边坡稳定分析
- 格式:pdf
- 大小:476.17 KB
- 文档页数:11
岩质边坡稳定性分析计算引言:岩质边坡是指由岩石构成的边坡体,它的稳定性分析是地质工程中的一项重要内容。
本文将围绕岩质边坡的稳定性分析进行详细讨论,包括边坡的力学特性、稳定性分析的方法和计算步骤。
一、岩质边坡力学特性:岩质边坡的力学特性主要包括边坡坡度、岩性、结构构造、地质构造、坡面覆盖物、地下水等。
这些因素对边坡的稳定性有着重要影响。
1.边坡坡度:边坡坡度是指地面或水平面与边坡倾斜线的夹角,是影响边坡稳定性的重要因素。
坡度越大,边坡的稳定性越差。
2.岩性:岩石的强度、粘聚力、内摩擦角等岩性参数对边坡稳定性有着重要影响。
一般来说,岩性较强的边坡稳定性较好。
3.结构构造:边坡中的断层、节理、褶皱等结构构造对边坡的稳定性有着重要影响。
结构面的发育程度和倾角越大,边坡的稳定性越差。
4.地质构造:地质构造包括岩层倾角、层面、节理等,对边坡的稳定性具有重要影响。
地质构造的研究可以帮助我们了解边坡的受力特点和变形规律。
5.坡面覆盖物:坡面覆盖物通常包括土壤、草地、水层等,这些覆盖物的分布情况和特性对边坡的稳定性有着显著影响。
6.地下水:地下水的存在对边坡的稳定性具有重要影响。
当地下水位上升时,边坡会受到水的浸润,导致边坡强度降低,从而增加边坡失稳的可能性。
二、岩质边坡稳定性分析方法:岩质边坡的稳定性分析方法主要有极限平衡法和有限元法两种,下面将对这两种方法进行介绍。
1.极限平衡法:极限平衡法是一种经典的岩质边坡稳定性分析方法,它基于边坡体在其稳定状态下的力学平衡原理进行计算。
这种方法通常将边坡分割为无限小的切割体,并假设切割体沿着内摩擦边界面滑动,从而得到边坡的稳定状态。
2.有限元法:有限元法是一种基于有限元理论进行边坡稳定性分析的方法。
这种方法将边坡体离散为有限数量的单元,通过求解单元之间的位移和应力,得到边坡的稳定状态。
有限元法能够模拟较为复杂的边坡几何形状和边界条件,但计算复杂度较大。
三、岩质边坡稳定性计算步骤:进行岩质边坡稳定性分析计算时,通常需要进行以下步骤:1.边坡参数确定:根据实地调查和实验数据,确定边坡的坡度、坡高、岩石强度参数、结构面参数等。
边坡稳定性分析2篇边坡稳定性分析(一)引言边坡是指在道路、河道、铁路、水库、矿山等山区地带或特殊地质条件下,因建设需要而开挖或局部破坏岩土体,形成的斜坡或峭壁。
由于其受自然环境、地质条件、工程施工等诸多因素的影响,边坡容易发生滑坡、崩塌和塌方等不稳定现象,给工程运行和周围环境造成极大的危害与损失。
因此,边坡稳定性分析对于确保工程安全运行和人民生命财产安全具有十分重要的意义。
稳定性分析方法边坡稳定性分析常见的方法有多种,主要包括力学分析法、有限元数值模拟法、模型试验法等。
以力学分析法为例,首先需要对边坡的主要信息进行调查,包括边坡地质、工程地质、水文地质、地下水位、工程建设历史等。
其次,根据荷载和载荷的方向、大小、分布等条件,选取合适的地质模型、荷载模型,并采用合理的力学方法进行稳定性分析。
最后,根据分析结果,提出相应的加固和治理方案。
分析评估指标边坡稳定性分析的主要指标包括破坏形式、安全系数以及承载能力等。
其中,破坏形式是指发生破坏时边坡的形态和特征,它直接影响到治理方案的制定和实施。
安全系数是衡量边坡稳定性的重要指标,其定义为承载力与荷载的比值,即:$${\rm {安全系数}}={\rm {承载力}}\div{\rm {荷载}}$$三种承载状态及相应的安全系数如下:1.安全状态:安全系数大于1.5;2.可疑状态:安全系数介于1.0-1.5,需要加强监测和治理;3.失稳状态:安全系数小于1.0,已进入失稳状态,需立即采取加固措施。
承载能力是指边坡抵抗荷载的能力和承受破坏的最大荷载。
在进行稳定性分析时,需要根据边坡的承载能力和荷载特点来确定合适的安全系数范围,以确保边坡的稳定性。
结论边坡稳定性分析是确保工程安全的重要手段,其目的是找出边坡存在的问题,并提出相应的加固和治理方案,以保障工程的长期运行和人民生命财产安全。
稳定性分析方法多种多样,需要根据具体情况选择合适的分析方法和指标,并在稳定性分析的基础上,制定科学合理的加固和治理措施。
常用的边坡稳定性分析方法边坡稳定性分析是土木工程中的一个重要内容,用于评估边坡的稳定性,并确定边坡设计和防护措施。
下面列举了常用的边坡稳定性分析方法:1.切片平衡法:切片平衡法是一种基本的边坡稳定性分析方法,它假设边坡由一系列无限小的土体切片组成,并基于力平衡原理来确定各个切片的稳定条件。
该方法适用于简单边坡稳定性分析,但对复杂地质条件和荷载情况适用性有限。
2.极限平衡法:极限平衡法是一种常用的边坡稳定性分析方法,它假设边坡存在一个明确定义的滑动面,并基于达到平衡的最不利情况,即极限平衡状态来进行分析。
该方法包括切片法、极限平衡法、回缩平衡法等,可以考虑复杂地质条件和荷载情况,适用范围广。
3.数值模拟方法:数值模拟方法是一种基于计算机模拟的边坡稳定性分析方法,包括有限元法、边界元法、离散元法等。
这些方法能够模拟边坡的实际行为,并对多种复杂因素进行定量分析。
数值模拟方法可以更精确地预测边坡的稳定性,并对工程设计提供参考。
4.基于概率的方法:基于概率的方法将不确定因素考虑在内,通过概率分析来评估边坡的稳定性。
这些方法包括可靠度法、蒙特卡洛方法和贝叶斯法等。
基于概率的方法可以提供边坡发生滑移的概率,并在风险评估和安全设计中发挥重要作用。
5.特殊情况下的分析方法:在一些特殊情况下,常规的边坡稳定性分析方法可能不适用,需要采用一些特殊的分析方法。
例如,在边坡潜在失稳或发生滑坡时,可以使用临界状态平衡、能量平衡或地震动力学方法来分析边坡的稳定性。
总之,边坡稳定性分析是土木工程中的重要任务,通过使用上述方法中的一个或多个,可以评估边坡稳定性,从而制定出合理的边坡设计和防护措施,确保工程的安全可靠。
边坡稳定性分析方法简介介绍了边坡稳定性分析的极限平衡法:瑞典圆弧法、简化Bishop法、简化Janbu法、Morgenstern&Price法、Spencer法以及嚴格Janbu法;以及边坡稳定的可靠性分析方法:蒙特卡洛法、可靠指标法、统计矩法、模糊可靠度分析法以及随机有限元法。
标签:边坡稳定性滑坡极限平衡法可靠性分析方法一、引言滑坡是指人工或自然边坡在外界因素的诱发下丧失自身稳定性而发生滑移的地质现象,是一种严重的地质灾害,长期以来给人类造成了巨大的财产损失和人生伤害,是人类面临的三大自然灾害之一。
我国是滑坡多发国家之一,据《中国地质环境公报》有关数据显示,我国2012年全国共发生各类地质灾害18751起,全年共造成人员伤亡1021人,其中发生滑坡灾害8971起,造成人员伤亡379人,分别占地质灾害总数的47.8%和37.1%。
因此研究边坡稳定的影响因素及滑坡的发生机理,探索滑坡的防治技术具有极高的社会价值。
鉴于此,人类对边坡稳定的研究已有将近百年的历史,这使得边坡稳定性分析的方法也极大的丰富了起来。
二、边坡稳定的极限平衡分析方法极限平衡法假定边坡出现滑动面且处于极限平衡状态,然后将边坡离散成有垂直边界的土条,假设土条为刚体(即不考虑土条的变形),建立土条的静力平衡方程,通过求解静力平衡方程得到边坡的安全系数。
1776年法国工程师库仑提出了计算挡土墙土压力的方法,标志着土力学雏型的产生;1857年朗肯在假设墙后土体各点处于极限平衡状态的基础上,建立了计算主动和被动土压力的方法;库仑和朗肯在分析土压力时采用的方法后来被推广到边坡稳定分析中,形成了一个边坡稳定性评价体系,这就是极限平衡法。
在过去将近一个世纪中,这一方法逐步从一种经验性的简化方法发展成一个具有完整理论体系、较为成熟的分析方法。
(1)瑞典圆弧法。
瑞典人Fellenius提出了边坡稳定分析的圆弧滑动分析方法,即瑞典圆弧法,它是边坡稳定分析领域中最早的一种方法。
曲线滑动面得路基边坡稳定分析题目:某路堤高H=15m,路基宽b=12m,填土为粘性土,内摩擦角,粘聚力,填土容重,荷载分布全路基(双车道),试验算路堤边坡稳定性。
―――――――――――――――――――――――――――――1、边坡稳定性分析原理1、1等代荷载土层厚度计算=4、09(N=2,Q=550KN,B=12M,L=12、8M,r=17、5KN/M3)1、2圆心辅助线得确定(4、5H法)1)4、5H得E点2)由得F点-----查表得β1=26度,β2=35度.α1、3假设滑动圆弧位置,求圆心位置一般假设圆弧一端经过坡脚点,另一端经过得位置为:路基顶面左边缘、左1/4、中1/2、右1/4、右边缘等处,圆心分别对应O1,O2,O3,O4,O5,分别计算这五种滑动面得稳定安全系数,从中找出最小值。
1、4对滑动土体进行条分------从滑动面顶端(路基上)向左每5m划分一个土条。
1、5在AUTOCAD图中量取各计算数据量取半径各土条得面积各土条横距图--------圆心在O1图-------圆心在O2图-------圆心在O3图------圆心在O4图------圆心在O51、6数据填入EXCEL表格并计算五种滑动面得计算数据汇总3、计算结果分析与结论3、1计算结果分析稳定系数K与滑动面位置变化示意图。
重点说明:稳定系数在滑动面在路基最左端时最大,然后逐渐减小,当滑动面在路基中间时达到最小,为1、51,然后当滑动面在路基上得点继续向右移动时,稳定系数又逐渐增大,到达最右端时为1、64。
3、2结论1)由于Kmin=1、51,大于规范规定得1、20~1、25,故边坡稳定。
2)不满足要求,如何处理:1、减小边坡坡度2、换添路基土,选择粘性系数较大得土3、加固边坡。
边坡稳定性分析报告
一、项目概况
本项目位于XX地区,占地面积为XXX平方米,主要建设内容为XXXX。
其中,边坡部分长约XXX米,高约XXX米,坡度为XXX度。
该边坡为自然边坡,无人工加固措施。
二、边坡稳定性分析
地质条件分析
根据地质勘探结果显示,该边坡所处地区的地质构造为XXX类型,岩性为XXX,地下水位较高。
由于地下水对边坡的冲刷作用较大,因此需要对其稳定性进行充分考虑。
边坡形态分析
经过现场勘察和测量,该边坡呈现出典型的倾斜状,其倾斜角度为XXX度。
同时,该边坡的坡面较为陡峭,存在一定的滑坡风险。
边坡稳定性评估
根据《公路边坡工程技术规范》(JTGD3-215)中的相关规定,采用“三重矩法”对该边坡进行了稳定性评估。
评估结果表明,该边坡的稳定性较差,存在较大的滑坡风险。
安全措施建议
为了保障工程的安全稳定运行,建议采取以下措施、
(1)在边坡上部加设钢筋网片或喷射混凝土等加固措施;
(2)在边坡下方挖掘排水沟,加强排水能力;
(3)在边坡周围设置防护栏杆或警示标志,提醒车辆注意行驶安全。
三、结论与建议
综合以上分析结果和安全措施建议,本项目应高度重视边坡稳定性问题,采取有效措施加强边坡的加固和保护工作,确保工程施工的安全稳定运行。
同时,在后续的工程建设过程中,也应加强对边坡稳定性的监测和管理,及时发现和处理潜在的问题。
土木工程中边坡稳定性分析方法在土木工程领域,边坡稳定性是一个至关重要的问题。
边坡的失稳可能会导致严重的人员伤亡和财产损失,因此,准确分析边坡的稳定性对于工程的安全和成功实施具有重要意义。
本文将探讨几种常见的土木工程中边坡稳定性分析方法。
一、定性分析方法1、工程地质类比法这是一种基于经验和对比的方法。
通过对已有的类似地质条件和边坡工程的研究和经验总结,来对新的边坡稳定性进行初步判断。
这种方法虽然简单快捷,但依赖于丰富的工程经验和大量的案例数据。
2、历史分析法通过研究边坡地区的历史地质活动、自然灾害记录以及以往的边坡变形破坏情况,来推断当前边坡的稳定性。
然而,这种方法受到历史资料完整性和准确性的限制。
二、定量分析方法1、极限平衡法这是目前应用较为广泛的一种方法。
它基于静力平衡原理,将边坡划分为若干个垂直条块,通过分析条块之间的力和力矩平衡,计算出边坡的安全系数。
常见的极限平衡法有瑞典条分法、毕肖普法等。
瑞典条分法假设滑动面为圆弧,不考虑条块间的作用力,计算较为简单,但结果相对保守。
毕肖普法考虑了条块间的水平作用力,计算结果更为精确,但计算过程相对复杂。
2、数值分析方法(1)有限元法将边坡离散为有限个单元,通过求解每个单元的应力和位移,来分析边坡的稳定性。
它可以考虑复杂的边界条件和材料非线性特性,能够更真实地模拟边坡的力学行为。
(2)有限差分法与有限元法类似,但采用差分格式来近似求解偏微分方程。
在处理大变形和复杂边界问题时具有一定的优势。
(3)离散元法特别适用于分析节理岩体等非连续介质的边坡稳定性。
它能够模拟块体之间的分离、滑动和碰撞等行为。
三、监测分析方法1、地表位移监测通过设置测量点,使用全站仪、GPS 等仪器定期测量边坡表面的位移变化。
当位移量超过一定的阈值时,提示边坡可能存在失稳风险。
2、深部变形监测采用钻孔倾斜仪、多点位移计等设备,监测边坡内部的深部变形情况。
这种方法能够更早地发现潜在的滑动面。
-1-CHAPTER 9Stability of Slopes9.1IntroductionGravitational and seepage forces tend to cause instability in natural slopes,in slopes fo rmed by excavation and in the slopes of embankments and earth dams.The most important types of slope failure are illustrated in Fig.9.1.In rotational slips the shape of the failure surface in section may be a circular arc or a non-circular curve .In general ,circular slips are associated with homogeneous soil conditions and non-circular slips with non-homogeneous conditions .Translational and compound slips occur where the form of the failure surface is influenced by the presence of an adjacent stratum of significantlydifferent strength .Translational slips tend to occur where the adjacent stratum is at a relatively shallow depth below the surface of the slope:the failure surface tends to be plane and roughly parallel to the pound slips usually occur where the adjacent stratum is at greater depth ,the failure surface consisting of curved and plane sections.In practice,limiting equilibrium methods are used in the analysis of slope stability.It is considered that failure is on the point of occurring along an assumed or a known failure surface .The shear strength required to maintain a condition of limiting equilibrium is compared with the available shear strength of the soil ,giving the average factor of safety along the failure surface .The problem is considered in two dimensions ,conditions of plane strain being assumed .It has been shown that a two-dimensional analysis gives a conservative result for a failure on a three-dimensional(dish-shaped)surface .9.2Analysis for the Case of φu =0This analysis,in terms of total stress ,covers the case of a fully saturated clay under undrained conditions,i.e.For the condition immediately after construction .Only moment equilibrium is considered in the analysis .In section,the potential-2-failure surface is assumed to be a circular arc.A trial failure surface(centre O ,radius r and length L a )is shown in Fig.9.2.Potential instability is due to the total weight of the soil mass(W per unit Length)above the failure surface .For equilibrium the shear strength which must be mobilized along the failure surface is expressedaswhere F is the factor of safety with respect to shear strength .Equating moments about O:Therefore(9.1)The moments of any additional forces must be taken into account .In the event of a tension crack developing ,as shown in Fig.9.2,the arc length L a is shortened and a hydrostatic force will act normal to the crack if the crack fills with water .It is necessary to analyze the slope for a number of trial failure surfaces in order that the minimum factor of safety can be determined .Based on the principle of geometric similarity ,Taylor[9.9]published stability coefficients for the analysis of homogeneous slopes in terms of total stress .For a slope of height H the stability coefficient (N s )for the failure surface along which the factor of safety is a minimumis(9.2)For the case of φu =0,values of N s can be obtained from Fig.9.3.The coefficient N s depends on the slope angle βand the depth factor D ,where DH is the depth to a firm stratum .Gibson and Morgenstern [9.3]published stability coefficients for slopes in normally consolidated clays in which the undrained strength c u (φu =0)varies linearly with depth .Example 9.1A 45°slope is excavated to a depth of 8m in a deep layer of saturated clay of-3-unit weight 19kN /m 3:the relevant shear strength parameters are c u =65kN /m 2and φu =0.Determine the factor of safety for the trial failure surface specified in Fig.9.4.In Fig.9.4,the cross-sectional area ABCD is 70m 2.Weight of soil mass=70×19=1330kN /mThe centroid of ABCD is 4.5m from O .The angle AOC is 89.5°and radius OC is 12.1m .The arc length ABC is calculated as 18.9m .The factor of safety is given by:-4-This is the factor of safety for the trial failure surface selected and is not necessarily the minimum factor of safety .The minimum factor of safety can be estimated by using Equation 9.2.From Fig.9.3,β=45°and assuming that D is large ,the value of N s is0.18.Then9.3The Method of SlicesIn this method the potential failure surface ,in section ,is again assumed to be a circular arc with centre O and radius r .The soil mass (ABCD)above a trial failure surface (AC)is divided by vertical planes into a series of slices of width b,as shown in Fig.9.5.The base of each slice is assumed to be a straight line .For any slice the inclination of the base to the horizontal is αand the height,measured on the centre-1ine,is h.The factor of safety is defined as the ratio of the available shear strength(τf )to the shear strength(τm )which must be mobilized to maintain a condition of limiting equilibrium,i.e.The factor of safety is taken to be the same for each slice ,implying that there must be mutual support between slices ,i.e.forces must act between the slices .The forces (per unit dimension normal to the section)acting on a slice are :1.The total weight of the slice ,W=γb h (γsat where appropriate).2.The total normal force on the base ,N (equal to σl).In general thisforce has two components ,the effective normal force N '(equal to σ'l )and the boundary water force U(equal to ul ),where u is the pore water pressure at the centre of the base and l is the length of the base .3.The shear force on the base ,T=τm l .4.The total normal forces on the sides,E 1and E 2.5.The shear forces on the sides ,X 1and X 2.Any external forces must also be included in the analysis .The problem is statically indeterminate and in order to obtain a solution-5-assumptions must be made regarding the interslice forces E and X :the resulting solution for factor of safety is not exact .Considering moments about O ,the sum of the moments of the shear forces T on the failure arc AC must equal the moment of the weight of the soil mass ABCD .For any slice the lever arm of W is rsin α,therefore∑Tr=∑Wr sin αNow,For an analysis in terms of effective stress,Or(9.3)where L a is the arc length AC .Equation 9.3is exact but approximations are introduced in determining the forces N '.For a given failure arc the value of F will depend on the way in which the forces N 'are estimated .The Fellenius SolutionIn this solution it is assumed that for each slice the resultant of the interslice forces is zero .The solution involves resolving the forces on each slice normal to the base ,i.e.N '=WCOS α-ulHence the factor of safety in terms of effective stress (Equation 9.3)is givenby(9.4)The components WCOS αand Wsin αcan be determined graphically for each slice .Alternatively ,the value of αcan be measured or calculated .Again ,a series of trial failure surfaces must be chosen in order to obtain the minimum factor of safety .This solution underestimates the factor of safety :the error ,compared with more accurate methods of analysis ,is usually within the range 5-2%.For an analysis in terms of total stress the parameters C u and φu are used and the value of u in Equation 9.4is zero .If φu =0,the factor of safety is givenby(9.5)-6-As N’does not appear in Equation 9.5an exact value of F is obtained .The Bishop Simplified SolutionIn this solution it is assumed that the resultant forces on the sides of the slices are horizontal ,i.e.X l -X 2=0For equilibrium the shear force on the base of any sliceisResolving forces in the verticaldirection:(9.6)It is convenient to substitutel=b sec αFrom Equation 9.3,after some rearrangement,(9.7)The pore water pressure can be related to the total ‘fill pressure’at anypoint by means of the dimensionless pore pressure ratio ,definedas(9.8)(γsat where appropriate).For anyslice,Hence Equation 9.7can bewritten:(9.9)As the factor of safety occurs on both sides of Equation 9.9,a process of successive approximation must be used to obtain a solution but convergence is rapid .Due to the repetitive nature of the calculations and the need to select an adequate number of trial failure surfaces ,the method of slices is particularlysuitable for solution by computer.More complex slope geometry and different soil strata can be introduced.In most problems the value of the pore pressure ratio r u is not constant over the whole failure surface but,unless there are isolated regions of high pore pressure,an average value(weighted on an area basis)is normally used in design.Again,the factor of safety determined by this method is an underestimate but the error is unlikely to exceed7%and in most cases is less than2%.Spencer[9.8]proposed a method of analysis in which the resultant Interslice forces are parallel and in which both force and moment equilibrium are satisfied.Spencer showed that the accuracy of the Bishop simplified method,in which only moment equilibrium is satisfied,is due to the insensitivity of the moment equation to the slope of the interslice forces.Dimensionless stability coefficients for homogeneous slopes,based on Equation9.9,have been published by Bishop and Morgenstern[9.2].It can be shown that for a given slope angle and given soil properties the factor of safety varies linearly withγu and can thus be expressed asF=m-nγu(9.10) where,m and n are the stability coefficients.The coefficients,m and n are functions ofβ,φ’,the dimensionless number c'/γand the depth factor D.Example9.2Using the Fellenius method of slices,determine the factor of safety,in terms of effective stress,of the slope shown in Fig.9.6for the given failure surface.The unit weight of the soil,both above and below the water table,is20kN/m3and the relevant shear strength parameters are c’=10kN/m2andφ’=29°.The factor of safety is given by Equation9.4.The soil mass is divided into slices l.5m wide.The weight(W)of each slice is given byW=γbh=20×1.5×h=30h kN/mThe height h for each slice is set off below the centre of the base and thenormal and tangential components hcosαand hsinαrespectively are determined graphically,as shown in Fig.9.6.ThenWcosα=30h cosαW sinα=30h sinαThe pore water pressure at the centre of the base of each slice is taken to beγw z w,where z w is the vertical distance of the centre point below the water table(as shown in figure).This procedure slightly overestimates the pore water pressure which strictly should be)γw z e,where z e is the vertical distance below the point of intersection of the water table and the equipotential through the centre of the slice base.The error involved is on the safe side.The arc length(L a)is calculated as14.35mm.The results are given inTable9.1-7--8-∑Wcos α=30×17.50=525kN /m∑W sin α=30×8.45=254kN /m∑(wcos α-ul)=525—132=393kN /m9.4Analysis of a Plane Translational SlipIt is assumed that the potential failure surface is parallel to the surface of the slope and is at a depth that is small compared with the length of the slope.The slope can then be considered as being of infinite length ,with end effects being ignored .The slope is inclined at angle βto the horizontal and the depth of the failure plane is z .as shown in section in Fig.9.7.The water table is taken to be parallel to the slope at a height of mz (0<m <1)above the failure plane .Steady seepage is assumed to be taking place in a direction parallel to the slope .The forces on the sides of any-9-vertical slice are equal and opposite and the stress conditions are the same at every point on the failure plane.In terms of effective stress ,the shear strength of the soil along the failure planeis and the factor of safetyisThe expressions for σ,τand μare:The following special cases are of interest .If c’=0and m=0(i.e.the soil between the surface and the failure plane is not fullysaturated),then(9.11)If c’=0and m=1(i.e.the water table coincides with the surface of the slope),then:(9.12)It should be noted that when c’=0the factor of safety is independent ofthe depth z .If c’is greater than zero ,the factor of safety is a function of z,and βmay exceed φ’provided z is less than a critical value .For a total stress analysis the shear strength parameters c u and φu are used with a zero value of u.Example 9.3A long natural slope in a fissured overconsolidated clay is inclined at 12°to the horizontal .The water table is at the surface and seepage is roughly parallel to the slope .A slip has developed on a plane parallel to the surface at a depth of 5m .The saturated unit weight of the clay is 20kN /m 3.The peak strength-10-parameters are c’=10kN/m 2and φ’=26°;the residual strength parameters are c r ’=0and φr ’=18°.Determine the factor of safety along the slip plane(a)in terms of the peak strength parameters (b)in terms of the residual strength parameters .With the water table at the surface(m=1),at any point on the slip plane,Using the peak strength parameters,Then the factor of safety is givenbyUsing the residual strength parameters ,the factor of safety can beobtained from Equation9.12:9.5General Methods of AnalysisMorgenstern and Price[9.4]developed a general analysis in which all boundary and equilibrium conditions are satisfied and in which the failure surface may be any shape ,circular ,non-circular or compound .The soil mass above the failure plane is divided into sections by a number of vertical planes and the problem is rendered statically determinate by assuming a relationship between the forces E and X on the vertical boundaries between each section .This assumption is of the formX=λf(x)E (9.13)where f(x)is an arbitrary function describing the pattern in which the ratio X/E varies across the soil mass and λis a scale factor .The value of λis obtained as part of the solution along with the factor of safety F .The values of the forces E and X and the point of application of E can be determined at each vertical boundary .For any assumed function f(x)it is necessary to examine the solution in detail to ensure that it is physically reasonable (i.e.no shear failure or tension must be implied within the soil mass above the failure surface).The choice of the function f(x)does not appear to influence the computed value of F by more than about 5%and f(x)=l is a common assumption .The analysis involves a complex process of iteration for the values of λand F ,described by Morgenstern and Price[9.5],and the use of a computer is essential.Bell[9.1]proposed a method of analysis in which all the conditions of equilibrium are satisfied and the assumed failure surface may be of any shape.The soil mass is divided into a number of vertical slices and statical determinacy is obtained by means of an assumed distribution of normal stress along the failure surface.Sarma[9.6]developed a method,based on the method of slices,in which the critical earthquake acceleration required to produce a condition of limiting equilibrium is determined.An assumed distribution of vertical interslice forces is used in the analysis.Again,all the conditions of equilibrium are satisfied and the assumed failure surface may be of any shape.The static factor of safety is the factor by which the shear strength of the soil must be reduced such that the critical acceleration is zero.The use of a computer is also essential for the Bell and Sarma methods and all solutions must be checked to ensure that they are physically acceptable.References[9.1]Bell,J,M.(1968):Analysis’’,Journal ASCE,V01.94,No.SM6.[9.1]Bell,J,M.(1968):’’General Slope Stability Analysis[9.2]Bishop,A.W.and Morgenstern,N.R.(1960):‘Stability Coefficients for Earth SlopesGeotechnique,Vo1.10.No.4.Morgenstern,N.R.(1962):’’A Note on the Stability of Cuttings in [9.3]Gibson,R.E.and Morgenstern,N.R.(1962):Normally Consolidated Clays’.Geotechnique,Vo1.12.No.3Price,V.E.(1965):’’The Analysis of the Stability of General [9.4]Morgenstern,N.R.and Price,V.E.(1965):Surfaces’’,Geotechnique,Vo1.15,No.1.Slip Surfaces[9.5]Morgenstern,N.R.and Price,V.E.(1967):‘A Numerical Method for Solving theEquations of Stability of General Slip Surfaces’Computer Journal,Voi.9,P.388.Slopes’’,Geotechnique,(1973):’’Stability Analysis of Embankments and Slopes[9.6]Sarma,S.K.(1973):Vo1.23,No.2.[9.7]Skempton,A.W.(1970):Clays’’(Technical [9.7]Skempton,A.W.(1970):’’First-Time Slides in Overconsolidated ClaysNote),Geotechnique,Vo1.20.No.3[9.8]Spencer,E.(1967):‘A Method of Analysis of the Stability of EmbankmentsForces’’,Geotechnique,Vo1.17.No.1.Assuming Parallel Inter-Slice Forces[9.9]Taylor,D.W.(1937):[9.9]Taylor,D.W.(1937):’’Stability of Earth Slopes’,Journal of the Boston Society of CivilEngineers,Vo1.24,No.3-11-。