打造钼技术领域品牌 再铸中国钼行业辉煌——《中国钼业》杂志第五届编委会工作汇报
- 格式:pdf
- 大小:117.07 KB
- 文档页数:2
半导体学报(英文版)爆炸与冲击北京航空航天大学学报北京科技大学学报北京理工大学学报北京理工大学学报(英文版)北京邮电大学学报兵工学报材料工程材料科学技术(英文版)材料热处理学报材料研究学报采矿与安全工程学报测绘学报船舶力学催化学报(网络版,英文版)大地构造与成矿学等离子体科学和技术(英文版)地球科学地球物理学报地球学报地学前缘地震地质地震工程与工程振动(英文版)电波科学学报电工技术学报电机与控制学报电力系统自动化电力自动化设备电网技术电子科技大学学报电子学报电子学报(英文版)电子与信息学报东北大学学报(自然科学版)东华大学学报(英文版)东南大学学报(英文版)东南大学学报(自然科学版)发光学报仿生工程学报(英文版)非线性科学与数值模拟通讯(英文版)分子催化粉末冶金材料科学与工程复合材料学报复杂系统与复杂性科学高等学校化学学报高电压技术高分子材料科学与工程高技术通讯(英文版)高校化学工程学报工程力学工程热物理学报功能材料固体火箭技术固体力学学报(英文版)光电子激光光电子快报(英文版)光谱学与光谱分析光学精密工程光学学报光子传感器(英文版,电子科技大学)光子学报硅酸盐学报国防科技大学学报国际农业工程学报(英文版)国际农业与生物工程学报(英文版)国际自动化与计算杂志(英文版)哈尔滨工程大学学报哈尔滨工业大学学报哈尔滨工业大学学报(英文版)含能材料焊接学报航空动力学报航空学报核动力工程红外与毫米波学报红外与激光工程湖南大学学报(自然科学版)华南理工大学学报(自然科学版)华中科技大学学报(自然科学版)化工学报环境科学学报(英文版)环境科学研究机器人机械工程学报吉林大学学报(工学版)计算机辅助设计与图形学学报计算机集成制造系统计算机科学技术学报(英文版)计算机科学前沿(英文版)计算机学报计算机研究与发展建筑材料学报建筑结构学报交通运输工程学报交通运输系统工程与信息金属学报金属学报(英文版)颗粒学报(英文版)控制理论与应用控制理论与应用(英文版)控制与决策矿物冶金与材料学报(英文版)矿业科学技术(英文版)力学进展力学学报力学学报(英文版)林产化学与工业煤炭学报摩擦学学报南京航空航天大学学报(英文版)内燃机工程内燃机学报农业工程学报农业机械学报汽车工程强激光与粒子束桥梁建设清华大学学报(英文版)清华大学学报(自然科学版)燃料化学学报热科学学报(英文版)人工晶体学报软件学报上海交通大学学报上海交通大学学报(英文版)声学学报石油地球物理勘探石油勘探与开发石油物探石油学报石油学报(石油加工)石油与天然气地质水动力学研究与进展(B辑,英文版)水科学进展水科学与水工程(英文版)水利学报四川大学学报(工程科学版)太阳能学报天津大学学报天津大学学报(英文版)天然气地球科学天然气工业天然气化学(英文版)铁道工程学报铁道学报通信学报同济大学学报(自然科学版)土木工程学报推进技术无机材料学报武汉大学学报(信息科学版)武汉理工大学学报(材料科学版,英文版)物理学报西安电子科技大学学报西安交通大学学报西北工业大学学报西南交通大学学报稀土稀土学报(英文版)稀有金属稀有金属(英文版)稀有金属材料与工程系统工程理论与实践系统工程与电子技术系统工程与电子技术(英文版)系统科学与复杂性学报(英文版)系统科学与系统工程学报(英文版)现代食品科技现代隧道技术新型炭材料烟草科技岩石力学与工程学报岩土工程学报岩土力学仪器仪表学报应用基础与工程科学学报应用数学和力学(英文版)宇航学报原子能科学技术长安大学学报(自然科学版)浙江大学学报(A辑应用物理和工程,英文版)浙江大学学报(C 计算机与电子工程,英文版)浙江大学学报(工学版)真空科学与技术学报振动测试与诊断振动工程学报振动与冲击质谱学报智能计算与控制论国际期刊(英文版)中国地球化学学报(英文版)中国电机工程学报中国公路学报中国惯性技术学报中国光学快报(英文版)中国海洋工程(英文版)中国焊接(英文版)中国航空学报(英文版)中国化学工程学报(英文版)中国环境科学中国机械工程学报(英文版)中国机械工程学刊中国激光中国科学(地球科学,英文版)中国科学(化学,英文版)中国科学(技术科学,英文版)中国科学(物理、力学与天文学,英文版)中国科学(信息科学,英文版)中国矿业大学学报中国粮油学报中国石油大学学报(自然科学版)中国食品学报中国铁道科学中国土木水利工程学刊中国物理(B,英文版)中国烟草学报中国邮电高校学报(英文版)中国有色金属学报中国有色金属学会学报(英文版)中国造船中南大学学报(矿冶科技,英文版)中南大学学报(自然科学版)自动化学报Journal of Semiconductors1674-4926 Baozha yu Chongji1001-1455 Beijing Hangkong Hangtian Daxue Xuebao1001-5965 Beijing Keji Daxue Xuebao1001-053X Beijing Ligong Daxue Xuebao1001-0645 Journal of Beijing Institute of Technology1004-0579 Beijing Youdian Daxue Xuebao1007-5321 Binggong Xuebao1000-1093 Cailiao Gongcheng/Ts'ai Liao Kung Ch'eng1001-4381 Journal of Materials Science & Technology1005-0302 Cailiao Rechuli Xuebao1009-6264 Cailiao Yanjiu Xuebao1005-3093 Caikuang yu Anquan Gongcheng Xuebao1673-3363 Cehui Xuebao1001-1595 Chuanbo Lixue1007-7294 Chinese Journal of Catalysis E1872-2067 Dadi Gouzao yu Chengkuangxue1001-1552 Plasma Science & Technology (Bristol, United Kingdom)1009-0630 Diqiu Kexue1000-2383 Diqiu Wuli Xuebao0001-5733 Diqiu Xuebao1006-3021 Dixue Qianyuan1005-2321 Dizhen Dizhi0253-4967 Earthquake Engineering and Engineering Vibration1671-3664 Dianbo Kexue Xuebao1005-0388 Diangong Jishu Xuebao1000-6753 Dianji yu Kongzhi Xuebao1007-449X Dianli Xitong Zidonghua1000-1026 Dianli Zidonghua Shebei1006-6047 Dianwang Jishu1000-3673 Dianzi Keji Daxue Xuebao1001-0548 Dianzi Xuebao0372-2112 Chinese Journal of Electronics1022-4653 Dianzi yu Xinxi Xuebao1009-5896 Dongbei Daxue Xuebao ,Ziran Kexueban1005-3026 Journal of Donghua University1672-5220 Journal of Southeast University1003-7985 Dongnan Daxue Xuebao ,Ziran Kexueban1001-0505 Faguang Xuebao1000-7032 Journal of Bionic Engineering1672-6529 Communications in Nonlinear Science and Numerical Simu1007-5704 Fenzi Cuihua1001-3555 Fenmo Yejin Cailiao Kexue yu Gongcheng1673-0224 Fuhe Cailiao Xuebao1000-3851 Fuza Xiting yu Fuzaxing Kexue1672-3813 Gaodeng Xuexiao Huaxue Xuebao0251-0790 Gaodianya Jishu1003-6520 Gaofenzi Cailiao Kexue yu Gongcheng1000-7555 High Technology Letters1006-6748 Gaoxiao Huaxue Gongcheng Xuebao1003-9015Gongcheng Lixue1000-4750 Gongcheng Rewuli Xuebao0253-231X Gongneng Cailiao1001-9731Guti Huojian Jishu1006-2793Acta Mechanica Solida Sinica0894-9166 Guangdianzi Jiguang1005-0086 Optoelectronics Letters1673-1905 Guangpuxue yu Guangpu Fenxi1000-0593 Guangxue Jingmi Gongcheng1004-924X Guangxue Xuebao0253-2239Photonic Sensors1674-9251Guangzi Xuebao1004-4213 Guisuanyan Xuebao0454-5648Guofang Keji Daxue Xuebao1001-2486 International Agricultural Engineering Journal0858-2114 International Journal of Agricultural and Biological Enginee1934-6344 International Journal of Automation and Computing1476-81861006-7043Harbin Gongcheng Daxue Xuebao或Ha-erh-pin Kung Cheng Ta Hsueh Hsueh Pao Harbin Gongye Daxue Xuebao0367-6234Journal of Harbin Institute of Technology (English Edition)1005-9113Hanneng Cailiao1006-9941Hanjie Xuebao0253-360X Hangkong Dongli Xuebao1000-8055Hangkong Xuebao1000-6893Hedongli Gongcheng0258-0926Hongwai yu Haomibo Xuebao1001-9014Hongwai yu Jiguang Gongcheng1007-2276Hunan Daxue Xuebao,Ziran Kexueban1674-2974Huanan Ligong Daxue Xuebao,Ziran Kexueban1000-565X Huazhong Keji Daxue Xuebao,Ziran Kexueban1671-4512Huagong Xuebao0438-1157Journal of Environmental Sciences (Beijing, China)1001-0742Huanjing Kexue Yanjiu1001-6929Jiqiren1002-0446Jixie Gongcheng Xuebao0577-6686Jilin Daxue Xuebao,Gongxueban1671-5497Jisuanji Fuzhu Sheji yu Tuxingxue Xuebao1003-9775Jisuanji Jicheng Zhizao Xitong1006-5911Journal of Computer Science and Technology1000-90002095-2228Frontiers of Computer Science(旧名Frontiers of Computer Science in China)Jisuanji Xuebao0254-4164Jisuanji Yanjiu yu Fazhan1000-1239Jianzhu Cailiao Xuebao1007-9629Jianzhu Jiegou Xuebao1000-6869Jiaotong Yunshu Gongcheng Xuebao1671-1637Jiaotong Yunshu Xitong Gongcheng yu Xinxi1009-6744Jinshu Xuebao0412-1961Acta Metallurgica Sinica(English Letters)1006-7191 Particuology1674-2001Kongzhi Lilun yu Yingyong1000-8152Journal of Control Theory and Applications1672-6340 Kongzhi yu Juece1001-0920 International Journal of Minerals, Metallurgy and Materials1674-4799 International Journal of Mining Science and Technology2095-2686Lixue Jinzhan1000-0992Lixue Xuebao0459-1879Acta Mechanica Sinica0567-7718 Linchan Huaxue yu Gongye0253-2417 Meitan Xuebao0253-9993 Mocaxue Xuebao1004-0595 Transactions Nanjing University Aeronautics and Astronau1005-1120 Neiranji Gongcheng1000-0925 Neiranji Xuebao1000-0909 Nongye Gongcheng Xuebao1002-6819 Nongye Jixie Xuebao1000-1298 Qiche Gongcheng1000-680X Qiangjiguang yu Lizishu1001-4322 Qiaoliang Jianshe1003-4722 Tsinghua Science and Technology1007-0214 Qinghua Daxue Xuebao,Ziran Kexueban1000-0054 Ranliao Huaxue Xuebao0253-2409 Journal of Thermal Science1003-2169 Rengong Jingti Xuebao1000-985X Ruanjian Xuebao1000-9825 Shanghai Jiaotong Daxue Xuebao1006-2467 Journal of Shanghai Jiaotong University(Special Issue)1007-1172 Shengxue Xuebao0371-0025 Shiyou Diqiu Wuli Kantan1000-7210 Shiyou Kantan yu Kaifa1000-0747 Shiyou Wutan1000-1441 Shiyou Xuebao0253-2697 Shiyou Xuebao,Shiyou Jiagong1001-8719 Shiyou yu Tianranqi Dizhi0253-9985 Journal of Hydrodynamics,Series B1001-6058 Shuikexue Jinzhan1001-6791 Water Science and Engineering1674-2370Shuili Xuebao0559-9350 Sichuan Daxue Xuebao,Gongcheng Kexueban1009-3087 Taiyangneng Xuebao0254-0096 Tianjin Daxue Xuebao0493-2137 Transactions of Tianjin University1006-4982 Tianranqi Diqiu Kexue1672-1926 Tianranqi Gongye1000-09761003-9953 Journal of Natural Gas Chemistry 是旧名,新名 Journal of Energy Chemistry Tiedao Gongcheng Xuebao1006-2106 Tiedao Xuebao1001-8360 Tongxin Xuebao1000-436X Tongji Daxue Xuebao,Ziran Kexueban0253-374X Tumu Gongcheng Xuebao1000-131XTuijin Jishu1001-4055Wuji Cailiao Xuebao1000-324X Wuhan Daxue Xuebao,Xinxi Kexueban1671-8860 Journal of Wuhan University of Technology,Materials Scien1000-2413 Wuli Xuebao1000-3290 Xi'an Dianzi Keji Daxue Xuebao1001-2400 Xi'an Jiaotong Daxue Xuebao0253-987X Xibei Gongye Daxue Xuebao1000-2758 Xinan Jiaotong Daxue Xuebao0258-2724 Xitu1004-0277 Journal of Rare Earths1002-0721 Xiyou Jinshu0258-7076 Rare Metals(Beijing,China)1001-0521 Xiyou Jinshu Cailiao yu Gongcheng1002-185X Xitong Gongcheng Lilun yu Shijian1000-6788 Xitong Gongcheng yu Dianzi Jishu1001-506X Journal of Systems Engineering and Electronics1004-4132 Journal of Systems Science & Complexity1009-6124 Journal of Systems Science and Systems Engineering1004-3756 Xiandai Shipin Keji1673-9078 Xiandai Shuidao Jishu1009-6582 Xinxing Tan Cailiao1007-8827 Yancao Keji1002-0861 Yanshi Lixue yu Gongcheng Xuebao1000-6915 Yantu Gongcheng Xuebao1000-4548 Yantu Lixue1000-7598 Yiqi Yibiao Xuebao0254-3087 Yingyong Jichu yu Gongcheng Kexue Xuebao1005-0930 Applied Mathematics and Mechanics(English Edition)0253-4827 Yuhang Xuebao1000-1328 Yuanzineng Kexue Jishu1000-6931 Chang'an Daxue Xuebao,Ziran Kexueban1671-8879 Journal of Zhejiang University-SCIENCE A Applied Physics 1673-565X1869-1951 Journal of Zhejiang University-SCIENCE C Computers & Ele Zhejiang Daxue Xuebao,Gongxueban1008-973X Zhenkong Kexue yu Jishu Xuebao1672-7126 Zhendong Ceshi yu Zhenduan1004-6801 Zhendong Gongcheng Xuebao1004-4523 Zhendong yu Chongji1000-3835 Zhipu Xuebao1004-29971756-378X International Journal of Intelligent Computing and Cyberne Chinese Journal of Geochemistry1000-9426 Zhongguo Dianji Gongcheng Xuebao0258-8013 Zhongguo Gonglu Xuebao1001-7372 Zhongguo Guanxing Jishu Xuebao1005-6734 Chinese Optics Letters1671-7694 China Ocean Engineering0890-5487 China Welding1004-5341 Chinese Journal of Aeronautics1000-9361 Chinese Journal of Chemical Engineering1004-9541 Zhongguo Huanjing Kexue1000-6923Chinese Journal of Mechanical Engineering1000-9345Zhongguo Jixie Gongcheng Xuekan0257-9731Zhongguo Jiguang0258-7025Science China(Earth Sciences)1674-7313Science China(Chemistry)1674-7291Science China(Technological Sciences)1674-7321Science China(Physics,Mechanics and Astronomy)1674-7348Science China(Information Sciences)1674-733XZhongguo Kuangye Daxue Xuebao1000-1964Zhongguo Liangyou Xuebao1003-0174Zhongguo Shiyou Daxue Xuebao,Ziran Kexueban1673-5005Zhongguo Shipin Xuebao1009-7848Zhongguo Tiedao Kexue1001-4632Zhongguo Tumu Shuili Gongcheng Xuekan1015-5856Chinese Physics B1674-1056Zhongguo Yancao Xuebao 1004-5708The Journal of China University of Posts Telecommum1005-8885Zhongguo Youse Jinshu Xuebao1004-0609Transactions of Nonferrous Metals Society of China 1003-6326Zhongguo Zaochuan1000-48822095-2899Journal of Central South University(Science & Technology of Mining and Metallurgy)Zhongnan Daxue Xuebao,Ziran Kexueban1672-7207Zidonghua Xuebao0254-4156外加工京继续收录川继续收录京继续收录京继续收录京继续收录京继续收录京继续收录京继续收录京继续收录辽继续收录京继续收录辽继续收录苏继续收录京继续收录苏外加工辽新增加*粤外加工皖继续收录鄂新增加*京新增加*京新增加*京新增加*京外加工黑继续收录豫继续收录京继续收录黑继续收录苏继续收录苏继续收录京继续收录川继续收录京继续收录京继续收录京继续收录辽继续收录沪继续收录苏继续收录苏继续收录吉外加工吉外加工京新增加*甘继续收录湘继续收录京新增加*鲁新增加*吉继续收录鄂继续收录川继续收录京继续收录京继续收录京继续收录渝继续收录陕外加工鄂继续收录津外加工津继续收录京继续收录吉继续收录沪外加工川继续收录陕继续收录京继续收录湘外加工京外加工京新外加工*京继续收录黑继续收录黑继续收录黑新增加*川继续收录黑继续收录京继续收录京继续收录川继续收录沪继续收录津继续收录湘继续收录粤继续收录鄂继续收录京外加工京新增加*京继续收录辽继续收录京继续收录吉继续收录京继续收录京外加工京继续收录京继续收录京继续收录京继续收录沪继续收录京继续收录陕新增加*京继续收录辽继续收录辽外加工京外加工粤继续收录辽继续收录京继续收录苏新增加*京继续收录京外加工京新增加*苏继续收录京继续收录甘继续收录苏继续收录沪继续收录津继续收录京继续收录京继续收录京继续收录川新增加*鄂继续收录京继续收录京继续收录晋继续收录京继续收录京继续收录京继续收录沪继续收录沪继续收录京继续收录冀继续收录京新增加*苏继续收录京继续收录京新增加*鄂继续收录沪继续收录苏继续收录苏继续收录京继续收录川继续收录京继续收录津继续收录津新增加*甘新增加*川外加工辽新增加*京继续收录京继续收录京继续收录沪继续收录京继续收录鄂继续收录鄂新增加*京继续收录陕继续收录陕继续收录陕继续收录川新增加*蒙继续收录京新增加*京继续收录京继续收录陕继续收录京继续收录京继续收录京外加工京外加工京新增加*粤新增加*川继续收录晋新增加*豫继续收录鄂继续收录苏继续收录鄂继续收录京继续收录京外加工沪继续收录京继续收录京新增加*陕继续收录浙外加工浙继续收录浙继续收录京继续收录苏继续收录苏继续收录沪新增加*京外加工吉外加工贵继续收录京继续收录陕继续收录津继续收录沪外加工苏继续收录黑外加工京继续收录京外加工台继续收录沪外加工京新增加*京外加工京新外加工*京新外加工*京继续收录苏新增加*京继续收录鲁新增加*京继续收录京外加工台外加工京新增加*京继续收录京继续收录湘继续收录湘新增加*京继续收录湘继续收录湘继续收录京。
Properties on Novel PVDF-HFP-Based Composite Polymer Electrolyte With Vinyltrimethoxylsilane-Modified ZSM-5Wei Xiao,Xinhai Li,Huajun Guo,Zhixing WangSchool of Metallurgical Science and Engineering,Central South University,Changsha410083,ChinaA kind of novel poly(vinylidenefluoride-co-hexafluoro-propylene)(PVDF-HFP)-based composite polymer elec-trolyte doped with vinyltrimethoxylsilane(DB171sil-ane)-modified ZSM-5is prepared by phase inversion method(denoted as M-ZSM-5membrane).Physical and chemical properties of M-ZSM-5membrane are studied by SEM,FTIR,TG-DSC,EIS,and LSV.The results show that thermal and electrochemical stability can reach4008C and5V,respectively;temperature de-pendence of ionic conductivity follows Vogel–Tamman–Fulcher relation and ionic conductivity at room temper-ature is up to 4.2mS/cm;the interfacial resistance reaches a stable value about325O after5days stor-age at room temperature,which suggests that it can be potentially suitable as electrolyte in polymer lithium ion POS.,33:629–635,2012.ª2012 Society of Plastics EngineersINTRODUCTIONMore and more attention has been paid to gel polymer electrolytes(GPEs)in lithium ion battery due to their excel-lent performances,such as no-leakage of electrolyte,high energy density,flexible geometry,and improved safety haz-ards[1–6].Among the GPEs,the poly(vinylidenefluoride–hexafluoropropylene)(PVDF–HFP)-based GPEs have been fabricated and studied extensively at present because they have some appealing properties,in which PVDF–HFP ma-trix has a high dielectric constant(e¼8.4)that facilitates a higher concentration of charge carriers,and also comprises both an amorphous and a crystalline phase[7–12].The amorphous phase of the polymer assists higher ionic con-ductivity while the crystalline phase acts as a mechanical support for the polymer electrolyte[5,7,13].To further improve the ionic conductivity and mechanical properties of the GPEs simultaneously,adding inorganic nanopar-ticles,such as silica(SiO2),alumina(Al2O3),zirconia (ZrO2),and titania(TiO2),into polymer matrix has been proved to be a feasible approach[6,14–20].In addition to those advantages,they can act as solid plasticizers hindering the reorganization of polymer chains and can interact with polar groups by Lewis acid–base reaction[21,22].So the properties such as ionic conductivity,lithium ion transfer-ence number,and activation energy for ions transport can gain much improvement.Moreover,surface modification technology provides a new way to prepare polymer electro-lyte with excellent properties[23].For example,the com-posite polymer electrolytes doped with nano-SiO2,which is modified with different groups,including vinylene,glyci-doxy,mercapto,chloropropyl,octyl,methacryl,and amino groups,show significant improvement in terms of ionic conductivity,and the ionic conductivity of the modified composite polymer electrolyte is even close to the value of traditional liquid electrolyte at room temperature[23–26]. More attention has been turned to pay to the molecular sieves such as MCM-41,SBA-15,and ZSM-5due to their high surface area,peculiar molecular structures and strong Lewis acidity[27–30],but very few reports exist in the liter-ature addressing composite polymer electrolytes doped with silane-modified molecular sieves[31].In the present work, the novel PVDF-HFP-based composite polymer electrolyte doped with vinyltrimethoxylsilane-modified ZSM-5is pre-pared by phase inversion method.Physicochemical and electrochemical properties are studied by SEM,Fourier transform infrared spectrum(FTIR),thermogravimetry and differential scanning calorimeter(TG-DSC),electrochemi-cal impedance spectroscopy(EIS),and linear sweep voltammetry(LSV)and show dramatic improvement. EXPERIMENTALMaterialsMolecular sieve ZSM-5(10–50nm,purchased from Tianjin Chemist Scientific Ltd.in China)was dried for12Correspondence to:Xinhai Li;e-mail:xwylyq2009@Contract grant sponsor:Major Provincial Science and Technology Pro-grams of Hunan;contract grant number:2009FJ1002.Contract grant sponsor:Central College on the2010Operational Costs of Basic Research Project;contract grant number:2010QZZD0101.DOI10.1002/pc.22156Published online in Wiley Online Library().V C2012Society of Plastics EngineersPOLYMER COMPOSITES—-2012h at1208C prior to use.Poly(vinylidenefluoride-co-hexa-fluoropropylene)(PVDF-HFP,Atofina,Kynar Flex,12 wt%HFP)was used as polymer matrix in the experiment and dried under vacuum for12h at808C prior to use. Analytical grade N,N-dimethylformamide(DMF)and poly(ethylene glycol)with low molecular weight of200 (PEG-200)were directly used as solvent and pore-forming agent,respectively,without further purification. Preparation of Silane-Modified Molecular SieveA certain amount of molecular sieve ZSM-5was added into5%DB171silane–ethanol mixed solution(5:95,v/v) with continuous vigorous stirring for48h at408C,then the above homogeneous solution was centrifuged at 15,000rpm and dried in vacuum at1008C for24h to fur-ther remove residual organic solvents.For the sake of convenience,the modified ZSM-5is denoted as M-ZSM-5in the following exposition.Preparation of Polymer ElectrolyteA certain content of as-prepared M-ZSM-5was dis-persed in DMF solution,and a certain mass of PVDF-HFP and PEG-200were added to the well-dispersed solu-tion with continuous stirring for3–4h at408C to form homogeneous and viscous slurry,in which the mass ratio between the M-ZSM-5and the PVDF-HFP is about1:10. The casting solution was cast onto a glass plate with a doctor blade to form the wet membrane after leaving still for2h at408C,followed by being immersed into deion-ized water at room temperature for12h to obtain the polymer electrolyte membrane.The resulting membranes were further dried under vacuum at608C for24h to remove the residual solvent.The membranes prepared were about120–150l m in thickness.Then the desirable polymer electrolytes were prepared by immersing the as-prepared membranes into the1.0M LiPF6-ethylene car-bonate(EC)/dimethyl carbonate(DMC)/ethylmethyl car-bonate(EMC)(1:1:1,w/w/w)liquid electrolyte solution (provided by Dongguan Shanshan Battery Materials Co. Ltd.in China)at room temperature for1h,which was carried out in a dry-box under argon gas atmosphere to avoid moisture.The PVDF-HFP-based composite polymer electrolytes modified with and without ZSM-5were also prepared in our work as control samples according to the above-mentioned experimental steps.Properties CharacterizationA scanning electron microscope(SEM,JSM6301F) with an accelerating voltage of20kV was used to exam-ine the membrane surface sputter coated with gold under vacuum atmosphere.The PEPARAGN1000instrument with a wave number resolution of2cm21in the fre-quency of4000to400cm21was used to record the FTIR of M-ZSM-5.TG-DSC measurements were carried out on a Perkin-Elmer Pyris-1analyzer.The measurements were performed at a heating rate of108C/min from20to 4008C.Aflow of nitrogen gas was maintained over the perforated pan to avoid any contact with atmospheric moisture.The weights of samples were maintained in the range of12–15mg and an empty aluminum pan was used as a reference.The liquid electrolyte uptake(A)was cal-culated using the following relation Eq.1,where,w1and w0are the weights of the wet and dry membranes,respec-tively.A%¼w1Àw0w03100%(1)The ionic conductivity of the composite polymer elec-trolyte was determined by EIS.The as-prepared electro-lyte membranes were sandwiched between two stainless steel(SS)blocking electrodes to form the SS/composite polymer electrolyte/SS model cells.The EIS tests were measured over an AC oscillation10mV frequency range of1to105Hz at various temperatures(293–363K,the cells were thermostated during measurements)using a CHI660b frequency response analyzer(Shanghai Chen-hua,China).Electrochemical stability window of the polymer electrolyte was determined by running LSV in three-electrode cell using stainless steel as the blocking working electrode,lithium as both the counter,and the reference electrode and polymer electrolyte as the electro-lyte.The LSV tests were carried out using the same sys-tem as those in EIS at a scan rate of5mV/s.In addition, the interfacial stability was studied by investigating the resistance change with different storage times of the blocking model cell Li/composite polymer electrolyte/Li.RESULTS AND DISCUSSIONSurface Morphology AnalysisFigure1presents SEM images of three kinds of differ-ent polymer electrolyte membranes with different adulter-ants.It can be obviously seen that adding molecular sieve into polymer matrix plays a major role in the surface morphology of fabricating polymer electrolyte mem-branes,no matter molecular sieve is modified with DB171silane or pared with Fig.1A,the size and the amount of micro-pores on the surface and inner decreases gradually and increases distinctly in Fig.1B and C,respectively,which may be partly attributed to the Lewis acid–base interaction between polymer matrix PVDF-HFP and molecular sieve,partly to molecular sieve as a cross-linking center during recrystallization of PVDF-HFP.On one hand,with molecular sieves added into polymer matrix,the inner-layer has more micropores and demonstrates better connectivity,which can further promote more electrolyte entrapment ratio;on the other hand,the more uniform surface morphology demonstrated in Fig.1C implies it has best compatibility between the630POLYMER COMPOSITES—-2012DOI10.1002/pcpolymer matrix and electrode,which can be well con-firmed in the following experiments.It can be seen that M-ZSM-5modified PVDF-HFP membrane not only shows most uniform surface morphology,but also presents most plentiful interconnected micropores.FTIR Analysis ResultsThe direct evidence for the reaction mechanism is pro-vided by FTIR recorded for the DB171and M-ZSM-5showed in Fig.2.The CH 3asymmetric stretching vibra-tion occurs at 2,975–2,950cm 21while the CH 2absorp-tion occurs at about 2,930cm 21.The symmetric CH 3vibration occurs at 2,885–2,865cm 21while the CH 2absorption occurs at about 2,870–2,840cm 21.The absorption bands appearing at 1,193,1,090,1,010,and 968cm 21are ascribed to IR vibrating absorption of ÀÀSi ÀÀO ÀÀCH 3bonds,and the 1,600–1,650cm 21is to C ¼¼C stretching absorption in the IR spectrum of DB171[32].A problem worthy to be pointed out is that the cor-responding band showing red shift observed at 945–1,100cm 21is ascribed to IR vibrating absorption of ÀÀSi ÀÀO ÀÀSi bonds,and the 1,600–1,650cm 21represent-ing C ¼¼C stretching absorption becomes weak in the of the spectrum of DB171-modified ZSM-5,which can be explained that silanol (Si ÀÀOH)from hydrolysis of DB171silane interacts with free hydroxyl (ÀÀOH)on the surface of the molecular sieve ZSM-5.The distinct differ-ences between the mentioned spectra indicate that molec-ular sieve is successfully modified by DB171silane.The two IR absorption peaks near 3,428and 1,639cm 21in Fig.2may be assigned to the presence of the oxygen–hydrogen single bond (O ÀÀH)from the samples contain-ing absorbable impurity water [24,25].Thermal and Electrochemical StabilityThermal and electrochemical stability are considered as the most important two factors in practicalapplicationsFIG.1.SEM images of different polymer electrolyte membranes [(A)PVDF-HFP membrane,(B)ZSM-5modified PVDF-HFP membrane,and (C)M-ZSM-5modified PVDF-HFPmembrane].FIG.2.FTIR spectra of DB171and DB171modified ZSM-5.[Color figure can be viewed in the online issue,which is available at .]DOI 10.1002/pcPOLYMER COMPOSITES—-2012631of polymer lithium ion battery.Figure 3presents the TG-DSC plots of polymer electrolyte membranes prepared by phase inversion method.Obviously,Fig.3A about the TG plots reveals that the pure PVDF-HFP electrolyte mem-brane is inferior to the ZSM and M-ZSM modified mem-brane in term of thermal stability,and the thermal stabil-ity of the membrane with M-ZSM-5can even reach 4008C with little decomposition,which can well meet the practical demands about the thermal property of lithium ion battery.Fig.3B shows the DSC plots of the three kinds of membranes.The crystallinity of the membranes can be calculated according to the following relation x %¼D H f /D H H mf from the DSC curves,where,D H Hmf is the standard enthalpy of fusion of pure PVDF,104.7J/g,and D H f is enthalpy of fusion of the PVDF-HFP-based poly-mer electrolyte membrane [10,33,34].The crystallinity of the membranes with the uptake ratio and ionic conduc-tivity at room temperature is listed in the Table 1.It is obviously seen that the values of uptake ratio and ionic conductivity increase with decreasing of the crystal-linity,indicating that molecular sieve plays a critical role in properties of the electrolyte membrane,which is ac-cordance with the above experimental results.The effects of the M-ZSM-5to enhance uptake ratio and ionic con-ductivity at room temperature may be due to abundant interconnected micro-pores in the polymer electrolyte membranes and interfacial reaction between the polymer matrix and molecular sieves.The plots of electrochemical stability window about the three kinds of electrolyte membranes at room temper-ature are demonstrated in pared with the three curves,the M-ZSM-5membrane displays the highest electrochemical stability window about 5V,which can meet practical applications requirements and implies that the M-ZSM-5plays a positive role in term of electro-chemical stability.Based on both excellent thermal and electrochemical stability,the M-ZSM-5membrane would be used as the most promising polymer electrolyte mem-brane candidate in the rechargeable polymer lithium ion battery in the future.Ionic ConductivityThe effect of M-ZSM-5on the ionic conductivity of polymer electrolyte membrane is further investigated by temperature-dependent ionic conductivity.As demon-strated in Fig.5,the ionic conductivity increases with temperature increase and the ionic conductivity of the membranes doped with molecular sieve is higher thantheFIG.3.Plots of TG (A)and DSC (B)about three kinds of polymer electrolyte membranes by phase inversion method.[Color figure can be viewed in the online issue,which is available at .]TABLE 1.Results of crystallinity,ionic conductivity,and uptake ratio about the three kinds of polymer electrolyte membranes.Crystallinity(/%)Ionic conductivity/(mS/cm)Uptake ratio (%)PVDF-HFP membrane 100.0 2.01276.52ZSM-5doped PVDF-HFP membrane50.02 3.64792.99M-ZSM-5doped PVDF-HFP membrane31.264.23598.21FIG.4.Results of LSV about the three kinds of polymer electrolyte membranes.[Color figure can be viewed in the online issue,which is available at .]632POLYMER COMPOSITES—-2012DOI 10.1002/pcpure PVDF-HFP membrane,whether it is modified by sil-ane or not,which suggests that increase temperature low-ering the activation energy for the ions transfer between the micropores in the polymer matrix can improve ionic conductivity and molecular sieves with their unique mole-cule space structure not only can provide more passage-ways for the ionic migration,but also as Lewis acid inter-act with polymer matrix to decrease the crystallinity degree for forming more amorphous areas.Furthermore,the ionic conductivity is not related linearly to the recip-rocal temperature,which is different from the reported composite polymer electrolyte doped by some other inor-ganic fillers and maybe obeys the Vogel–Tamman–Fulcher (VTF)relation [35,36].As the temperature increases,the polymer can expand easily and produce free volume.In other words,as temperature increases,the free volume increases.The resulting conductivity,represented by the overall mobility of ions and the polymer,is deter-mined by the free volume around the polymer chains,which leads to an increase in ion mobility andsegmentalFIG.5.Temperature dependence of ionic conductivity of the three kinds of different polymer electrolyte membranes.[Color figure can be viewed in the online issue,which is available at wileyonlinelibrary.com.]FIG.6.Nyquist plots of three kinds of Li/as-prepared electrolyte/Li cells with various times [(A)Pure PVDF-HFP membrane;(B)ZSM-5modified PVDF-HFP membrane;and (C)M-ZSM-5modified PVDF-HFP membrane].[Color figure can be viewed in the online issue,which is available at .]DOI 10.1002/pc POLYMER COMPOSITES—-2012633mobility that will assist ion transport and virtually com-pensate for the retarding effect of the ion clouds[36]. Interfacial PropertiesInterfacial compatibility between the polymer electro-lyte and the electrode is another important factor to ensure an acceptable performance in practical applica-tions.In the polymer electrolyte system,the passive layer between the electrode and the electrolytes grows with the time,but the uncontrolled layer plays a vital role in prac-tical applications[8].To understand the interfacial stabil-ity between electrode and electrolyte membranes,Nyquist plots of three kinds of Li/as-prepared electrolyte/Li sym-metric cells at open circle are monitored with various times.It is quite obvious from Fig.6that the resistances R i of electrolyte membranes modified by molecular sieves reach a stable value of730O(ZSM-5modified mem-brane)and325O(M-ZSM-5modified membrane)respec-tively after5days storage,however,the resistance R i of the pure PVDF-HFP membrane presents the tendency to keep growing with time under the same conditions.The results indicate that,on one hand,the passivefilm forms between the electrolyte and electrode at the beginning and reaches a stable value when adding the molecular sieve ZSM-5into the polymer matrix,thus the membranes modified by ZSM-5present lower resistances and exhibit better compatibility with the electrode[22];on the other hand,the addition of the ZSM-5can trap any impurities such as water and trace organic solvent,inhibiting the de-structive reaction on the electrode,which can improve the compatibility between the electrode and electrolyte mem-brane[10,37,38].Moreover,the M-ZSM-5modified membrane shows the best compatibility among these membranes,in the view of the authors,which can be attributed to the special surface reaction activity groups formed during the reaction of ZSM-5modified by DB171 silane.And the research on the reaction and ionic conduc-tion mechanisms about the novel polymer electrolyte are in progress in our group.CONCLUSIONSThis work introduces preparation and performances of the novel PVDF-HFP-based polymer electrolyte with DB171-modified molecular sieve ZSM-5.The practical applications such as high ionic conductivity,excellent thermal and electrochemical stability and good interfacial properties with electrode of the novel M-ZSM-5electro-lyte ensure it as the most promising polymer electrolyte for the new rechargeable lithium ion battery. REFERENCES1.F.Croce,S.Sacchetti,and B.Scrosati,J.Power Sources,162,685(2006).2.A.Manuel Stephan,Eur.Polym.J.,42,21(2006).3.J.Y.Song,Y.Y.Wang,and C.C.Wan,J.Power Sources,77,183(1999).4.V.Di Noto,vina,G.A.Giffin,E.Negro,and B.Scro-sati,Electrochim.Acta,57,4(2011).5.N.H.Idris,M.M.Rahman,J.Z.Wang,and H.K.Liu,J.Power Sources,201,294(2012).6.P.Zhang,L.C.Yang,L.L.Li,M.L.Ding,Y.P.Wu,and R.Holze,J.Memb.Sci.,379,80(2011).7.G.B.Appetecchi, F.Croce,and B.Scrosati,Electrochim.Acta,40,991(1995).8.Z.Ren,Y.Liu,K.Sun,X.Zhou,and N.Zhang,Electro-chim.Acta,54,1888(2009).9.Q.Xiao,X.Wang,W.Li,Z.Li,T.Zhang,and H.Zhang,J.Memb Sci.,334,117(2009).10.D.Saikia,H.Y.Wu,Y.C.Pan,C.P.Lin,K.P.Huang,K.N.Chen,G.T.K.Fey,and H.M.Kao,J.Power Sources,196, 2826(2011).11.A.Zalewska,M.Walkowiak,L.Niedzicki,T.Jesionowski,and ngwald,Electrochim.Acta,55,1308(2010).12.S.Ferrari, E.Quartarone,P.Mustarelli, A.Magistris,M.Fagnoni,S.Protti,C.Gerbaldi,and A.Spinella,J.Power Sources,195,559(2010).13.R.Miao,B.Liu,Z.Zhu,Y.Liu,J.Li,X.Wang,and Q.Li,J.Power Sources,184,420(2008).14.K.M.Kim,N.G.Park,K.S.Ryu,and S.H.Chang,Polymer,43,3951(2002).15.K.M.Kim,N.G.Park,K.S.Ryu,and S.H.Chang,Electro-chim.Acta,51,5636(2006).16.M.Caillon-Caravanier,B.Claude-Montigny,D.Lemordant,and G.Bosser,J.Power Sources,107,125(2002).17.P.Raghavan,J.W.Choi,J.H.Ahn,G.Cheruvally,G.S.Chauhan,H.J.Ahn,and C.Nah,J.Power Sources,184,437 (2008).18.P.Raghavan,X.Zhao,J.K.Kim,J.Manuel,G.S.Chauhan,J.H.Ahn,and C.Nah,Electrochim.Acta,54,228(2008). 19.X.L.Wang,Q.Cai,L.Z.Fan,T.Hua,Y.H.Lin,and C.W.Nan,Electrochim.Acta,53,8001(2008).20.Y.J.Kim, C.H.Ahn,M.B.Lee,and M.S.Choi,Mater.Chem.Phys.,127,137(2011).21.Z.Chen,L.Z.Zhang,R.West,and K.Amine,Electrochim.Acta,53,3262(2008).lia,N.Yoshimoto,M.Egashira,and M.Morita,J.Power Sources,194,531(2009).23.M.Walkowiak,D.Waszak,G.Schroeder,and B.Gierczyk,mun.,10,1676(2008).24.M.Walkowiak, A.Zalewska,T.Jesionowski,and M.Pokora,J.Power Sources,173,721(2007).25.M.Walkowiak,A.Zalewska,T.Jesionowski,D.Waszak,and B.Czajka,J.Power Sources,159,449(2006).26.C.Shen,J.Wang,Z.Tang,H.Wang,H.Lian,J.Zhang,and C.N.Cao,Electrochim.Acta,54,3490(2009).27.J.Xi,X.Qiu,and L.Chen,Solid State Ionics,177,709(2006).28.J.Xi,X.Qiu,X.Ma,M.Cui,J.Yang,X.Tang,W.Zhu,and L.Chen,Solid State Ionics,176,1249(2005).29.J.Xi,X.Qiu,J.Wang,Y.Bai,W.Zhu,and L.Chen,J.Power Sources,158,627(2006).634POLYMER COMPOSITES—-2012DOI10.1002/pc30.J.Xi and X.Tang,Electrochim.Acta,51,4765(2006).31.X.L.Wang,A.Mei,M.Li,Y.Lin,and C.W.Nan,SolidState Ionics,177,1287(2006).32.P.Verma,P.Maire,and P.Nova´k,Electrochim.Acta,55,6332(2010).33.B.A.Rozenberg and R.Tenne,Prog.Polym.Sci.,33,40(2008).34.M.J.Reddy and P.P.Chu,J.Power Sources,135,1(2004).35.S.Bandyopadhyay,R.F.Marzke,R.K.Singh,and N.New-man,Solid State Ionics,181,1727(2010).36.Y.Tominaga,T.Shimomura,and M.Nakamura,Polymer,51,4295(2010).37.J.Xi and X.Tang,Electrochim.Acta,50,5293(2005).38.Y.X.Jiang,Z.F.Chen,Q.C.Zhuang,J.M.Xu,Q.F.Dong,L.Huang,and S.G.Sun,J.Power Sources,160,1320 (2006).DOI10.1002/pc POLYMER COMPOSITES—-2012635。
记录发展新进程,荟萃粉体新技术大型史料年刊《中国粉体工业通鉴》(第五卷/2009版)编撰启动
佚名
【期刊名称】《中国材料科技与设备》
【年(卷),期】2009(006)003
【摘要】本书由中国建材工业出版社连续出版,面向国内外公开发行,拥有众多国内外读者。
本书已向国家工商行政管理总局商标局申请注册商标并已公告,这将是我国粉体行业首部获准注册的粉体专著。
【总页数】1页(P25)
【正文语种】中文
【中图分类】TB44
【相关文献】
1.记录发展新进程,荟萃粉体新技术大型史料年刊《中国粉体工业通鉴》(第五卷
/2009版)编撰启动 [J],
2.记录发展新进程,汇编粉体新技术大型史料年刊《中国粉体工业通鉴》(第五卷/2009)编撰启动 [J],
3.大型史料年刊《中国粉体工业通鉴》(第五卷/2009版)编撰启动 [J],
4.记录发展新进程,荟萃粉体新技术大型史料年刊《中国粉体工业通鉴》(第五卷/2009版)编撰启动 [J],
5.记录发展新进程,荟萃粉体新技术大型史料年刊《中国粉体工业通鉴》(第五卷/2009版)编撰启动 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
金刚石与磨料磨具工程总第238期通过对试验结果的分析得出了最优砂轮组织配方㊂该试验结果对砂轮制造企业和相关工程技术人员具有借鉴和指导意义㊂但从整体来看,作者设计的砂轮组织配方种类较少,对应开展的试验次数也相对较少,因此建议作者在以往研究基础上继续开展砂轮组分及其对硅片超精密磨削性能影响的研究,以形成连贯的㊁成体系的完整研究路线㊂‘硅片化学机械抛光技术的研究进展“徐嘉慧,等;第24页化学机械抛光是目前唯一实现硅片全局平坦化的工艺技术,所加工表面具有纳米级面形精度和亚纳米级表面粗糙度,且无表面和亚表面损伤,是集成电路制造过程中重要的工艺之一㊂针对化学机械抛光技术,国内外研究学者进行了长期的㊁大量的研究,综述硅片的化学机械抛光技术研究进展,对于研究硅片化学机械抛光技术的原理㊁开发相关的设备和工艺具有重要意义㊂作者对影响硅片化学机械抛光性能的因素(如抛光液㊁抛光垫和抛光压力等)以及目前先进抛光设备的特点进行了详细综述,为相关研究人员和工程技术人员了解本行业提供了参考㊂C M P技术与集成电路制造技术是互相促进的,建议作者及从业者紧跟新一代半导体的材料㊁结构㊁加工要求,对C M P技术提出的新挑战潜心研究,实现我国C M P技术的高质量发展,缩小同国际先进技术水平的差距㊂‘金刚石与磨料磨具工程“青年编委团队成立7月29日,在山城重庆召开了 ‘金刚石与磨料磨具工程“青年编委论坛 ,正式宣告杂志社成立了一支年轻㊁精干的队伍:青年编委团队㊂青年编委的倡议,最早来自2019年杂志社的编委会议上,有老师提出要给青年学者更多的机会㊂经过半年多的准备工作,杂志社邀请了来自不同高校㊁不同方向的5位青年学者作为初创成员,加入青年编委团队的创立工作中来㊂经过前期筹备, ‘金刚石与磨料磨具工程“首届青年编委会 在论坛前夕召开㊂杂志社委派了赵兴昊㊁鄢翔2位编辑,和重庆大学肖贵坚㊁南方科技大学孟彬彬㊁西安交通大学段端志㊁东华大学吴重军和哈尔滨工业大学李琛等5位青年编委共同商讨,确定了未来青年编委团队的运作模式,各位青年编委的权利和义务等内容㊂会议首先就青年编委的团队规模㊁未来定位等问题进行了讨论并达成共识,然后又逐一商定了青年编委的申请条件㊁申请流程㊁任期及任期内的工作㊁退出机制等内容㊂完成青年编委团队的架构后,杂志社将筛选过的青年编委候选人名单提交到会议进行讨论,最终一致通过㊂会议结束后,杂志社将所形成的青年编委章程(送审稿)和拟通过的青年编委名单报至杂志编委会主任㊁副主任审批㊂本次青年编委论坛上,5位青年编委共有2小时的报告时间,向与会专家代表汇报自己的研究成果与最新进展㊂为帮助青年编委成长,杂志社特别邀请了南方科技大学的张璧教授作为主持人,并点评报告内容㊂我国的制造业体量已达到世界上首屈一指的地位,但在质量方面仍处在追赶国际先进水平的阶段㊂要实现制造业强国的伟大梦想,各位同仁任重道远㊂特别是茁壮成长㊁潜力无限的青年学者们,梁启超先生以潜龙乳虎相喻,习近平主席以前途希望相托㊂杂志社将同青年编委一起,努力构建优秀的交流和成长平台,不负师长培养,不负青春韶光㊂附:报告人及题目肖贵坚:微纳米结构激光砂带磨削方法孟彬彬:碳化硅材料磨粒加工微观去除机理及表面改性机制研究段端志:基于钎料改性的极端服役工况新型钎焊金刚石钻头研制吴重军:硬脆材料金刚石砂轮高速磨削理论与工艺优化研究李琛:超精密磨削诱导的硬脆激光晶体材料损伤演变机理‘金刚石与磨料磨具工程“杂志社4。
砂型铸造原材料一、湿型砂材料选用1 原砂在混砂批料中加入原砂的目的是弥补铸造生产过程中砂粒损失,稳定型砂的含泥量不变,冲淡新形成的灰分,稳定型砂的粒度和透气性。
对原砂的品质要求主要存在的问题有以下三个:1.1 铸铁用原砂的SiO2含量底线是多少?上世纪80年代初美国通用公司来华谈合作时,对我国第一汽车厂铸铁件使用SiO2含量只有90%左右的内蒙原砂表示惊讶。
认为应当像美国中西部汽车工业集中地区用密歇根湖的湖砂,SiO2含量为95~96%。
德国的铸铁工厂也曾表示生产铸铁件用原砂最好像Luitpold 工厂那样使用含SiO2 99.6%以上的H33硅砂。
不久前有一位日本工程师认为辽宁某厂的铸铁件表面不够光洁的原因是用了内蒙砂,需要更换SiO2含量更高的原砂。
因为他们用从澳大利亚进口的Flattery 砂,SiO2含量在99%以上。
英国人认为铸铁件用SiO2含量至少应当用类似Chelford砂和Bedford砂SiO2含量96~97%的硅砂。
他们都以自己本国的使用硅砂的SiO2含量来评论中国铸造工厂的铸铁用原砂。
然而我国铸造工厂大多认为比较理想的铸铁用原砂是内蒙等地蕴藏极其丰富的风积砂,SiO2含量约为88~92%。
内蒙砂颗粒形状圆滑,而且SiO2含量适中,不易产生夹砂缺陷。
由于新砂的消耗量大,为了避免长途运输,铸铁工厂都尽量选用就近的砂源。
例如华中一带多用江西砂,SiO2含量大约在87~93%。
华东用江西砂或用SiO2含量大约在95~98%福建砂,河南及邻近地区广泛使用黄河沉积砂(SiO2含量大约只有80~82%)生产汽车、拖拉机、柴油机等铸件并未出现明显缺陷。
为了了解低SiO2含量的原砂对型砂性能和铸铁件品质的影响,清华大学曾进行了试验研究工作[1]。
将黄河沉积砂用药物浮选方法分为石英精砂(SiO2含量96.1%)和长石砂(SiO2含量71.5%),然后按不同比例配制成五种粒度分布和颗粒形状相同,而SiO2含量不同的原砂来进行研究。
新时代橡胶工业人才至上,技术至上,创新至上——访原化工部橡胶司副司长于清溪老先生本刊记者(全国橡胶塑料设计技术中心,北京 100143)中图分类号:TQ336文章编号:1009-797X(2020)19-0001-04文献标识码:BDOI:10.13520/ki.rpte.2020.19.001于清溪原化工部橡胶司副司长,教授级高工,现为国资委石化离退休干部局正局级离休干部,优秀共产党员。
中共中央、国务院、中央军委“应祝中华人民共和国成立70周年纪念章”获得者,享受国务院政府特殊津贴。
橡胶行业的老领导和资深专家,多年来担任全国橡塑中心及《橡塑技术与装备》杂志社的顾问。
多年来从事橡胶技术和长期负责行业管理工作,著有《橡胶创业三部曲》、《中外橡胶工业创新三部曲》、《橡胶弹性体开发创新史观》和《橡胶弹性体漫话》等多部著作,发表专业论文100多篇。
于清溪老先生在耄耋之年,无计体衰多病,为庆祝中华人民共和国成立70周年和纪念世界橡胶工业创建200周年以及回顾我国天然橡胶、合成橡胶实现产业化60周年,历经一年时间写出了《橡胶弹性体漫话》这本长达60万字的力作,以创新的思维,论述了橡胶弹性体的今昔发展和未来瞻望。
本刊记者就本书的写作背景、全书内容和呈现方式,采访了于老先生。
希望在2020年新冠疫情对橡胶行业带来了巨大影响的背景下,向行业呈现更广阔的视野,给予变危机为机遇的启迪。
编者按:记者:于老您好!您是橡胶行业老领导,今年已经90高龄,应该早已颐养天年,为什么却不顾体衰多病,坚持写《橡胶弹性体漫话》这本书?于清溪:做为新中国第一代的老橡胶人,我感到这是一个历史责任,更是人生的使命。
我干了一辈子橡胶工作。
在国家机关为橡胶行业服务了30多个年头,在工厂基层待过十几年,也看了国外不少橡胶企业,深切感受到人才和技术对于企业发展之重要。
没有精湛的专业人才,没有创新的现代技术,哪来的大强企业,更何谈橡胶强国。
橡胶工业的发展,应是人才至上,技术至上,创新至上。