波动率PPT课件
- 格式:pptx
- 大小:442.94 KB
- 文档页数:41
1_波动率的计算波动率是评估资产价格或市场波动性的一种方法,通常用来衡量资产的风险程度。
它是股票、债券、期货、外汇等金融资产价格日常波动的统计指标,并且是方差或标准差的一种度量。
波动率的计算有不同的方法,下面将介绍两种常用的计算方法:历史波动率和隐含波动率。
1.历史波动率计算:历史波动率是通过观察资产过去一段时间的价格变动,计算资产未来可能的价格波动的一种方法。
常见的历史波动率计算方法有简单波动率和对数收益率波动率。
1.1简单波动率计算:简单波动率又称为历史波动率,是指计算资产价格的每日变动的标准差,进而得出未来价格可能的波动幅度。
步骤:1.收集一段时间内的资产价格数据,通常是收盘价。
2.计算每日价格的变动,即当天价格与前一天价格之间的差值。
3.计算这些每日变动的平方,得到方差。
4.将方差求和,然后除以天数,得到波动率的平方,再开平方根,得到波动率。
计算公式:波动率=√(方差之和/天数)1.2对数收益率波动率计算:对数收益率波动率是对资产价格取对数之后计算的波动率,它是用来解决价格波动随时间变化而变动的问题,并更好地符合实际情况。
步骤:1.收集一段时间内的资产价格数据,通常是收盘价。
2.计算对数收益率,即每天收益率的对数,可以使用自然对数或对数收益率公式。
3.计算对数收益率的标准差,并进行年化处理,得到对数收益率波动率。
计算公式:波动率=对数收益率标准差×√天数×√(年度交易天数) 2.隐含波动率计算:隐含波动率是根据期权价格计算的,它反映了市场参与者对未来价格波动的预期。
步骤:1.收集目标资产的期权合约价格。
2.使用期权定价模型(如布莱克-斯科尔斯期权定价模型)来计算隐含波动率。
3.通过对期权价格的归一化,将价格转化为波动率。
隐含波动率是从事期权交易的投资者对未来波动率的预期,因此它反映了市场对资产未来可能波动的看法。
总结:波动率是评估资产价格或市场波动性的一种方法,对于投资者来说是非常重要的风险指标。
1_波动率的计算波动率是用来衡量资产价格波动程度的指标,是金融市场中一个重要的风险指标。
在投资决策过程中,了解和计算波动率可以帮助投资者评估风险水平,从而更好地制定投资策略和风险管理策略。
波动率的计算方法主要有两种,即历史波动率和隐含波动率。
历史波动率是通过分析资产过去一段时间的价格数据来计算的。
该方法基于假设,认为未来的波动率将与过去的波动率相似。
历史波动率的计算方法有三种常见的形式:简单算术平均波动率、对数收益率波动率和加权平均波动率。
简单算术平均波动率方法是将每个观测期的价格波动幅度相加,然后除以观测期数。
公式如下:σ = √(Σ(Ri - Ravg)^2 / (N - 1))其中,σ代表波动率,Ri代表第i期的收益率,Ravg代表n期的收益率的平均值,N代表观测期数。
对数收益率波动率方法是将观测期收益率的对数进行计算,然后计算其标准差。
公式如下:σ = √(Σ(Rt - Ravg)^2 / (N - 1))其中,σ代表波动率,Rt代表对数收益率,Ravg代表n期的对数收益率的平均值,N代表观测期数。
加权平均波动率方法是将不同的观测期的价格波动幅度进行加权平均,然后计算标准差。
公式如下:σ = √(Σw_i(Ri - Ravg)^2)其中,σ代表波动率,Ri代表第i期的收益率,Ravg代表n期的收益率的加权平均值,wi代表第i期的权重。
除了历史波动率,投资者还可以使用隐含波动率来衡量未来价格的波动。
隐含波动率是反推出来的指标,是根据期权市场上的期权价格推测出来的预期波动率,代表了市场对未来波动率的预期。
使用隐含波动率的方法主要有两种:布莱克-修尔斯公式和季度化波动率。
布莱克-修尔斯公式是根据欧式期权的定价公式反向估算波动率的方法。
该方法假定市场上的期权价格合理,通过反推波动率来与市场价格进行匹配。
通过反复计算,可以得到合理的波动率估计。
季度化波动率方法是将年化的波动率值除以一个合适的季度因子,将波动率转化为季度水平的估计,以便进行更加准确的风险评估。
第3章波动率模型金融市场数据有着和一般时间序列数据不一样的特征。
在金融研究中,比较关注的是资产的回报率和风险。
一般使用波动率来衡量风险。
这里的波动率指资产回报的条件标准离差,它也是影响资产定价的一个重要因素。
本章主要以金融时间序列为主要研究对象,介绍条件波动率模型,它为金融市场上的资产回报波动率建模,包括ARCH 模型,GARCH模型,以及TARCH模型等。
恩格尔(Engle,R.,1982)最早提出了自回归条件异方差模型(autoregressive conditional heteroskedasticity model,ARCH模型),并由博勒斯莱文(Bollerslev,T.1986)发展成为GARCH模型(generalized ARCH model)——广义自回归条件异方差模型。
这些模型广泛应用于经济学的各个领域,特别是在金融时间序列中有重要的应用。
3.1 引言1、问题的提出以前介绍的异方差属于递增型异方差,即随机误差项方差的变化随解释变量的增大而增大。
但利率,汇率,股票收益等时间序列中存在的异方差却不属于递增型异方差。
例如,汇率,股票价格常常用随机游走过程描述,x t = x t -1 + u t(3.1)其中u t为白噪声过程。
1995-2000年日元兑美元汇率时间序列及差分序列见图3.1和图3.2。
80100120140160JPY (1995-2000)-8-6-4-2246200400600800100012001400D(JPY) (1995-2000)图3.1 日元兑美元汇率序列JPY(1995-2000) 图3.2 日元兑美元汇率差分序列(收益)D(JPY)2468Volatility of returns102030405060200400600800100012001400DJPY^2图3.3 收益绝对值序列 (1995-2000) 图3.4 D(JPY)的平方 (1995-2000)可以看出,汇率既有平静的时刻,也有大涨或大跌的时候,序列的波动并不会一直持续。