和零电平,或负电平和零电平。在表示一个码元时,电压均无需回到零,故称不归零 码。它有如下特点。
(1) 发送能量大,有利于提高接收端信噪比; (2) 在信道上占用频带较窄; (3) 有直流分量,将导致信号的失真与畸变;且由于直流分量的存在,无法 使用一些交流耦合的线路和设备; (4) 不能直接提取位同步信息; (5) 接收单极性NRZ码的判决电平应取“1”码电平的一半。
11
6. 交替极性(AMI)码 AMI是交替极性(Alternate Mark Inversion)码。这种码名称较多,如双极方 式码、平衡对称码、信号交替反转码等。 此方式是单极性方式的变形, 即把单 极性方式中的“0”码仍与零电平对应,而“1”码对应发送极性交替的正、负电 平, 如图6 - 1(f)所示。这种码型实际上把二进制脉冲序列变为三电平的符号序 列(故叫伪三元序列), 其优点如下: (1) 在“1”、“0”码不等概率情况下,也无直流成分, 且零频附近低频分 量小。因此,对具有变压器或其他交流耦合的传输信道来说,不易受隔直特性影 响。
3
4.1.1 数字基带信号的常用码型
传输码型的选择,主要考虑以下几点: (1) 码型中低频、 高频分量尽量少; (2) 码型中应包含定时信息, 以便定时提取; (3) 码型变换设备要简单可靠; (4) 码型具有一定检错能力,若传输码型有一定的规律性,则就可根据这一规 律性来检测传输质量,以便做到自动监测。
9
4) 双极性归零(RZ)码 双极性归零码构成原理与单极性归零码相同,如图6 - 1(d)所示。 “1”和“0” 在传输线路上分别用正和负脉冲表示, 且相邻脉冲间必有零电平区域存在。因此, 在接收端根据接收波形归于零电平便知道1比特信息已接收完毕, 以便准备下一比 特信息的接收。所以,在发送端不必按一定的周期发送信息。 可以认为正负脉冲 前沿起了启动信号的作用,后沿起了终止信号的作用, 因此,可以经常保持正确的 比特同步。 即收发之间无需特别定时,且各符号独立地构成起止方式, 此方式也 叫自同步方式。此外,双极性归零码也具有双极性不归零码的抗干扰能力强及码中 不含直流成分的优点。双极性归零码得到了比较广泛的应用。