⎨
⎧>-<+-m
x x x 6
2的解集是4>x ,那么m 的取值范围是 ( )
A . 4≥m
B . 4≤m
C . 4<m
D . 4=m 二、填空题
1、若一次函数y =(m -1)x -m +4的图象与y 轴的交点在x 轴的上方,则m 的取值范围是________.
2、如图,某航空公司托运行李的费用与托运行李的重量的关系为一次函数,由图可知行李的重量只要不超过________千克,就可以免费托运.
O 2 2 -2
-2
x
y
y =3x +b
y =ax -3
(第2题) (第5题)
3、当自变量x 时,函数y =5x +4的值大于0;当x 时,函数y =5x +4的值小于0.
4、已知2x -y =0,且x -5>y ,则x 的取值范围是________.
5、如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是_______________。
6、如图,一次函数y 1=k 1x +b 1与y 2=k 2x +b 2的图象相交于A(3,2),则不等式(k 2-k 1)x +b 2-b 1>0的解集为__________.
7、已知关于x 的不等式kx -2>0(k ≠0)的解集是x >-3,则直线
y =-kx +2与x•轴的交点是__________.
A
y 1y 2
y
x
O。