高钒钛矿冶炼技术要点
- 格式:pdf
- 大小:128.00 KB
- 文档页数:5
高炉冶炼钒钛矿技术讲座第一讲攀钢高炉冶炼钒钛磁铁矿分析付卫国攀钢高炉冶炼的是高钛型钒钛磁铁矿。
这种矿石含钛高,高炉冶炼时炉渣中TiO2含量达25~30%,用常规方法冶炼会出现炉渣粘稠,渣铁不分,炉缸堆积等现象。
使正常生产难于进行。
自1958年开始,经过全国炼铁界和各大研究院、所,以及高等院校的多年紧密合作研究,陆续在小高炉上进行了试验。
1965年~1967年,在承德、西昌和北京等地进行了几次大规模工业试验,解决了用普通高炉冶炼高钛型钒钛磁铁矿的基本工艺问题,并取得了技术上的突破。
1970年7月1日,容积为1000m3的1高炉终于在攀钢投入生产。
1971年和1973年容积为1200m3的2、3高炉也相既投入生产。
在经过20年的生产后,1BF于1990年初进行了改造性扩容大修,有效容积扩大为1200m3,炉顶采用并罐式无料钟炉顶底炉;1989年容积为1350m3的4高炉在攀钢新建投产,采用皮带上料、并罐式无钟炉顶,设两个出铁场,配备4座新日铁外燃式热风炉。
我国首创的高钛型钒钛磁铁矿高炉冶炼技术,经过攀钢高炉冶炼工作者几代人的不懈努力和三十年来高炉生产的实践,不断得到改进、发展和完善。
1 不同渣中TiO2的炉渣应用高炉冶炼钒钛磁铁矿的炉渣与冶炼普通矿的炉渣其理化性能有较大差别。
普通高炉渣基本属于CaO-SiO2-Al2O3三元系,而含钛炉渣中含有TiO2,属于CaO-SiO2-Al2O3- TiO2四元系,其主要矿物为钙钛矿、钛辉石、巴依石、尖晶石等,普通炉渣中常见的黄长石随着TiO2的增加而迅速减少,当渣中TiO2超过18%时黄长石消失。
所以对冶炼钒钛磁铁矿的含钛炉渣而言,随着渣中TiO2含量的不同,炉渣的应用情况也不同。
1.1 TiO2<10%的低钛渣普通矿冶炼的高炉渣通常用作水泥混合料,而含钛炉渣随着TiO2的增加,其生产水泥的强度将受到影响。
渣中平均每增加1%的TiO2,质量系数下降1.69%,R28d值降低1.19%。
2672019·6摘要:由于钒钛磁铁矿的性价比较高,通过冶金工作人员的不断努力,使我国高炉冶炼钒钛矿技术得到广泛的应用,本文针对钒钛矿中钛渣冶炼高炉操作技术的强化,建立优化操作制度、推广与应用干熄焦技术、制定原料供应变化的应急方案以及完善入炉原燃料质量评价模型等,实现高炉冶炼钒钛矿中钛渣冶炼技术,实现了长寿与低耗的特点。
关键词:钒钛矿;钛渣冶炼;高炉操作技术钒钛矿是一项重要的矿产资源,高炉冶炼钒钛矿相比普通矿的差别较大,当高炉内配比不断提升是,将会导致水泥、炼钢、烧结以及炼铁等工序造成严重影响,主要表现为烧结矿强度明显降低、铁水温度下降、返矿率提高,水泥质量下降,产量显著降低等现象,由于钒钛矿性价比较高,即使在高炉冶炼过程中存在一系列的困难,但通过相关工作人员的不懈努力,使得高炉冶炼钒钛矿技术得到了进步,随着我国钢铁市场竞争的不断提升,高炉冶炼钒钛矿工作发展迅速,由早期的100m³高炉炉容增加到现在的2500m³,高级渣系逐渐向中高钛方向发展。
一、建立完善的入炉原燃料质量评价模型在进行入炉原燃料的采购时,应以性价比作为采购依据,根据测算性价比、烧结杯实验以及工业实验的流程进行原燃料的采购,按照采购需求单进行订货,使冶炼管理部门与采购部门协同合作,实现采购过程与冶炼过程衔接在一起。
二、制定原料供应变化的应急方案相关高炉冶炼部门应制定完善的物料供应与库存预警制度,避免出现原料供应紧张的现象,在烧结机操作过程中,应对原料供应紧张的情况需提前预见,确定数个成熟配料结构,以保证变料的快速响应,在变料过程中应保证质量优先的原则,初期机速厚料层烧结稳定后,通过控制料层的厚度、负压终点等合理有效的匹配,使在保证质量的前提下,提升钒钛矿的冶炼质量,在高炉操作过程中,当外界条件发生变化时,应及时控制冶炼强度,对炉内负荷、装料制度、降煤比以及鼓风动能的顺序进行调整,以保证周围条件变化时,高炉具备一定的抵抗能力,同时应加大炉前出渣组织以及稳定设备运行,实现炉内状况可以稳定的过渡。
钒钛磁铁矿冶炼技术简介一前言钒钛磁铁矿属于难冶炼的矿石之一,俗称呆矿,其在冶炼过程中会对炉内操作及炉外渣铁处理产生一系列不利的影响,使冶炼难以为继,建国以后,我国特别是四川攀钢等钒钛矿丰富的地区,在党和政府的支持下组织了专家进行了一系列的攻关,取得了满意的冶炼成果,积蓄了丰富的经验.二钒钛矿的分类钒钛矿依据所含钛化物的多少分为低钛矿,中钛矿和高钛矿,通常把含TiO2≤3.5%的钒钛矿称为低钛矿,把含3.5%<TiO2≤8.0%称为中钛矿,把含TiO2>8.0%的钒钛矿称为高钛矿.通过几十年的研究和探索,目前我国已完全掌握了钒钛矿冶炼的技术,特别是四川攀钢,经过长期的系统的技术研究,申报了20余项的专利技术,形成了独特的钒钛矿高配比高强度冶炼系统技术,高炉冶炼主要技术经济指标也有了显著的提高,高炉利用系数,焦比,煤比等指标都得到了改善,实现了高钒钛矿比例下高强度冶炼的重大技术突破,使钒钛矿冶炼技术达到了国内先进水平.三钒钛矿冶炼的特点及钛渣的性质钒钛矿冶炼的特点主要是高炉中还原出来的钛,与高炉内的碳和氮结合形成高熔点的化合物碳化钛和氮化钛,使渣铁粘稠,渣铁不分,流动性差,渣铁排放困难,严重时造成高炉炉缸堆积难行.高炉冶炼钒钛磁铁矿的主要困难是由钛渣的特殊性质决定的,高钛渣的特点是脱硫能力低,熔化性温度高和高温还原变稠等特点.1) 高钛渣的脱硫性质一般来说,一定冶炼条件下,高炉渣的脱硫能力与渣中的氧化钙含量及温度成正比,与普通高炉冶炼的四元渣系相比,高钛渣因含有较高的钛化物,在相同碱度下,渣中氧化钙的质量百分比要低15%左右,这必然降低炉渣的脱硫能力,与普通渣相比,若维持1.1的炉渣碱度,普通渣的脱硫系数可达36左右,而含氧化钛20,25,30的钛渣脱硫系数仅为13.12.10,可见脱硫能力甚低.且随着氧化钛的增加而减弱.而且因为氧化钙在钛渣中的质量百分比较小,所以碱度对钛渣的脱硫能力影响较普通渣弱,在钒钛矿冶炼中,即使选用较高的炉渣碱度,也难于改变钛渣脱硫能力低的弱点.反而,随碱度的提高,炉渣的熔化性温度提高,而熔化性温度过高会给操作带来困难,所以不能靠大幅提高炉渣碱度来维持炉渣的脱硫能力.2) 含钛炉渣的熔化性温度熔化性温度高是钛渣的另一特点,高钛渣是一种结晶能力很强的短渣,从岩相来看,普通渣的主要物相是黄长石,辉石,假硅灰石等,其熔点都低于1600度,而当氧化钛参加造渣后,其物相组成全部改观,主要由钙钛矿,巴依石,钛辉石,尖晶石,碳化钛,氮化钛等组成,全部是高熔点矿物,而且其结晶能力很强,实测表明,高钛渣其熔化性温度通常要高于普通渣80-100度,一般来说在高于1.0的常用炉渣碱度范围内,炉渣的熔化性温度随着碱度的提高而提高,从有利于高炉操作的方面考虑,提高碱度使钛渣的熔化性温度提高,过高的熔化性温度使高炉难操作,但为了改善脱硫能力又需要维持一定的炉渣碱度,因此对于钛渣来说,炉渣脱硫与熔化性温度之间存在着相互制约的关系,过高过低都会引起炉缸工作失调或生铁出格.3 含钛渣的炉渣粘度钛渣熔化性温度高,结晶能力强,必然给高炉冶炼带来困难,当遇原料波动,使炉渣碱度升高或炉缸温度降低时,很容易引起流动性变差,出现高结晶相,使炉缸工作失调.另外,出铁过程中不可避免的要有温降,熔点高,结晶能力强的钛渣很容易粘附在沟壁上,造成严重的挂沟现象.增加炉前劳动强度.含钛渣变稠是由于渣中氧化钛在高温下生成碳化钛和氮化钛等高熔点化合物,这些化合物以固体状态悬浮于液体渣中,使炉渣粘度增加,另外在还原的粘渣中含有许多不能聚合的铁珠,这些铁珠周围包裹着相当数量的碳化钛和氮化钛,它们呈环状或半环状分布于铁珠周围形成一个固体壳,一方面增加了铁珠与熔渣间的摩擦力,减轻铁珠的有效重量,影响铁珠的沉降,使渣中铁损增加,同时也使炉渣粘度增加.四针对钒钛矿冶炼的措施1严格控制生铁硅钛含量,在钒钛矿冶炼中,生铁中硅钛含量不但是炉温的表征,而且是二氧化钛被还原的判据,炉温是影响炉渣变稠速率的最重要因素,即便在二氧化钛含量很低的情况下,提高炉温,仍然会引起炉缸失调,冶炼不能正常进行,因此在冶炼钒钛矿时,在保证生铁合格的情况下,应尽量压低炉温,生产中常用生铁中硅加钛含量表示炉温,硅加钛一般不高于0.5%.渣中二氧化钛含量越高,生铁中硅加钛应越低,适宜的生铁中硅加钛含量以0.15%比较适合于冶炼,并应保持稳定.2 选择适宜的炉渣碱度钒钛矿冶炼中,碱度可以引起炉渣性质的双重变化,提高碱度可以改善生铁脱硫,但也会使熔化性温度提高,适宜的碱度应兼顾两者,过低难于得到合格生铁,过高将出现风口挂渣,炉缸堆积,风量萎缩等冶炼困难.适宜的炉渣碱度与硫负荷,高炉容积,操作水平有关,我国攀钢条件下,一般控制在1.1左右,3 稳定优质的原燃料条件原燃料的波动易引起炉温的波动,而对于钒钛矿冶炼来说,炉温的波动往往是致使的因素,炉温过高或炉温过低都容易引起炉渣的流动性变差,渣铁不分.所以要求原燃料要稳定,另外由于钛渣的脱硫能力较弱,所以要求要选用优质的焦炭,生铁中的硫主要来自于焦碳,因此要求焦碳含硫要低,以降低硫负荷,一般要求硫负荷在4公斤/吨铁左右,4 操作特点的影响高炉取样研究表明,高炉内钛的还原以及碳化钛氮化钛的生成在炉腹高温区最激烈,达到最大值,在经过风口燃烧带氧化区时,又有一部分被氧化,使碳化钛氧化钛含量降低,因此在操作中要维持较高的冶炼强度,大风操作,以保证风口区的氧化作用,坚决杜绝小风量操作,为缩短炉渣在炉缸中的停留时间,减少还原时间,应多放上渣,尽量增加出铁次数, 结语:1 钒钛矿冶炼的关健是钛渣的特殊性质问题,一切应围绕着有利于改善钛钛的性能的方向去努力.2 生产中应严格控制炉温即生铁中硅加钛不应大于0.5,并保持炉温的稳定性,保证炉缸充沛的热量.炉缸温度视炉容大小应控制在1450左右.3 目前有高炉为解决出铁时钛渣的流动性问题,在出铁时在主沟中加入化渣剂,也取得了很好的效果.而且在铁水缶中加入化渣剂也很好的解决了铁水缶使用时间短的问题.对降低炉外劳动强度有积极的意义.。
钒钛矿的冶炼知识
该铁矿属于以铁、钛、钒、铬等氧化物为主的复合矿,铁在原矿中以磁铁矿、钛铁晶石(2FeO·TiO2)和钛铁矿(FeO·TiO2)三种形态存在,钒在磁铁矿中以V2O3的形态存在。
根据TiO2含量的高低,钒钛烧结矿可分为高钛型(攀钢)、中钛型(承钢)和低钛型(马钢)。
TiO2是制约钒钛磁铁矿高炉冶炼的主要因素,含量降低后有利于高炉强化冶炼,提高生产效率。
攀钢高炉炉料结构分为三个阶段:全钒钛烧结矿阶段、高碱度钒钛烧结矿配加普通块矿发展阶段(块矿比例6%~7%,并提高烧结矿碱度至1.7左右)、高碱度钒钛烧结矿配加高硅块矿强化阶段(块矿比例8%左右,高炉冶炼利用系数已达到2.5)。
与普通矿炉料结构的区别:
⑴适当的渣量来稀释炉渣中的(TiO2)含量,从而抑制TiO2过还原。
⑵普通烧结可通过发展铁酸盐低温黏结相来降低烧结矿SiO2含量,而钒钛矿则比较困难。
⑶炉渣脱硫能力低。
⑷对块矿品位和其含硅量有要求。
高碱度钒钛烧结矿配加酸性氧化球团矿必将是钒钛磁铁矿冶炼炉料的发展方向。
钒钛铁高炉冶炼工艺钒钛铁是一种重要的铁合金产品,广泛应用于钢铁工业和其他领域。
钒钛铁的生产是通过高炉冶炼工艺实现的。
这种工艺是一种复杂的金属冶炼技术,需要多种原料和特定条件才能达到理想的生产效果。
钒钛铁高炉冶炼工艺主要包括矿石熔炼、还原和分离、精炼等步骤。
首先,矿石熔炼是指将含有钒、钛的矿石与焦炭等还原剂一起放入高炉中,通过高温下的反应使得金属矿物分解,释放出目标金属元素。
在这一步骤中,需要控制好炉温、矿石成分和燃料比例,以保证炉内反应的顺利进行。
接着是还原和分离阶段,这一步骤是钒钛铁高炉冶炼工艺中最关键的部分。
在高炉中,矿石中的氧化物会被还原成金属状态,并与其他金属元素一起混合。
这时需要根据金属间的相互溶解度和密度差异,通过物理和化学手段将钒、钛等目标元素从其他杂质中分离出来。
这一过程需要仔细控制还原剂和矿石的投入比例,确保分离效果达到预期。
最后是精炼步骤,这一步骤是为了提高钒钛铁的纯度和品质。
在高炉冶炼过程中,可能会产生一些氧化物和其他杂质,需要通过进一步的熔炼和精炼操作将其去除。
这一步骤通常在熔炼炉中进行,通过控制炉温和添加适当的脱氧剂或融化剂,将有害杂质和氧化物从金属中剔除,提高钒钛铁的品质和市场竞争力。
除了上述基本的工艺步骤之外,钒钛铁高炉冶炼工艺还需要考虑其他因素对生产过程的影响。
比如原料的选择和配比、炉温和气氛控制、炉料输送和热能回收等方面的技术都会对钒钛铁的生产效率和质量产生重要影响。
因此,科研人员和生产工程师需要在实际生产中不断优化工艺参数,提高钒钛铁的产量和质量。
总的来说,钒钛铁高炉冶炼工艺是一项复杂而重要的金属冶炼技术,涉及多个步骤和因素。
通过科学的设计和严格的控制,可以实现高效生产和优质产品的目标。
未来,随着技术的进步和需求的增长,钒钛铁高炉冶炼工艺将迎来新的发展机遇,为钢铁工业和相关领域提供更多优质的铁合金产品。
攀钢钒钛磁铁矿高炉冶炼基本情况姜照金王正五1.河北承德钒钛磁铁矿概况河北承德地区的大庙铁矿、黑山铁矿和马营铁矿都是钒钛磁铁矿。
到2006年底,其中大庙钒钛磁铁矿可开采资源已达到 2.45亿吨,探明钒保有资源量V2O54460万吨,TiO21535.36万吨。
近年来,在承德地区发现有一种新型的超贫钒钛磁铁矿资源,其储藏量达80亿吨以上。
与四川攀西钒钛磁铁矿矿相比,承德钒钛磁铁矿矿物具有结晶晶粒粗、矿石结构松散、硬度小的特点,选出的含钒钛精矿品位可达到60-65%。
2. 钒钛磁铁矿高炉冶炼原料的特点高炉冶炼钒钛矿的原料,实际上是钒钛烧结矿。
经磁选生产的钒钛磁铁精矿是生产烧结矿的主要含铁原料。
高钛型钒钛磁铁矿因TiO2含量高,为适于高炉冶炼,在烧结原料中配入适量的普粉,以使烧结矿中TiO2含量在适宜的范围内。
2.1钒钛烧结矿的化学成分钒钛烧结矿的化学成分,除含TiO2和V2O5有别于普通烧结矿外,其它化学成分含量亦有较大区别,见表1。
国内三个烧结厂生产的钒钛烧结矿,就其TiO2含量可分为高钛型(攀钢)、中钛型(承钢)和低钛型(马钢)。
表1 国内三个烧结厂烧结矿化学组成,%高钛型钒钛烧结矿的化学成分与普通烧结矿相比,具有“三低”、“三高”的特点。
其中“三低”是指烧结矿含铁分低、FeO含量低和SiO2低;“三高”是指烧结矿含TiO2高、MgO和Al2O3高和V2O5高,其中TiO2决定了烧结过程和高炉冶炼的特殊规律。
2.2钒钛烧结矿的冶金性能1. 钒钛烧结矿的转鼓强度钒钛烧结矿的强度一般比普通烧结矿强度低,其转鼓指数一般为81~82%,而普通烧结矿转鼓指数可达83~85%。
钒钛烧结矿冷却后的转鼓指数比冷却前提高6~7%,说明钒钛烧结矿在热状态下脆性大,强度不如普通烧结矿好。
2. 烧结矿贮存性能钒钛烧结矿有较好的贮存性能,其自然粉化率比普通烧结矿低得多。
普通烧结矿贮存一天粉化率达20%以上,五天中每天粉化率递增3%;而钒钛烧结矿自然粉化率很低,且随贮存时间增加,粉化率无明显增加,尤其是水浸后的钒钛烧结矿自然粉化率亦无明显变化,这表明钒钛烧结矿具有较好的贮存性能。
钒钛铁高炉冶炼工艺
钒钛铁是一种重要的合金材料,在金属冶炼工业中扮演着至关重要的
角色。
而钒钛铁的生产过程中所使用的高炉冶炼工艺也是至关重要的。
通过对钒钛铁高炉冶炼工艺的深入研究,可以更好地了解其生产过程和技术原理,从而提高生产效率和产品质量。
在钒钛铁的高炉冶炼工艺中,首先需要选择适合的原料。
一般来说,
钒钛矿是最主要的原料,其含量的高低直接影响到最终产品的质量。
此外,还需要添加适量的还原剂和熔剂,以提高冶炼反应的速度和效率。
在高炉冶炼的过程中,需要控制好温度、气氛和炉料的比例,以确保反应顺利进行,并最大限度地提取出钒和钛元素。
在冶炼的过程中,应该注意防止烧结结块和结焦现象的发生。
这些现
象会影响炉料的均匀性和流动性,从而影响到冶炼的效果。
因此,需要采取适当的措施来防止结块和结焦的发生,如增加搅拌力度、控制冷却速度等。
此外,在高炉工艺中,还需要注意对煤气和废气的处理。
高炉冶炼过程中会产生大量的煤气和废气,其中含有大量的有害气体和颗粒物。
因此,必须对这些废气进行有效的处理,以保护环境和保障生产安全。
总的来说,钒钛铁高炉冶炼工艺是一个复杂而又重要的工艺过程。
通
过深入研究和不断改进,可以提高生产效率,减少能耗,提高产品质量,从
而更好地满足市场需求。
希望未来能有更多的学者和工程师投入到这一领域的研究中,共同推动钒钛铁工业的发展。
关于高炉冶炼钒钛球团矿的总结2010年8月份,我公司组织相关人员去承德建龙考察学习钒钛矿的冶炼,为了降本增效工作的有效开展,我公司将购进的新西兰粉(属高钒钛磁铁矿)逐步配加在本厂球团矿中,从原料入手,达到降成本增效益的目的。
同时高炉也逐步开始摸索钒钛矿的冶炼方法。
为适应高炉对原料条件及成分的变化,球团厂分阶段逐步的将新西兰粉配加到原料中,目前球团矿中新西兰粉配比在22%左右,其理化指标:未配加新西兰粉时本厂球成分:在使用钒钛球团矿初期,由于初期本厂球中钒钛矿配比不高,对高炉顺行影响并不明显,但随着球团矿中钒钛矿配比的逐渐增加,对高炉顺行影响不明显,但铁水和炉渣中钛明显随炉温呈线性的正比关系增减,且随炉温上升炉渣变稠,同时铁水罐出现粘结现象。
据此,炼铁厂根据当时现状,制定了初步冶炼钒钛矿的操作方针,在保证炉况顺行得情况下,主要以控制炉温为主,将生铁中【Si】和【Ti】分别控制在0.20%-0.25%之间,并要求炉温【Si】+【Ti】≤0.50%为合适炉温,并且在此基础上要求炉温稳定,相邻里两炉铁硅偏差不大于0.15,从而来抑制Ti的过还原。
对比炼铁厂1#、4#高炉9-11月份平均渣铁成分,如下:1#高炉渣铁成分:4#高炉渣铁成分:根据数据显示,生铁中【Si】和【Ti】的含量对渣中【TiO2】的正比关系。
同时也可以看出,在冶炼过程中炼铁厂在摸索钒钛铁的冶炼操作中,在保证炉况顺行前提下,炉温基本可以达到要求控制范围内。
在炉况顺行方面,冶炼钒钛铁矿,原料当中的钒钛在滴落带反应的特点是钛的氧化物和钒的氧化物被碳还原。
反应生成TiC与TiN的难溶固溶体,并进入到炉渣当中,从而导致炉渣变粘稠。
为有效控制Ti的过还原的,在保证炉况顺行的条件下,在料制上调整好煤气流分布,保证适宜的炉腹边缘煤气流,避免因炉渣粘稠,造成过分粘结炉墙,造成炉墙部分结厚,甚至结瘤。
送风制度上要求下部吹透中心,使炉缸工作均匀活跃,以此降低钛渣的黏度,同时避免和减少渣铁中高熔点的含钛化合物在炉缸内堆积和沉淀,造成炉缸堆积。
钒钛磁铁矿高炉冶炼的强化钒钛磁铁矿是一种重要的铁、钢工业原料,其主要组成成分为FeO、TiO2和V2O5,其具有较高的还原性和较低的熔点,是制造发展钢铁、合金和钛金属的必需原料之一。
而高炉冶炼钒钛磁铁矿技术就是针对钒钛磁铁矿的物理特性、化学成分、反应动力学和热动力学进行专门研究开发的技术,并在不断完善中。
高炉冶炼钒钛磁铁矿的过程需要进行多环节复杂的反应,其冶炼过程主要分为三个主要步骤:烧结还原、溶解冶炼和精炼。
其中,烧结还原是制备钒钛磁铁矿还原炉料的关键步骤。
溶解冶炼则是将还原好的钒钛磁铁矿经过重度化学反应转化为液态铁,从而降低还原出的V2O5以及TiO2等有害元素的含量。
此外,随着国内及国际市场对于低温钒钢和特种钢铁要求越来越高,磁铁矿的高炉冶炼也面对着新的挑战,因此磁铁矿高炉冶炼的研究不断深入,不断完善其技术方法已成为行业的共同目标。
针对钒钛磁铁矿高炉冶炼的强化,首先就需要对磁铁矿本身及其特性进行充分的探究。
磁铁矿的组成复杂,其中铁的还原性很强,但TiO2、V2O5、CaO等的还原性却不及其重要性,因此需要采用特殊的还原剂来提供足够的还原气体。
同时,磁铁矿高炉冶炼要考虑到炉壁的衬砌和炉膛的保护,特别是在高炉冶炼过程中,炉壁及炉底往往承受着极大的压力和腐蚀,因此需要引入多种耐高温、耐腐蚀的材料来进行加固和保护。
其次,需要开发出更为先进的技术手段来减少二氧化钒和氧化钛等有毒物质的排放。
随着我国环保法规的日益加强,对高炉冶炼过程中的污染物和排放标准的控制也越来越严格,因此需要开发出新的技术来完善污染物的处理和资源化利用。
在磁铁矿高炉冶炼中,采用附加炉墙玄武岩、陶瓷堆垛等多种环保材料,增加反应时间和有利铁焦沉降、保存铁氧化还原平衡的同时,也有效减少了钛、钒、镍、锰等元素的排放,有利于环境保护。
第三,需要制订更为完善的高炉冶炼工艺流程和操作规范。
磁铁矿的高炉冶炼复杂,需要对炉内的梯度温度、物料分层、炉内氧浓度、炉内流动状态等多种因素进行综合分析和调控,因此需要制定完善的工艺流程和操作规范,特别是针对提高出铁率、钢柱率和锅炉布料性能等方面的技术问题,需要加强对高炉冶炼过程的全面理解和掌握,以便更好地进行操作规范。
钒钛矿的高炉冶炼流程英文回答:Vanadium-Bearing Titaniferous Magnetite Blast Furnace Smelting Process.Vanadium-bearing titaniferous magnetite (VTM) is a complex and valuable ore containing iron, vanadium, and titanium. Due to its high vanadium and titanium content, VTM has attracted significant attention in recent years. Blast furnace smelting is a widely used method for extracting iron and other metals from ores. This process involves the reduction of iron oxides in the ore by using carbon (coke) in a blast furnace. The vanadium and titanium present in VTM can also be recovered during this process.The blast furnace smelting process for VTM involves the following steps:1. Ore preparation: The VTM ore is crushed and sized toa suitable size for charging into the blast furnace.2. Sintering: The crushed VTM ore is mixed with flux(e.g., limestone) and sintered to form a porous and strong sinter. Sintering helps improve the permeability and reducibility of the ore.3. Coke production: Coke is produced from coal througha high-temperature carbonization process. Coke serves as the reducing agent and fuel in the blast furnace.4. Blast furnace charging: The sintered ore, coke, and flux are charged into the blast furnace from the top.5. Ironmaking: Inside the blast furnace, the coke reacts with oxygen in the hot air blast to form carbon monoxide (CO). The CO then reduces the iron oxides in the sintered ore to form molten iron.6. Vanadium recovery: Vanadium is recovered from the molten iron during the blast furnace smelting process. The vanadium is oxidized to form vanadium oxides, which arethen dissolved in the molten slag.7. Titanium recovery: Titanium is recovered from the molten slag by adding a reducing agent (e.g., aluminum) to reduce titanium oxides to metallic titanium.8. Casting: The molten iron is tapped from the blast furnace and cast into pig iron. The molten slag is also tapped and cooled to form a solid slag.The blast furnace smelting process for VTM is a complex and energy-intensive process. However, it is a well-established technology that has been used for many years to extract iron, vanadium, and titanium from ores.中文回答:钒钛磁铁矿高炉冶炼工艺。
钒钛磁铁矿的⾼炉冶炼⽤⾼炉冶炼铁、钒、钛共⽣特种矿⽯的⼯艺过程。
这种矿⽯的含铁量⼀。
般较低,要经过磁选富集,获得钒钛磁铁精矿,然后制成烧结矿或氧化球团矿作为⾼炉炼铁的主要含铁原料。
经⾼炉冶炼得出的产品是含钒钛的炼钢⽣铁和五元系(CaO—MgO⼀SiO2⼀A12O3⼀TiO2)⾼炉渣。
铁⽔中的钒可通过提钒⼯艺⽣产钒淹,作为各种钒制品的原料。
钒钛磁铁矿的资源和特点钒钛磁铁矿是铁、钒、钛共⽣的磁性铁矿,钒绝⼤部分和铁矿物呈现类质同相赋存于钛磁铁矿中。
所以钒钛磁铁矿也称钛磁铁矿。
由于成矿条件不同,世界各矿区的这种矿⽯的铁、钛和钒的含量有很⼤的区别。
还由于各矿区的钛磁铁矿的可选性不同,所⽣产的钒钛磁铁精矿,铁、钛和钒的含量也有很⼤区别。
现在,钛磁铁矿已被看作是⽣产钒的主要原料。
据资料介绍,能经济地提取钒的钛磁铁矿中⾦属钒的储量约占世界⾦属钒储量的98%。
当今世界上每年⽣产的⾦属钒的88%是从⽤钛磁铁矿⽣产钢铁的同时产出的钒渣中提取的。
世界钛磁铁矿的储量⼤概情况见表。
基本反应和冶炼过程⾼炉冶炼钒钛矿的原料,实际上是钒钛烧结矿,其矿物组成是钛⾚铁矿、钛磁铁矿、钙钛矿和含钛硅酸岩相,还有少量的铁酸钙、铁板钛矿和残存的钛铁矿。
在⾼炉内烧结矿从炉喉下降到炉腹的过程中,经过不同温度区间完成冶炼的基本反应和物相组成变化。
块状带的反应⼤致分为三个温度区间,从炉喉到炉⾝上部的650~900℃温度区间,除⼀般的Fe2O3、Fe3O4、FeO和铁酸钙的间接还原外,还有钛⾚铁矿、钛磁铁矿和铁板矿的失氧,其化学反应主要有:反应后的物相组成是钛磁铁矿、浮⽒体和少量的细⼩铁粒。
炉⾝中部的900~1150~C温度区间,是钛磁铁矿被还原,主要化学反应有反应后⽣成浮⽒体和钛铁晶⽯固溶体以及部分浮⽒体被还原⽣成⾦属铁。
炉⾝下部的i150~1250℃温度区间,是钛铁晶⽯还原分解阶段,主要化学反应有:反应后⽣成的物相组成有⾦属铁、钛铁晶⽯、少量的浮⽒体、钛铁矿、板钛矿固溶体和钙钛矿。
浅谈高炉冶炼钒钛矿时的铁损与节能摘要:对高炉节能降耗工作进行了总结和分析,并结合高炉自身特点,提出了一系列节能降耗措施,在高炉节能降耗方面取得了不错的成绩。
关键词:高炉;节能降耗;措施;操作1 节能降耗措施1.1 提高精料水平精料是高炉强化的物质基础,强化高炉冶炼必须将精料放在首位。
高炉想要取得更好的指标,更好的实现节能降耗的目标,需要努力提高精料水平。
(1)提高综合入炉品位烧结配料中以含铁品位相对较高的澳系粉矿(杨迪粉、纽曼粉、PB粉)为主,烧结矿品位得到逐渐升高。
块矿采用性价比相对较高的主流资源(如:纽曼块、PB块、巴西块等),品位基本控制在62.5%以上。
随着综合入炉品位的升高,渣铁比出现明显下降,热量消耗也得到降低,对降焦节能、改善料柱透气性起到促进作用。
(2)强化原燃料筛分,减少入炉粉末强化原燃料筛分管理,必须确保原燃料进入高炉矿槽之前尽量过筛。
做好原燃料的清筛工作,严格控制各种原燃料的筛分速度,在满足排料的前提下,尽量延长矿槽筛分备料时间。
采用给料机对振动筛给料,大大改善炉料分布均匀度,提高筛面利用率。
对筛分难度较大(较潮湿)的块矿进行重点筛分。
将块矿振动筛筛板由双层棒条筛改为单层棒条筛,大大提高了筛分效果。
(3)改善焦炭质量焦炭是高炉生产最重要的燃料。
随着喷煤量的增加,焦比降低,焦炭作为料柱骨架的作用越来越突出。
鉴于焦炭对高炉的重要性,稳定焦炭质量,避免其出现较大波动对高炉的节能降耗尤为重要。
1.2高风温操作风温是高炉廉价、利用率最高的能源。
每提高100℃风温约降低焦比4%~7%。
在当前能源紧张的形势下,迫切需要进一步提高风温。
高炉配备了3座顶燃旋切式热风炉,实行“两烧一送”工作制度。
为进行护炉,控制炉缸环炭温度,停止富氧,同时高炉煤气利用率一直在48%~50%,煤气发热值偏低,这两方面因素对热风炉烧炉都造成很大负面影响。
为保证风温大于1200℃,采取了以下措施:首先将热风炉废气温度由410℃提高至430℃,其次充分利用烟道废气提高预热器温度,使烧炉煤气、空气的预热温度均在200℃以上,弥补了煤气热值低的不足,实现了风温1200℃以上,为降焦节能创造了条件。
浅议钒钛矿冶炼的炉前操作近年来,铁矿石价格连年上涨,矿石资源的吃紧对钢铁企业造成很大影响。
而钒钛球团,价格低,资源丰富,受到了各钢厂的青睐。
钒钛矿冶炼的难度较高,技术不易掌握。
水钢炼铁厂于2007年开始冶炼钒钛矿公关,通过冶炼实践,逐步掌握了钒钛矿冶炼技术,并逐步增加钒钛矿的使用比例,目前已达到10%以上,获得了良好的经济技术指标,同时解决了全厂的铁烧平衡问题,确保了全厂生产原料结构的长期稳定。
冶炼钒钛矿,一方面TiO2在炉内高温还原气氛条件下,可生成TiC、TiN极其连接固溶体Ti(CN),这些钛的氮化物和碳化物在炉缸炉底生成发育和集结,与铁水及铁水中析出的石墨等凝结在离冷却壁较近的被侵蚀严重的炉缸、炉底的砖缝和内衬表面,起到保护炉缸炉底的作用;另一方面,由于高钛炉渣是一种熔化温度高、流动区间窄小的“短渣”,液相温度1395~1440℃,固相温度1070~1075℃,可操作的渣铁温度范围只有90℃左右,比冶炼普通矿的小100℃,炉渣中TiO2未还原时,其熔化温度低,流动性良好,但随着TiO2的还原,低价氧化物Ti2O3、Ti3O5等的生成和增加,并继续还原生成TiC和TiN,其熔化温度随之提高,渣中TiC和TiN熔点很高,分别为3150℃和2950℃,在炉缸温度范围内不能熔化,以固态微粒悬于渣中,使炉渣流动性恶化,TiC和TiN越多,炉渣越黏,严重时失去流动性。
冶炼钒钛矿防止钛渣变稠的两个主要因素:一是避免炉况过热。
炉内温度高,有利于钛的还原,生铁和渣中的钛含量将会增加,大大降低了渣铁的流动性,因此,从炉内操作来说,主要就是通过制度的调整和稳定的操作避免出现高炉温;二是尽量缩短渣铁在炉内停留时间。
渣铁在炉内停留时间过长,会造成TiO2的过还原,生成钛的炭、氮化合物,它们通常以几微米但具有极大比表面积的固相质点弥散在炉渣中和包裹在铁珠周围,使铁珠难以聚合,渣中带铁增多,粘度增大数十倍,造成粘渣和高铁损,因此,作为炉前来说,主要工作就是及时出净渣铁,防止渣铁变稠,为炉内的稳定操作创造条件。