第二单元 圆柱与圆锥
- 格式:doc
- 大小:79.00 KB
- 文档页数:16
小学数学单元作业设计-苏教版六年级下册第二单元《圆柱与圆锥》小学数学单元作业设计一、单元信息单元所属模块:图形与几何—图形的认识—立体图形学科:数学年级:六年级学期:第二学期版本:苏教版单元组织方式:☑自然单元□重组单元课时信息:序号课时名称对应教材内容1 认识圆柱和圆锥第二单元例1(p9-10)2 圆柱的侧面积和表面积第二单元例2-3(p11-14)3 圆柱的体积第二单元例4(p15-19)4 圆锥的体积第二单元例5(p20-23)5 整理与复整理与复(p24-p26)二、单元分析一)课标要求义务教育数学课程标准(2011版)》在“学段目标”的“第二学段”中提出,学生需要探索一些图形的形状、大小和位置关系,了解一些几何体和平面图形的基本特征,体验简单图形的运动过程,能在方格纸上画出简单图形运动后的图形,了解确定物体位置的一些基本方法;掌握测量、识图和画图的基本方法;初步形成数感和空间观念,感受符号和几何直观的作用;在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程与结果;会独立思考,体会一些数学的基本思想。
义务教育数学课程标准(2011版)》在“课程内容”的“第二学段”中提出,学生需要通过观察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱的展开图;结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法,并能解决简单的实际问题。
二)教材分析1.知识网络本单元内容是在学生已经探索并掌握了长方形、正方形和圆等一些常见的平面图形的特征,以及长方体、正方体的特征,并直观认识圆柱的基础上进行教学。
2.内容分析在本单元之前,学生已经探索了圆面积公式以及长方体、正方体特征和表面积、体积计算方法,为进一步探索圆柱和圆锥的特征,探索圆柱表面积的计算方法以及圆柱和圆锥的体积公式奠定了知识基础,同时也积累了探索的经验,掌握了研究的方法。
六年级下册第二单元《圆柱与圆锥》知识点整理第二单元:圆柱与圆锥一.圆柱圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。
圆柱各部分的名称:圆柱的的两个圆面叫做底面;周围的面叫做侧面;两个底面之间的距离叫做高。
圆柱的侧面展开图:a沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形,展开图形为正方形。
b.不沿着高展开,展开图形是平行四边形或不规则图形。
c.无论如何展开都得不到梯形.侧面积=底面周长×高S侧=ch=πd×h=2πr×h圆柱的表面积:圆柱表面的面积,叫做这个圆柱的表面积。
圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2=2πr×h+2×πr2圆柱的体积:圆柱所占空间的大小,叫做这个圆柱的体积。
圆柱切拼成近似的长方体,分的份数越多,拼成的图形越接近长方体。
长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
长方体的体积=底面积×高圆柱体积=底面积×高V柱=Sh=πr2hh=V柱÷S=V柱÷S=V柱÷h.圆柱的切割:a.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2b.竖切:切面是长方形,该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh考试常见题型:a已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长b已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积c已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积d已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积e已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。
2019-2020学年西师大版数学六年级下册第二单元《圆柱与圆锥》易错题及重难点训练卷学校:___________姓名:___________班级:___________考号:___________1.一个圆柱的侧面展开图是一个正方形,已知圆柱高2分米,这个圆柱的侧面积是(________)平方分米。
2.把棱长2分米的正方体木块削成一个最大的圆柱,这个圆柱的体积是(______)立方分米。
3.一个圆锥体体积是24立方米,底面积是12平方米,这个圆锥体的高是(______)米。
4.用一个圆柱形容器盛水,水高30厘米,将水倒入和它等底的圆锥形容器中(假设圆锥形容器够高),水的高度是(________)厘米。
5.一个圆柱和一个圆锥等底等高,如果圆柱的体积是18.84立方分米,那么圆锥的体积是(____)立方分米;如果圆锥的体积是18.84立方分米,那么圆柱的体积是(____)立方分米。
6.一个圆锥的体积是24立方分米,底面积是8平方分米,高是(____)分米。
7.把一根长为4米、横截面半径为2厘米的圆柱形木料截成同样长的4段,表面积比原来增加(____)平方厘米。
8.一个圆锥的底面直径和高都是4分米,如果沿着底面直径切成两半,表面积增加(________)平方分米。
9.一个圆锥和一个圆柱的体积相等,它们的半径比是3∶2,那么圆锥的高与圆柱的高的比是(________)。
10.一个圆柱形油桶,它的底面半径越大,容积就越大。
(________)11.圆锥的底面是一个椭圆。
(____)12.长方体、正方体、圆柱、圆锥的体积公式都可以用公式V=Sh计算。
(______)13.表面积相等的两个圆柱,它们的体积不一定相等.(____)14.下图是一个零件的模型,求这个模型的表面积。
15.把一根长是2米,底面周长是31.4厘米的圆柱形木材平均截成3段,表面积增加了多少平方厘米?16.把下图中的长方形ABCD以AB为轴,BC为半径旋转一周,得到一个立体图形,这个立体图形的表面积是多少平方厘米?(AB=10厘米,BC=4厘米)17.如下图是一块长方形铁皮,利用图中的阴影部分刚好能做成一个圆柱形油桶(接头处忽略不计)。
《圆锥的认识》说课稿尊敬的各位领导、老师大家好:今天我说课的内容是课标实验教材六年级上册的《圆锥的认识》。
下面我主要从目标、评价和学习这三个方面来说本节课。
一、目标首先是学习目标的制定,我主要依据学材、学情、课标这几个方面。
基于学材的分析本节内容选自九年级义务教育课程标准实验教材(人教版)六年级下册第二章第二小节第一部分《圆锥的认识》。
这一部分是在学生掌握了圆和圆柱的相关知识的基础之上而安排的内容。
我们要想认识圆锥,进一步学习有关它的知识,首先要了解它的特征。
因此教材把它安排在这一部分内容的第一节,为下面学习起到一个良好的铺垫作用。
由于圆柱与圆锥的知识是密切相关的,因而教材把圆锥的认识安排圆柱的认识之后,为学习圆锥的特征以及体积起到了一个桥梁的作用。
因此,我将圆锥的特征作为本节课的学习重点。
基于学情的分析由于已经是六年级的学生了,他们的主动性和能动性已经有较大的提高,能够有意识的去主动探索未知世界。
同时,他们的思维能力、分析问题的意识和能力也有明显的提高;动手操作能力、语言表达能力有所发展。
所以在教学时适宜让学生主动思考,合作交流,动手实践,让学生在具体情境中亲自体验感知圆锥的特征。
另外,要鼓励学生主动参与、动手操作、发挥自己的聪明才智,能根据具体情况想出多种测量高的方法。
通过以上分析,我认为本节课的学习难点是圆锥的高的测量方法。
基于课标的分析,课标对于本节课的阐述与分析,在这里不再赘述。
学习目标:基于以上几个方面,我制定了本节课的学习目标,大家请看:目标1、借助生活中的实物或模型,会说出圆锥的各部分名称,会正确地辨认圆锥,会举例说明生活中哪些物体是圆锥形。
目标2、结合问题情境,通过指一指、画一画、量一量、说一说等活动,会说出圆锥体的大小与底面的大小有关,会正确测量圆锥的高。
目标3、通过动手操作、观察交流等活动,会说出圆锥侧面展开后是一个扇形,并能说出圆锥是由三角形旋转得到的以及三角形各部分与圆锥的关系。
1 第二单元 圆柱与圆锥 单元内容:圆柱与圆锥的认识、圆柱的表面积、圆柱的体积和圆锥的体积。教科书P10-28,教参P29-52 教学要求: 1、认识圆柱、圆锥的各部分的名称,掌握圆柱、圆锥的特征。 2、理解圆柱的表面积、侧面积、体积的意义。会推导表面积、侧面积、体积的公式,认识“进一法”取近似值,能灵活解决实际问题。 3、掌握圆锥体积公式的推导过程,能灵活解决实际问题。 4、培养学生观察、比较、归纳的能力,以及空间观念。 5、培养学生逻辑思考能力,有条理性的解决问题的能力。 教学重点:圆柱体体积的推导。 教学难点: (1)圆柱体体积公式的推导过。 (2)圆柱体侧面积、表面积的计算。 (3)利用圆柱体、圆锥体等底等高条件下的关系解有关复杂应用题。 课时安排: 1、圆柱的认识 6课时 2、圆锥的认识 2课时 3、整理和复习 1课 第一课时 圆柱的认识 教学内容:教科书第10—12页圆柱的认识,练习二的第1—4题.教参P32-35 学情分析: 圆柱是人们在生产、生活中经常遇到的几何形体,教学这一部分内容,有利于发展学生的空间观念,为进一步应用几何知识解决实际问题打下基础。
教学目标: 1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。 2、培养学生细致的观察能力和一定的空间想像能力。 3、激发学生学习的兴趣。 教学重点:认识圆柱的特征。 教学难点:看懂圆柱的平面图。 教学过程: 一、引入新课: 2
1、出示实物图,请同学们看屏幕,这些都是我们生活中常见的物体,你能按形状将他们分一分类吗? 2、在这些形体中,哪些我们已经认识,并且知道它们的特征了? 3、剩下的这些形体我们将陆续进行学习,今天我们就先来认识圆柱体,简称圆柱(板书课题)。突出两个圆柱图。 4、请同学们看屏幕上的2个圆柱,再看一看桌上老师为你们准备的3个圆柱,它们都是直直的(点击,抽象出圆柱的平面图形),而且上下一样粗,象这样的圆柱就叫直圆柱,我们小学阶段学习的都是直圆柱。 5、说一说,你见过哪些物体是圆柱形的? 二、教学圆柱的特征: 1、观察这些圆柱,想一想,点击出示研究问题,他们有什么相同的地方? ①、生1:圆柱有2个圆。你来指一指。 师:除了上下两个圆面之外,圆柱还有其他的面吗?你来指一指。请摸一摸圆柱上下两个面,再摸一摸圆柱周围的面,它们有什么不同? 师:圆柱上下两个面是平面,周围的这个面是弯曲的面,叫曲面。 ②、那么,圆柱一共有几个面?教师在黑板上贴出圆柱平面图 师:圆柱上下2个平面叫圆柱的底面,圆柱的底面是2个什么形?(板) 圆柱周围的这个曲面叫圆柱的侧面,圆柱的侧面是一个曲面(板)。 请同学们看平面图,圆柱的2个底面是圆形,根据美术上的透视原理应画成椭圆,其中看不见的部分要画成虚线。 ③请同学们继续观察圆柱,你还有什么发现? (如果学生说不出,教师:它的2个底面怎样?)圆柱的底面是不是相等呢?有没有方法验证呢?请同学们看桌上的3个圆柱,其中1号圆柱两个底面都可以揭下来,2号圆柱只有1个底面可以揭下来,3号圆柱的底面不可以揭下来,请同学们小组合作,验证一下你们的想法,看哪个小组想的办法多? 师:你是用几号圆柱验证的?说说你的想法。 生1:用尺子量一量圆柱底面的直径,看是不是一样大。 师: 你的方法能验证别的圆柱吗?你真了不起,一个方法就能解决3个圆柱的验证。你是用几号圆柱检验证的?说一说你的想法。 生2:揭下2个底面,重合起来比,发现它们完全相同。演示。 生3:揭下1个底面,贴到另一面,它们也完全相同。演示。 生4:先沿一个底面画圆,再把圆柱倒过来,和另一个底面比一比,它们也完全相同。演示。 师:同学们真聪明,想出了这么多的办法验证出2个底面完全相同(板)。 2、我们发现了圆柱的相同点,那么点击出示问题,它们有什么不同点呢? 生:它们有粗有细,有长有短。 师:圆柱的粗细由什么决定?底面越大圆柱就越粗,底面越小圆柱就越细。 3
师:圆柱的高矮由什么决定?圆柱的高是从哪儿到哪儿?从上底面到下底面的都是高吗?高要怎样?和什么垂直呢? 师:和两个底面垂直的线段长度是2个底面之间的距离。圆柱2个底面之间的距离叫做圆柱的高。(在黑板的图上标明高)师:如果老师把圆柱沿底面直径切开,你能找出一条高吗?(师生演示)老师斜看划一下,这个是圆柱的高吗? 想一想,圆柱有多少条高?它们的长度怎样? 你能给2号圆柱画一条高吗?举起来给大家看一看。 那么
圆柱的认识 ┌长方形 沿高剪┤ 斜着剪:平行四边形 └正方形 圆柱的底面周长 → 长方形的长 圆柱的高 → 长方形的宽
课后反思: 第二课时 圆柱的表面积 教学内容:圆柱的表面积,书P13-14页例3-例4,完成“做一做”及练习二的部分习题。教参P35-38 学情分析: 教学目标: 1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。 2、培养学生良好的空间观念和解决简单的实际问题的能力。 3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。 教学重点:掌握圆柱侧面积和表面积的计算方法。 教学难点:运用所学的知识解决简单的实际问题。 教具学具准备:1.教师、学生每人用硬纸做一个圆柱体模型。2、多媒体课件 教学时间: 教学过程: 一、铺垫孕伏 1.学生每人用硬纸制作一个圆柱体模型。教师出示圆柱体模型,指同学说出它有什么特征? 4
2.口头回答下面问题. (1)一个圆形花池,直径是5米,周长是多少? (2)长方形的面积怎样计算? 板书:长方形的面积=长×宽. 二、探究新知 1.圆柱的侧面积。 (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。 (2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢? (学生观察很容易看到这个长方形的面积等于圆柱的侧面积) (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高) 2.侧面积练习:练习二第5题 (1)学生审题,回答下面的问题: ① 这两道题分别已知什么,求什么? ② 计算结果要注意什么? (2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。 (3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。 3. 理解圆柱表面积的含义. (1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。) (2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。 公式:圆柱的表面积=圆柱的侧面积+底面积×2 4.教学例4 (1)出示例4。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积) (2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面) (3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。) ① 侧面积:3.14×20×28=1758.4(平方厘米) 5
② 底面积:3.14×(20÷2)2=314(平方厘米) ③ 表面积:1758.4+314=2072.4≈2080(平方厘米) 5.小结: 在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用. 三、巩固练习 1.做第14页“做一做”。(求表面积包括哪些部分?) 2. 练习二第6题。 四、作业设计:
五、板书设计: 圆柱的表面积 圆柱的侧面积=底面周长×高 圆柱的表面积=圆柱的侧面积+底面积×2 例4:①侧面积:3.14×20×28=1758.4(平方厘米) ②底面积:3.14×(20÷2)2=314(平方厘米) ③面积:1758.4+314=2072.4≈2080(平方厘米) 课后反思: 第三课时 圆柱的表面积练习课(一) 教学内容:练习二余下的练习。教材P16-18,教参P41-42 学情分析: 教学目标: 1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。 2、培养学生良好的空间观念和解决简单的实际问题的能力。 教学重点: 运用所学的知识解决简单的实际问题。 教学难点: 运用所学的知识解决简单的实际问题。 一、复习铺垫 1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高) 2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)