优化高考数学试题计算量的五种方法
- 格式:doc
- 大小:312.50 KB
- 文档页数:5
高考数学考点归纳之 解析几何计算处理技巧中学解析几何是将几何图形置于直角坐标系中,用方程的观点来研究曲线,体现了用代数的方法解决几何问题的优越性,但有时运算量过大,或需繁杂的讨论,这些都会影响解题的速度,甚至会中止解题的过程,达到“望题兴叹”的地步.特别是高考过程中,在规定的时间内,保质保量完成解题的任务,计算能力是一个重要的方面.为此,从以下几个方面探索减轻运算量的方法和技巧,合理简化解题过程,优化思维过程.考点一 回归定义,以逸待劳回归定义的实质是重新审视概念,并用相应的概念解决问题,是一种朴素而又重要的策略和思想方法.圆锥曲线的定义既是有关圆锥曲线问题的出发点,又是新知识、新思维的生长点.对于相关的圆锥曲线中的数学问题,若能根据已知条件,巧妙灵活应用定义,往往能达到化难为易、化繁为简、事半功倍的效果.[典例] 如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A.2B.3C.32D.62[解题观摩] 由已知,得F 1(-3,0),F 2(3,0), 设双曲线C 2的实半轴长为a , 由椭圆及双曲线的定义和已知, 可得⎩⎪⎨⎪⎧|AF 1|+|AF 2|=4,|AF 2|-|AF 1|=2a ,|AF 1|2+|AF 2|2=12,解得a 2=2,故a = 2.所以双曲线C 2的离心率e =32=62. [答案] D [关键点拨]本题巧妙运用椭圆和双曲线的定义建立|AF 1|,|AF 2|的等量关系,从而快速求出双曲线实半轴长a 的值,进而求出双曲线的离心率,大大降低了运算量.[对点训练]1.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1 B.|BF |2-1|AF |2-1 C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1 解析:选A 由题意可得S △BCF S △ACF =|BC ||AC |=x Bx A=|BF |-p2|AF |-p 2=|BF |-1|AF |-1.2.抛物线y 2=4mx (m >0)的焦点为F ,点P 为该抛物线上的动点,若点A (-m,0),则|PF ||P A |的最小值为________.解析:设点P 的坐标为(x P ,y P ),由抛物线的定义,知|PF |=x P +m ,又|P A |2=(x P +m )2+y 2P =(x P +m )2+4mx P,则⎝⎛⎭⎫|PF ||P A |2=(x P +m )2(x P +m )2+4mx P =11+4mx P (x P +m )2≥11+4mx P (2x P ·m )2=12(当且仅当x P =m 时取等号),所以|PF ||P A |≥22,所以|PF ||P A |的最小值为22.答案:22考点二 设而不求,金蝉脱壳设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.[典例] 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的标准方程为( )A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 [解题观摩] 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,①②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2, 解得b 2=9,a 2=18,所以椭圆E 的方程为x 218+y 29=1.[答案] D [关键点拨](1)本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.(2)在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;①“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.[对点训练]1.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E ,若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34解析:选A 设OE 的中点为G ,由题意设直线l 的方程为y =k (x +a ), 分别令x =-c 与x =0得|FM |=k (a -c ),|OE |=ka , 由△OBG ∽△FBM ,得|OG ||FM |=|OB ||FB |,即12ka k (a -c )=a a +c, 整理得c a =13,所以椭圆C 的离心率e =13.2.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.解析:设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b 2=1,x 22a 2+y22b 2=1,∴(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.∵y 1-y 2x 1-x 2=-12,x 1+x 2=2,y 1+y 2=2,∴-b 2a 2=-12,∴a 2=2b 2.又∵b 2=a 2-c 2,∴a 2=2(a 2-c 2),∴a 2=2c 2,∴c a =22.即椭圆C 的离心率e =22. 答案:22考点三 巧设参数,变换主元换元引参是一种重要的数学方法,特别是解析几何中的最值问题、不等式问题等,利用换元引参使一些关系能够相互联系起来,激活了解题的方法,往往能化难为易,达到事半功倍.常见的参数可以选择点的坐标、直线的斜率、直线的倾斜角等.在换元过程中,还要注意代换的等价性,防止扩大或缩小原来变量的取值范围或改变原题条件.[典例] 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.若|AP |=|OA |,证明直线OP 的斜率k 满足|k |> 3.[解题观摩] 法一:依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0). 由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 20b 2=1, 消去y 0并整理,得x 20=a 2b 2k 2a 2+b2.①由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0. 而x 0≠0,于是x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2⎝⎛⎭⎫a b 2+4. 又a >b >0,故(1+k 2)2>4k 2+4, 即k 2+1>4,因此k 2>3,所以|k |> 3. 法二:依题意,直线OP 的方程为y =kx , 可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,得x 20a 2+k 2x 20b2=1.因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a 2<1,即(1+k 2)x 20<a 2.②由|AP |=|OA |及A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a 1+k 2, 代入②,得(1+k 2)·4a 2(1+k 2)2<a 2,解得k 2>3,所以|k |> 3.法三:设P (a cos θ,b sin θ)(0≤θ<2π), 则线段OP 的中点Q 的坐标为⎝⎛⎭⎫a 2cos θ,b2sin θ. |AP |=|OA |⇔A Q ⊥OP ⇔k A Q ×k =-1. 又A (-a,0),所以k A Q =b sin θ2a +a cos θ,即b sin θ-ak A Q cos θ=2ak A Q . 从而可得|2ak A Q |≤ b 2+a 2k 2A Q <a1+k 2A Q ,解得|k A Q |<33,故|k |=1|k A Q |> 3. [关键点拨]求解本题利用椭圆的参数方程,可快速建立各点之间的联系,降低运算量. [对点训练]设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆C :(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,求r 的取值范围.解:当斜率不存在时,有两条,当斜率存在时,不妨设直线l 的方程为x =ty +m ,A (x 1,y 1),B (x 2,y 2),代入抛物线y 2=4x 并整理得y 2-4ty -4m =0, 则有Δ=16t 2+16m >0,y 1+y 2=4t ,y 1y 2=-4m , 那么x 1+x 2=(ty 1+m )+(ty 2+m )=4t 2+2m , 可得线段AB 的中点M (2t 2+m,2t ), 而由题意可得直线AB 与直线MC 垂直, 即k MC ·k AB =-1,可得2t -02t 2+m -5·1t =-1,整理得m =3-2t 2(当t ≠0时),把m =3-2t 2代入Δ=16t 2+16m >0, 可得3-t 2>0,即0<t 2<3, 又由于圆心到直线的距离等于半径, 即d =|5-m |1+t 2=2+2t 21+t 2=21+t 2=r ,而由0<t 2<3可得2<r <4. 故r 的取值范围为(2,4).考点四 数形结合,偷梁换柱著名数学家华罗庚说过:“数与形本是两相倚,焉能分作两边飞.数缺形时少直观,形少数时难入微.”在圆锥曲线的一些问题中,许多对应的长度、数式等都具有一定的几何意义,挖掘题目中隐含的几何意义,采用数形结合的思想方法,可解决一些相应问题.[典例] 已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________.[解题观摩] 设双曲线的左焦点为F 1,根据双曲线的定义可知|PF |=2a +|PF 1|, 则△APF 的周长为|P A |+|PF |+|AF |=|P A |+2a +|PF 1|+|AF |=|P A |+|PF 1|+|AF |+2a , 由于|AF |+2a 是定值,要使△APF 的周长最小, 则|P A |+|PF 1|最小,即P ,A ,F 1共线, 由于A (0,66),F 1(-3,0),则直线AF 1的方程为x -3+y 66=1,即x =y26-3,代入双曲线方程整理可得 y 2+66y -96=0,解得y =26或y =-86(舍去),所以点P 的纵坐标为26, 所以=12×6×66-12×6×26=12 6. [答案] 126 [关键点拨]要求①APF 的周长的最小值,其实就是转化为求解三角形三边长之和,根据已知条件与双曲线定义加以转化为已知边的长度问题与已知量的等价条件来分析,根据直线与双曲线的位置关系,通过数形结合确定点P 的位置,通过求解点P 的坐标进而利用三角形的面积公式来处理.[对点训练]1.椭圆x 25+y 24=1的左焦点为F ,直线x =m 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是( )A.55B.655C.855D.455解析:选C 如图所示,设椭圆的右焦点为F ′,连接MF ′,NF ′.因为|MF |+|NF |+|MF ′|+|NF ′|≥|MF |+|NF |+|MN |,所以当直线x =m 过椭圆的右焦点时,△FMN 的周长最大.此时|MN |=2b 2a =855,又c =a 2-b 2=5-4=1,所以此时△FMN 的面积S =12×2×855=855.故选C.2.设P 为双曲线x 2-y 215=1右支上一点,M ,N 分别是圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1上的点,设|PM |-|PN |的最大值和最小值分别为m ,n ,则|m -n |=( )A .4 B.5 C .6D .7解析:选C 由题意得,圆C 1:(x +4)2+y 2=4的圆心为(-4,0),半径为r 1=2;圆C 2:(x -4)2+y 2=1的圆心为(4,0),半径为r 2=1.设双曲线x 2-y 215=1的左、右焦点分别为F 1(-4,0),F 2(4,0).如图所示,连接PF 1,PF 2,F 1M ,F 2N ,则|PF 1|-|PF 2|=2.又|PM |max =|PF 1|+r 1,|PN |min =|PF 2|-r 2,所以|PM |-|PN |的最大值m =|PF 1|-|PF 2|+r 1+r 2=5.又|PM |min =|PF 1|-r 1,|PN |max =|PF 2|+r 2,所以|PM |-|PN |的最小值n =|PF 1|-|PF 2|-r 1-r 2=-1,所以|m -n |=6.故选C.考点五 妙借向量,无中生有平面向量是衔接代数与几何的纽带,沟通“数”与“形”,融数、形于一体,是数形结合的典范,具有几何形式与代数形式的双重身份,是数学知识的一个交汇点和联系多项知识的媒介.妙借向量,可以有效提升圆锥曲线的解题方向与运算效率,达到良好效果.[典例] 如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b>0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.[解题观摩] 把y =b 2代入椭圆x 2a 2+y 2b 2=1,可得x =±32a ,则B ⎝⎛⎭⎫-32a ,b 2,C ⎝⎛⎭⎫32a ,b 2, 而F (c,0), 则FB =⎝⎛⎭⎫-32a -c ,b 2,FC =⎝⎛⎭⎫32a -c ,b 2,又∠BFC =90°, 故有FB ·FC =⎝⎛⎭⎫-32a -c ,b 2·⎝⎛⎭⎫32a -c ,b 2=c 2-34a 2+14b 2=c 2-34a 2+14(a 2-c 2)=34c 2-12a 2=0,则有3c 2=2a 2,所以该椭圆的离心率e =c a =63.[答案]63[关键点拨]本题通过相关向量坐标的确定,结合∠BFC =90°,巧妙借助平面向量的坐标运算来转化圆锥曲线中的相关问题,从形入手转化为相应数的形式,简化运算.[对点训练] 设直线l 是圆O :x 2+y 2=2上动点P (x 0,y 0)(x 0y 0≠0)处的切线,l 与双曲线x 2-y 22=1交于不同的两点A ,B ,则∠AOB 为( )A .90° B.60° C .45°D .30°解析:选A ∵点P (x 0,y 0)(x 0y 0≠0)在圆O :x 2+y 2=2上,∴x 20+y 20=2,圆在点P (x 0,y 0)处的切线方程为x 0x +y 0y =2.由⎩⎪⎨⎪⎧x 2-y 22=1,x 0x +y 0y =2及x 20+y 20=2得(3x 20-4)x 2-4x 0x +8-2x 20=0.∵切线l 与双曲线交于不同的两点A ,B ,且0<x 20<2,∴3x 20-4≠0,且Δ=16x 20-4(3x 20-4)·(8-2x 20)>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4x 03x 20-4,x 1x 2=8-2x 203x 20-4.∵OA ·OB =x 1x 2+y 1y 2=x 1x 2+1y 20(2-x 0x 1)(2-x 0x 2)=x 1x 2+12-x 20[4-2x 0(x 1+x 2)+x 20x 1x 2]=8-2x 203x 20-4+12-x 20⎣⎢⎡⎦⎥⎤4-8x 203x 20-4+x 20(8-2x 20)3x 20-4=0,∴∠AOB =90°. 考点六 巧用“根与系数的关系”某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.[典例] 已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆于M ,N 两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.[解题观摩] (1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以M ⎝⎛⎭⎫-65,45. (2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2), 联立方程⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1,化简得(1+4k 2)x 2+16k 2x +16k 2-4=0. 则x A +x M =-16k 21+4k 2,x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k 21+4k 2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝⎛⎭⎫-65,0. 证明如下:因为k MP =y M x M +65=k ⎝⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k4-4k 2, 同理可得k PN =5k4-4k 2. 所以直线MN 过x 轴上的一定点P ⎝⎛⎭⎫-65,0. [关键点拨]本例在第(2)问中可应用根与系数的关系求出x M =2-8k 21+4k 2,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.[对点训练]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点P ⎝⎛⎭⎫1,32,左、右焦点分别为F 1,F 2.(1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,若△AF 2B 的内切圆半径为327,求以F 2为圆心且与直线l 相切的圆的方程.解:(1)由c a =12,得a =2c ,所以a 2=4c 2,b 2=3c 2,将点P ⎝⎛⎭⎫1,32的坐标代入椭圆方程得c 2=1, 故所求椭圆方程为x 24+y 23=1.(2)由(1)可知F 1(-1,0),设直线l 的方程为x =ty -1, 代入椭圆方程,整理得(4+3t 2)y 2-6ty -9=0, 显然判别式大于0恒成立,设A (x 1,y 1),B (x 2,y 2),△AF 2B 的内切圆半径为r 0, 则有y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t 2,r 0=327,=12r 0(|AF 1|+|BF 1|+|BF 2|+|AF 2|) =12r 0·4a =12×8×327=1227, 所以12t 2+14+3t 2=1227,解得t 2=1, 因为所求圆与直线l 相切,所以半径r =2t 2+1=2, 所以所求圆的方程为(x -1)2+y 2=2.[课时跟踪检测]1.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点,O 为坐标原点,若圆上一点C 满足OC ―→=54OA ―→+34OB ―→,则r =( )A .210 B.10 C .25D.5解析:选B 已知OC ―→=54OA ―→+34OB ―→,两边平方化简得OA ―→·OB ―→=-35r 2,所以cos ∠AOB =-35,所以cos ∠AOB 2=55,又圆心O (0,0)到直线的距离为|2|2=2, 所以2r =55,解得r =10. 2.设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( )A.33B.23C.22D .1解析:选C 如图所示,设P (x 0,y 0)(y 0>0), 则y 20=2px 0,即x 0=y 202p.设M (x ′,y ′),由PM ―→=2MF ―→,得⎩⎪⎨⎪⎧x ′-x 0=2⎝⎛⎭⎫p 2-x ′,y ′-y 0=2(0-y ′),化简可得⎩⎨⎧x ′=p +x 03,y ′=y3.∴直线OM 的斜率k =y 03p +x 03=y 0p +y 202p =2p2p 2y 0+y 0≤2p 22p 2=22(当且仅当y 0=2p 时取等号).故直线OM 的斜率的最大值为22. 3.(2019·惠州调研)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且直线l 与圆x 2+y 2=4相交所得的弦长为2,O 为坐标原点,则△AOB 面积的最小值为( )A .5 B.4 C .3D .2解析:选C 由直线与圆相交所得的弦长为2,得圆心到直线的距离d =1m 2+n 2=3,所以m 2+n 2=13≥2|mn |,当且仅当m =n 时等号成立.所以|mn |≤16,又A ⎝⎛⎭⎫1m ,0,B ⎝⎛⎭⎫0,1n ,所以△AOB 的面积S =12|mn |≥3,故△AOB 面积的最小值为3.4.(2019·兰州模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 为双曲线右支上一点,若|PF 1|2=8a |PF 2|,则双曲线C 的离心率的取值范围为( )A .(1,3] B.[3,+∞) C .(0,3)D .(0,3]解析:选A 根据双曲线的定义及点P 在双曲线的右支上,得|PF 1|-|PF 2|=2a ,设|PF 1|=m ,|PF 2|=n ,则m -n =2a ,m 2=8an ,∴m 2-4mn +4n 2=0,∴m =2n ,则n =2a ,m =4a ,依题得|F 1F 2|≤|PF 1|+|PF 2|,∴2c ≤4a +2a ,∴e =ca ≤3,又e >1,∴1<e ≤3,即双曲线C的离心率的取值范围为(1,3].5.过抛物线y 2=2px (p >0)的焦点F ,斜率为43的直线交抛物线于A ,B 两点,若AF ―→=λFB ―→(λ>1),则λ的值为( )A .5 B.4 C.43D.52解析:选B 根据题意设A (x 1,y 1),B (x 2,y 2), 由AF ―→=λFB ―→,得⎝⎛⎭⎫p 2-x 1,-y 1=λ⎝⎛⎭⎫x 2-p 2,y 2, 故-y 1=λy 2,即λ=-y 1y 2.设直线AB 的方程为y =43⎝⎛⎭⎫x -p 2, 联立直线与抛物线方程,消去x ,得y 2-32py -p 2=0.故y 1+y 2=32p ,y 1y 2=-p 2,则(y 1+y 2)2y 1y 2=y 1y 2+y 2y 1+2=-94,即-λ-1λ+2=-94.又λ>1,解得λ=4.6.已知椭圆C :x 24+y 2=1,过椭圆上一点A (0,1)作直线l 交椭圆于另一点B ,P 为线段AB 的中点,若直线AB ,OP 的斜率存在且不为零,则k AB k OP =________.解析:法一:(特殊值法)取B ⎝⎛⎭⎫1,32,则P ⎝ ⎛⎭⎪⎫12,2+34,则k AB =3-22,k OP =2+32, 故k AB ·k OP =3-22×2+32=-14. 法二:由题意,设直线l 的方程为y =kx +1, 联立方程⎩⎪⎨⎪⎧y =kx +1,x 24+y 2=1,消去y 得,(1+4k 2)x 2+8kx =0, 得x B =-8k 1+4k 2,即B ⎝ ⎛⎭⎪⎫-8k 1+4k 2,1-4k 21+4k 2.则P ⎝⎛⎭⎪⎫-4k 1+4k 2,11+4k 2,∴k AB =k ,k OP =-14k ,∴k AB ·k OP =-14.法三:(点差法)设A (x A ,y A ),B (x B ,y B ),P (x 0,y 0),则⎩⎨⎧x 2A4+y 2A =1,x2B4+y 2B=1,两式相减得x 2A -x 2B 4+y 2A -y 2B =0, 化简得y A +y B x A +x B ·y A -y B x A -x B =-14,即y A -y B x A -x B ·y 0x 0=-14,∴k AB ·k OP =-14.答案:-147.已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则P A ―→·PB ―→的最小值为________.解析:由题意,设A (cos θ,sin θ),P (x ,x +2), 则B (-cos θ,-sin θ),∴P A ―→=(cos θ-x ,sin θ-x -2), PB ―→=(-cos θ-x ,-sin θ-x -2),∴P A ―→·PB ―→=(cos θ-x )(-cos θ-x )+(sin θ-x -2)·(-sin θ-x -2)=x 2+(x +2)2-cos 2θ-sin 2θ=2x 2+4x +3=2(x +1)2+1,当且仅当x =-1,即P (-1,1)时,P A ―→·PB ―→取最小值1. 答案:18.(2019·武汉调研)已知A ,B 分别为椭圆x 29+y 2b 2=1(0<b <3)的左、右顶点,P ,Q 是椭圆上关于x 轴对称的不同两点,设直线AP ,B Q 的斜率分别为m ,n ,若点A 到直线y =1-mn x 的距离为1,则该椭圆的离心率为________.解析:根据椭圆的标准方程x 29+y 2b2=1(0<b <3)知椭圆的中心在原点,焦点在x 轴上,A (-3,0),B (3,0),设P (x 0,y 0),Q (x 0,-y 0),则x 209+y 20b 2=1,k AP =m =y 0x 0+3,k B Q =n =-y 0x 0-3,∴mn =-y 20x 20-9=b 29,∴1-mn =9-b 23,∴直线y =1-mn x =9-b 23x ,即9-b 2x -3y=0.又点A 到直线y =1-mn x 的距离为1,∴|-39-b 2|9-b 2+9=39-b 218-b 2=1,解得b2=638,∴c 2=a 2-b 2=98,∴e =c 2a 2=18=24. 答案:249.已知椭圆C :x 24+y 2=1的右顶点为A ,上顶点为B .设P 为第三象限内一点且在椭圆C 上,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.解:由题意知,A (2,0),B (0,1),设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4,所以直线P A 的方程为y =y 0x 0-2(x -2),令x =0,得y M =-2y 0x 0-2,从而|BM |=1-y M =1+2y 0x 0-2,直线PB 的方程为y =y 0-1x 0x +1,令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1,所以四边形ABNM 的面积S =12|AN ||BM |=12⎝⎛⎭⎫2+x 0y 0-1⎝⎛⎭⎫1+2y 0x 0-2 =x 20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2,从而四边形ABNM 的面积为定值.10.已知离心率为63的椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点为F ,过F 且与x 轴垂直的直线与椭圆交于A ,B 两点,|AB |=233. (1)求此椭圆的方程;(2)已知直线y =kx +2与椭圆交于C ,D 两点,若以线段CD 为直径的圆过点E (-1,0),求k 的值.解:(1)设焦距为2c ,∵e =c a =63,a 2=b 2+c 2,∴b a =33.由题意可知b 2a =33,∴b =1,a =3, ∴椭圆的方程为x 23+y 2=1.(2)将y =kx +2代入椭圆方程,得(1+3k 2)x 2+12kx +9=0, 又直线与椭圆有两个交点,所以Δ=(12k )2-36(1+3k 2)>0,解得k 2>1. 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2. 若以CD 为直径的圆过E 点, 则EC ―→·ED ―→=0,即(x 1+1)(x 2+1)+y 1y 2=0,而y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4, 所以(x 1+1)(x 2+1)+y 1y 2 =(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5 =9(k 2+1)1+3k 2-12k (2k +1)1+3k 2+5=0, 解得k =76,满足k 2>1,所以k =76.。
高考数学解题方法与经验分享(精选4篇)高考数学解题方法与经验分享【篇1】1.将圆锥曲线几何性质与向量数量积、不等式等交汇是高考解析几何命题的一种新常态,问题解决过程中渗透数学的转化化归,函数与方程和数形结合等的数学思想方法。
2. 点差法是一种常用的模式化解题方法,这种方法对于解决有关斜率,中点等问题有较好的解题效能。
3、圆及其直线与圆的位置关系,轨迹等问题是全国I卷的常考点,点到直线的距离、弦长公式,圆的几何性质,解三角形等知识点交汇融合,数形结合、分类讨论等数学思想方法有机渗透,解法常规,思路清晰。
4、直线与圆锥曲线的位置关系在虽然没有明确指出,但是在高考则是常考不衰的考点,同时常常与不等式、最值等相交汇,题型常见,理解容易,思路明确,交汇点较多。
直线与圆锥曲线位置关系解法步骤直接明了,关键计算(解方程、求最值等)是否准确,规范是否到位,细节是否。
5、抛物线的切线及其性质,存在性的问题都是高考的常考点,将求证目标∠OPM=∠OPN 转化为 k1+k2=0 是解题的关键,体现转化化归思想的应用,同时利用设而不求实现整体化简是减少计算量的有效方法,应当熟练掌握。
6、“定义型”的试题是高考的一个热点。
这种题目设问新颖,层次分明,贯穿解析几何的核心内容,解题的思路和策略常规常见,通性通法,直线与圆锥曲线的位置关系的解法和基本在此呈现,正确快速的多字母化简计算是解析几何解题的一道坎。
高考数学解题方法与经验分享【篇2】高考数学解题思想一:函数与方程思想函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。
利用转化思想我们还可进行函数与方程间的相互转化。
高考数学解题思想二:数形结合思想中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。
高考数学答题技巧高考数学答题技巧15篇高考数学答题技巧1相比较而言,选择题和填空题应该算得上是数学学科的小题。
所占的分值大约是70分,高中语文。
虽然没有占大头,但是应该没有人会忽略这70分,因为数学成绩的好坏从某种角度上来说就是由这部分分数决定。
小题的解题策略实际上非常重要,一定要充分利用题目中给出的有效信息进行“巧算”。
倘若能够做到数形结合,这样将会更加巧妙,并使答题一目了然;倘若采取归纳类比、合情猜想的方法,那将会更快的梳理出解题思路;倘若你有能力采取特殊化方法的话,那你的优势势必会更加明显。
选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。
选择题的解题思想,渊源于选择题与常规题的联系和区别。
它在一定程度上还保留着常规题的某些痕迹。
而另一方面,选择题在结构上具有自己的特点,即至少有一个答案(若一元选择题则只有一个答案)是正确的或合适的。
因此可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支。
选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判断。
由于我多年从事高考试题的研究,尤其对选择题我有自己的一套考试技术,我知道无论是什么科目的选择题,都有它固有的漏洞和具体的解决办法,我把它总结为:6大漏洞、8大法则。
“6大漏洞”是指:有且只有一个正确答案;不问过程只问结果;题目有暗示;答案有暗示;错误答案有严格标准;正确答案有严格标准;“8大原则”是指:选项唯一原则;范围最大原则;定量转定性原则;选项对比原则;题目暗示原则;选择项暗示原则;客观接受原则;语言的精确度原则。
经过我的培训,很多的学生的选择题甚至1分都不丢。
高考数学答题技巧2一、“六先六后”,因人因卷制宜。
考生可依自己的解题习惯和基本功,选择执行“六先六后”的战术原则。
1.先易后难。
优化圆锥曲线大题的计算量可以采用以下几种方法:
采用数值积分方法:通过改变积分点的数量和积分点的选取方法来减少计算量。
采用近似解法:通过采用近似解法来简化计算过程,减少计算量。
采用计算机辅助解法:通过采用计算机程序来解决问题,减少人工计算量。
采用分治法:将问题分解成若干个小问题,分别解决,从而减少计算量
采用离散化方法:将连续的圆锥曲线离散化,使用离散化后的数据来计算,减少计算量。
总之,优化圆锥曲线大题的计算量可以通过采用多种方法来实现,应根据具体问题的特点选择合适的方法。
高考数学快速提高成绩的十种方法介绍一:直选法——简单直观这种方法一般适用于基本不需要“转变”或推理的简单题目.这些题目主要考查考生对物理识记内容的记忆和理解程度,属常识性知识题目.常见考纲中的Ⅰ级要求内容。
二:比较排除法——排除异己这种方法要在读懂题意的基础上,根据题目的要求,先将明显的错误或不合理的备选答案一个一个地排除掉,最后只剩下正确的答案。
如果选项是完全肯定或否定的判断,可通过举反例的方式排除;如果选项中有相互矛盾或者是相互排斥的选项,则两个选项中可能有一种说法是正确的,当然,也可能两者都错,但绝不可能两者都正确。
三:特殊值法、极值法——投机取巧对较难直接判断选项的正误量,可以让某些物理量巧取满足题设条件的特殊值或极值,带入到各选项中逐个进行检验,凡是用特殊值或极值检验证明是不正确的选项,就一定是错误的,可以排除。
这种方法往往可以省去严密的逻辑推理或繁杂的数学证明。
四:极限思维法——无所不极物理中体现的极限思维常见方法有极端思维法、微元法。
当题目所涉及的物理量随条件单调变化时,可用极限法是把某个物理量推向极端,即极大或极小,极左或极右,并据此做出科学的推理分析,从而给出判断或导出一般结论。
微元法是把物理过程或研究对象分解为众多细小的“微元”,只需对这些“微元”进行必要的数学方法或物理思想处理,便可使问题得于求解。
五:代入法——事半功倍对于一些计算型的选择题,可以将题目选项中给出的答案直接代入进行检验,或在计算程中某阶段代入检验,常可以有效地减少数学运算量。
六:对比归谬法——去伪存真对于一些选项间有相互关联的高考选择题,有时可能会出现如果选项A正确即会有选项B正确或选项C也正确的情况,对于答案应为单选或双选的选择题可用此方法进行排除错误选项。
七:整体、隔离法——双管齐下研究对象为多个时,首先要想到利用整体、隔离法去求解。
常用思路是整体求外力,隔离求内力,先整体后隔离,两种方法配合使用。
八:对称分析法——左右开弓对于有对称性的物理问题,我们可以充分利用其特点,快速简便地求解问题九:图像图解法——立竿见影根据题目的内容画出图像或示意图,如物体的运动图像、受力示意图、光路图等,再利用图像分析寻找答案,利用图像或示意图解答时,具有形象、直观的特点,便于了解各物理量之间的关系,能够避免繁琐的计算,迅速简便地找出正确的答案。
高考数学答题技巧一览高考数学答题技巧一览数学是高考的一门必修科目,也是许多学生心中最头疼的一门科目。
数学的题目类型繁多,而且不同年份的高考试题难度也不尽相同,但是在高考数学答题中,有些技巧和方法是通用的,运用好这些技巧和方法可以在短时间内提升答题效率,达到更好的成绩。
本文将介绍一些常见的高考数学答题技巧,供读者参考。
一、抓住重点、短平快考试时间有限,抓住重点、短平快是解题的重要策略。
在考场上遇到一道数学题目,一定要仔细阅读题目要求,找出数学问题的重难点,确定所求解题目的关键信息,然后思考正确的解题方向和方法。
如果你对某些知识点掌握比较困难,不要一味地死磕,可以优先解决一些熟悉掌握的、能够快速解决的题目,顺便提高一下心理素质和答题速度,留下更多的时间去攻克难题。
二、题目分类,常识分析高考数学题目类型各不相同,但是归纳总结起来,主要包括以下几类:函数题、几何题、概率与统计题、数列与数学归纳法题、解方程题等等。
虽然每种题型又各自存在多种解题方法,但是在解题之前我们可以先对题目进行分类,因为各类题目都有对应的解题模式和方法,依此进行解题可以大大提高解题效率。
同时在解题过程中对一些常识的使用也很重要,比如数学符号的意义,正确的数学计算规则等等,这些很基础的知识点不但可以提高解题效率,还可以减少错误率。
三、化繁为简,化式方便高考数学中有很多与数学符号、公式、单位走向有关的题目,这些题目看上去相对比较复杂,但是只要我们懂得化繁为简、化式方便的方法,就能够迎刃而解。
在这种类型的题目中,我们可以先根据已知的数学关系式化简式子,或者进行通分、通约、抵消、转移项等步骤,有时候会得到更为简单的式子,这样我们就可以迅速找出解题思路、使用求解方法、求取答案。
当然在化繁为简的过程中,切勿草率从事,忽略一些非常重要的细节。
四、多利用图形,准确无误数学几何中,图形是解题离不开的工具。
所以,要善于利用图形,在解题的时候画出对应图形,并掌握好几何构造的基本原理,以便更准确无误地解题。
高考数学复习中如何提高数学运算能力在高考数学的复习过程中,提高数学运算能力是非常重要的。
良好的数学运算能力不仅可以帮助我们在考试中更好地解答问题,还可以提升我们在日常生活中的数学应用能力。
下面,将介绍几种提高数学运算能力的方法。
一、熟练掌握基本运算规则数学的基本运算包括加法、减法、乘法和除法。
在高考数学中,这些基础运算经常被用到,因此熟练掌握基本运算规则十分重要。
通过大量的练习,加深对运算规则的理解和记忆,可以帮助我们在考试中迅速、准确地完成计算。
二、掌握快速计算技巧在解决高考数学题目时,快速计算技巧可以帮助我们提高解题效率。
例如,掌握乘法口诀表可以快速算出两个数的乘积;学会使用分配律、结合律等数学定律,可以简化复杂的运算。
通过反复练习和积累,我们可以逐渐掌握这些快速计算技巧,提高数学运算速度。
三、注重运算符号和单位的运用在高考数学中,正确运用运算符号和单位是非常重要的。
符号的使用要准确无误,不同的符号代表着不同的运算意义,理解清楚符号的含义可以避免因符号使用错误而导致的计算错误。
另外,注意单位的转换也是关键,要根据具体题目的要求进行计算,并确保答案的单位与题目要求一致。
四、注重综合运用和思维拓展在高考数学中,很多题目需要将多个知识点综合运用,要求我们具备较强的数学思维能力。
因此,在复习数学过程中,我们要注重练习和思考,培养解题的灵活性和拓展性。
通过解决一些综合性的数学应用题,可以提高数学运算能力和解决实际问题的能力。
五、及时纠错和总结在复习过程中,我们难免会犯一些错误。
遇到错误时,要及时找出原因并加以纠正。
要分析自己的错误原因,找到学习的薄弱点,并进行有针对性的复习和练习。
此外,要及时总结解题经验和技巧,形成自己的解题方法,方便在考试中快速运算和解答问题。
通过以上几种方法的综合运用,我们可以逐步提高高考数学的运算能力。
每个人的学习方法和效果都有所差异,因此应根据自身情况,合理制定学习计划,并坚持不懈地进行复习和练习。
高考数学的解题思路技巧高考数学的解题思路指导(一)选择题对选择题的审题,主要应清楚:是单选还是多选,是选择正确还是选择错误?答案写在什么地方,等等。
做选择题有四种基本方法:1 回忆法。
直接从记忆中取要选择的内容。
2 直接解答法。
多用在数理科的试题中,根据已知条件,通过计算、作图或代入选择依次进行验证等途径,得出正确答案。
3 淘汰法。
把选项中错误中答案排除,余下的便是正确答案。
4 猜测法。
(二) 应用性问题的审题和解题技巧解答应用性试题,要重视两个环节,一是阅读、理解问题中陈述的材料;二是通过抽象,转换成为数学问题,建立数学模型。
函数模型、数列模型、不等式模型、几何模型、计数模型是几种最常见的数学模型,要注意归纳整理,用好这几种数学模型。
(三) 最值和定值问题的审题和解题技巧最值和定值是变量在变化过程中的两个特定状态,最值着眼于变量的最大/小值以及取得最大/小值的条件;定值着眼于变量在变化过程中的某个不变量。
近几年的数学高考试题中,出现过各种各样的最值问题和定值问题,选用的知识载体多种多样,代数、三角、立体几何、解析几何都曾出现过有关最值或定值的试题,有些应用问题也常以最大/小值作为设问的方式。
分析和解决最值问题和定值问题的思路和方法也是多种多样的。
命制最值问题和定值问题能较好体现数学高考试题的命题原则。
应对最值问题和定值问题,最重要的是认真分析题目的情景,合理选用解题的方法。
(四) 计算证明题解答这种题目时,审题显得极其重要。
只有了解题目提供的条件和隐含的信息,确定具体解题步骤,问题才能解决。
在做这种题时,有一些共同问题需要注意:1 注意完成题目的全部要求,不要遗漏了应该解答的内容。
2 在平时练习中要养成规范答题的习惯。
3 不要忽略或遗漏重要的关键步骤和中间结果,因为这常常是题答案的采分点。
4 注意在试卷上清晰记录细小的步骤和有关的公式,即使没能获得最终结果,写出这些也有助于提高你的分数。
5 保证计算的准确性,注意物理单位的变换。
高考学生必备数学答题技巧总结高考数学是难度比较大的,对于数学并不是十分擅长的考生,如何尽可能多得几分呢?需要掌握哪些答题技巧?下面是为大家整理的关于高考学生必备数学答题技巧,欢迎大家来阅读。
高考数学的答题技巧一、你需要了解的答题顺序其实很多同学平时并没有注意答题顺序,大部分人都是试卷发下来后采用从头到尾的顺序去答题;但是今天我想告诉各位考生,其实答题顺序很重要,很多人就因为从头到尾在前面浪费了很多时间,导致后面大题会的也没有做出来,结果就白白浪费了机会。
为此,我建议大家按照以下顺序进行答题:1.做选择题前10个或前11个首先做选择题前10个或前11个,做完后就开始涂答题卡,一定要做完选择题就涂答题卡,我见过太多的同学因为做完选择题、填空题没有及时涂答题卡,导致后面做大题没有时间涂答题卡,考试时间到还未来得及涂卡在考场苦苦哀求监考老师给一分钟机会,可是高考对每个人而言都是公平的,监考老师也不可能为了你的痛哭流涕就心软给你额外一分钟的时间,所以最后一般都是会无情的收走试卷,如果你真的将答案做出来写在了试卷上,却未来得及涂卡,那么你是不是要后悔一辈子了?所以,尽可能做完选择题前11个就涂答题卡。
一第1页共7页般而言,最后一个选择题较难,大部分人做五分钟如果还做不出来就先放弃,选择B或者C,大概率显示高考数学选择题近几年的答案一般都是B或者C。
节约时间在后面的部分,不要为了一棵树而放弃整片森林,不然得不偿失。
2.做填空题前三个高考数学中,填空题前三个一般情况下难度适中,你尽量用最短的时间作出后就填在答题纸上,避免后续时间紧张而来不及填写,最后一个填空题你先看一遍题目,倘若看完题目毫无思绪的话,暂且放弃,留到最后,倘若有时间就再回过头来看看,如果没有时间就随便填蒙一个,一般情况下都是特殊数字,比如0、1等。
3.做你会做的大题在做大题的过程中,一定要先做你会做的题目,以防万一后续由于过度紧张或时间紧张来不及做会做的题目,你先保证你能拿到的分数,再去挑战有难度的题目。
优化高考数学试题计算量的五种方法计算能力是思维能力和运算技能的结合,是高考数学考查的四大能力之一,在代数、三角、立体几何、解析几何等内容中都有体现,高考中有70%以上的试题都具有一定的计算量,所以通过研究试题特点、了解算理、改进计算方法,减少高考试题的计算是赢得考试成功的重要途径。
本文结合近几年的高考试题和自己的解题教学体会揭示如何优化高考数学中的计算量,给高三复习提供帮助。
一、 巧思妙解,避免计算高考试题一般都有多种解法,最多的甚至有近二十种方法,这些方法有繁有简,所以要通过对试题进行分析和联想,用化归、构造或类比等方法寻求最佳解题策略。
例1(2003全国新课程卷试题)一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( )A .3πB .4πC .33πD .6π解析:很多考生在考试时由于图形难画,计算量大而无可奈何的放弃,但本题如果采用构造法则可以避免计算,由于连结正方体六个面的六条对角线,可以构成一个正四面体,所以这个四面体可以看成是棱长为1的正方体面的对角线构成的,这时正方体内接于球,球的直径就是正方体的对角线长. 易知球的直径是3,故球的表面积为3π.评析:由正四面体联想到正方体突破了寻找球心和半径的障碍,避免了复杂计算,使解题快速准确。
例2(2003全国新课程卷试题)已知长方形四个顶点A (0,0),B (2,0),C (2,1)和D (0,1).一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射角等于反射角).设P 4的坐标为(x 4,0).若1< x 4<2,则tan θA .)1,31( B .)32,31( C .)21,52( D .)32,52( 解析:依题意可记各点的坐标如下:)0,1(0P , )tan ,2(1θP ,)1,(22x P ,),0(33y P ,)0,(44x P ,由反射原理依次求得2x 、3y 、4x 后,再由214<<x 可得到结果。
但这个方法不仅计算量相当大、容易出错,而且浪费时间。
但如果小题巧做,根据选择题特点可用特殊值检验,取21tan =θ,则P 1、P 2、P 3、P 4依次是各边中点,因此21不属于所求的范围,从而排除选项A 、B 、D 选C 。
评析:恰当地利用选择题的命制特点和考查功能,有助将解题建构在较高水平上,避免计算。
二、 数形结合,以图助算“数形结合”是中学数学最重要的思想方法之一,也是高考考查的重要方面,利用数形结合,可以有效地增加解题过程的直观性,大大地减少计算量。
例3(2004天津市高考卷试题)若过定点)0,1(M -且斜率为k 的直线与圆05422=-++y x x 在第一象限内的部分有交点,则k 的取值范围是( ) A. 50<<k B. 05<<-k C. 130<<k D. 50<<k 解析:本题很容易这样考虑,先设出直线的方程,解圆与直线组成的方程组,得到交点后,令交点的横坐标和纵坐标都大于0,从而求得 k 的范围,但这样计算量大,费时费力。
如果借助于图形就非常直观。
如图2所示,在圆的方程05422=-++y x x 中,令0=x 得5±=y ,即)5,0(N ,这时5=MN k 。
易知如果点N 在第 一象限,则50<<k ,故选A 。
三、 大胆取舍,进行估算高考除要求考生能够根据题设条件精算外还要能够对数据进行估计,并能进行近似计算。
例4(2003全国高考卷试题)已知)0,2(π-∈x ,54cos =x ,则=x 2t a n ( ) A .247 B .247- C .724 D .724- 解析:在公式不够熟悉和计算不熟练的情况下由于选项的设置非常相近,极易出错,而如果利用已知条件进行估算又是另一番情景了,由)0,2(π-∈x ,54cos =x 得64ππ-<<-x ,从而322ππ-<<-x ,则32tan -<x ,故选D 。
评析:本题利用角的范围估算,有效地避开了公式的应用和复杂的计算,这样解题不仅快捷而且准确。
例5(2002全国高考卷试题)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年——2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为( )A .115000亿元B .120000亿元C .127000亿元D .135000亿元 解析:由题意可得2005年国内生产总值为:4%)3.71(95933+=y ,由于高考不能使用计算器,直接计算是难以想象的,但可利用二项式定理进行估算,且95933可以近似地取作95900,这样:)073.041(95900%)3.71(959004 +⨯+=+>y 124000≈,故选C 。
评析:本题进行了二次估算,在考试时需要大胆取舍,而不能过于谨慎,得不到正确结果。
四、 合情推理,弱化计算在考试中运算的步骤越多,过程越复杂,出错的机会也就越多,所以要用推理来弱化运算,尽可能地减少出错的机会。
例6(2004年江苏卷高考试题)设无穷等差数列}{n a 的前n 项和为n S .(Ⅰ)若首项=1a 23,公差1=d ,求满足2)(2k k S S =的正整数k ;(Ⅱ)求所有的无穷等差数列}{n a ,使得对于一切正整数k 都有2)(2k k S S =成立.解析:(Ⅰ)略;(Ⅱ)把d n n na S n 2)1(1-+=代入题设2)(2k k S S =可得:2122122)1(2)1(⎪⎭⎫ ⎝⎛-+=-+d k k ka d k k a k ,在高考分分秒秒皆黄金的紧张氛围下,继续化简下去是需要勇气的,而且最后很难得到正确的结果。
但借助于推理可以弱化计算。
以推理代替计算。
因为2)(2k k S S =对一切正整数都成立,分别取2,1=k 得:⎪⎩⎪⎨⎧==224211)()(S S S S ,即⎪⎩⎪⎨⎧+=+=(2))2(64(1) )(211211d a d a a a , 由(1)得01=a 或11=a ;将01=a 代入(2)得0=d 或6=d ,下面分四种情况来讨论。
①若01=a ,0=d 则0=n S ,2)(2k k S S =成立;②若01=a ,6=d ,则183=S ,2169=S ,则233)(2S S ≠;③若11=a ,0=d ,则n S n =,2)(2k k S S =成立;④若11=a ,2=d ,12-=n a n ,则2n S n =,2)(2k k S S =成立。
综上,共3个满足条件的无穷等差数列,即0=n a 、1=n a 、12-=n a n 。
评析:由上面解析可见第二种方法注意推理,把繁杂的计算在推理中弱化了,这类经过推理可以弱化计算的试题在高考卷中比比皆是,特别是在立体几何和代数推理问题。
在高考有限的时间内不能仅仅做到埋头苦算,更要注意推理,增加解答过程的“含理量”。
五、 注重算理,精打细算在考试中面对直接计算较为复杂的试题,必须要注意算理,小心地选取运算路径,合理地选择运算方法,甚至对试题中看起来不重要的参量都加以精算,以此得到启发,从而找准运算目标。
例7(2004年福建省高考试题)如图3—1,B 地在A 地的正东方向4 km 处,C 地在B 地的北偏东30º方向2km 处,河流的沿岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2 km 现要在曲线PQ 上选一处M 建一座码头,向B 、C 两地转运货物。
经测算,从M 到B 、C 两地修建公路的费用分别是a 万元km /、2a 万元km /,那么修建这两条公路的总费用最低是( )A .(27-2)a 万元B .5a 万元C .(27解析:如图3—2,以线段AB 所在的直线为x 轴,AB 的中垂线为 y 轴,建立平面直角坐标系,由双曲线的第一定义知PQ 的方程为:1322=+y x .由题意可得:)3,3(C ,两条公路总的费用为MC a MB a 2+.如果设),(00y x M ,试图计算MC MB 2+最小值,几乎是不可能的事。
其实这里需要我们精算:双曲线的离心图3—1 图3—2率为2,这样MB 转化为两倍的M 到准线距离,且右准线方程为:21=x ,过C 作CD 垂直于右准线于D 点,交曲线PQ 于M 点,则M 为所求的点。
这时,=+MC a MB a 2a a DC a MC MD a 5)213(22)(2=-==+。
评析:本题利用双曲线的第二定义实现线段长的转化,就是符合算理的选择,通过对离心率的计算从而发现能够转化,则是精打细算的体现。
例8(2002年新课程卷试题)已知53)4cos (=+πα,232παπ<≤,求)42co s (πα+的值。
解析:在考试中很多同学试图从解方程组的角度求出αsin 、αcos ,再求出α2sin 、α2cos 代入)42cos(πα+的展开式。
这样计算量非常大,也有部分同学发现如下关系:)4(42πααπα++=+,但同样遇到求αsin 、αcos 障碍,这些都不符合算理,还需要进一步细算。
再往下分析还可以发现:4)22(42ππαπα-+=+,这个关系虽然看起来较繁,但α2sin 、α2cos 容易求得,=α2sin =+-)22cos(πα 2571)4(cos 22=++-πα;2524)4cos()4sin(2)22sin(2cos -=++=+=παπαπαα。
故25231)2sin 2(cos 224sin 2sin 4cos 2cos )42cos(-=-=-=+ααπαπαπα。
评注:本题的解法称为“变角法”,也叫“凑角法”,解题的关键是寻找已知角和所求角这间的关系,同时还要注意后续解题过程的简洁性。
高考对计算能力的考查是多角度、多层次的,尤其重视对算理的考查,很多试题需要根据不同的情况灵活处理,平时在训练中一定要注意运算的方法,能避免计算的就避免,不能避免的计算一定要注意运算的合理性、简捷性和准确性,这样才能在高考中提高效益,立于不败之地。