初中-数学-人教版-九年级上册-概率的意义
- 格式:doc
- 大小:47.50 KB
- 文档页数:6
新人教版九年级上册初中数学重难点有效突破知识点梳理及重点题型巩固练习随机事件和概率--知识讲解【学习目标】1、通过对生活中各种事件的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断;2、初步理解概率定义,通过具体情境了解概率意义.【要点梳理】要点一、必然事件、不可能事件和随机事件【 391875 名称:随机事件与概率初步:随机事件】1.定义:(1)必然事件在一定条件下重复进行试验时,在每次试验中必然会发生的事件,叫做必然事件.(2)不可能事件在每次试验中都不会发生的事件叫做不可能事件.(3)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.要点诠释:1.必然发生的事件和不可能发生的事件均为“确定事件”,随机事件又称为“不确定事件”;2.要知道事件发生的可能性大小首先要确定事件是什么类型.一般地,必然发生的事件发生的可能性最大,不可能发生的事件发生的可能性最小,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同.要点二、概率的意义概率是从数量上刻画了一个随机事件发生的可能性的大小.一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数附近,那么这个常数就叫做事件A的概率(probability),记为.要点诠释:(1)概率是频率的稳定值,而频率是概率的近似值;(2)概率反映了随机事件发生的可能性的大小;(3) 事件A的概率是一个大于等于0,且小于等于1的数,,即,其中P(必然事件)=1,P(不可能事件)=0,0<P(随机事件)<1.【典型例题】类型一、随机事件1.(1)指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?①若 a、b、c都是实数,则a(bc)=(ab)c;②没有空气,动物也能生存下去;③在标准大气压下,水在 90℃时沸腾;④直线 y=k(x+1)过定点(-1,0);⑤某一天内电话收到的呼叫次数为 0;⑥一个袋内装有形状大小完全相同的一个白球和一个黑球,从中任意摸出 1个球则为白球.【答案与解析】①④是必然事件;②③是不可能事件;⑤⑥是随机事件.【总结升华】准确掌握定义,依据定义判别.【 391875 名称:随机事件与概率初步:经典例题1】举一反三【变式1】下列事件是必然事件的是( ).A.明天要下雨;B.打开电视机,正在直播足球比赛;C.抛掷一枚正方体骰子,掷得的点数不会小于1;D.买一张彩票,一定会中一等奖.【答案】C.【变式2】下列说法中,正确的是( ).A.生活中,如果一个事件不是不可能事件,那么它就必然发生;B.生活中,如果一个事件可能发生,那么它就是必然事件;C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生;D.生活中,如果一个事件不是必然事件,那么它就不可能发生.【答案】C.2. 在一个不透明的口袋中,装有10个除颜色外其它完全相同的球,其中5个红球,3个蓝球,2个白球,它们已经在口袋中搅匀了.下列事件中,哪些是必然发生的?哪些是不可能发生的?哪些是可能发生的?(1)从口袋中任取出一个球,它恰是红球;(2)从口袋中一次性任意取出2个球,它们恰好全是白球;(3)从口袋中一次性任意取出5个球,它们恰好是1个红球,1个蓝球,3个白球. 【答案与解析】(1)可能发生,因为袋中有红球;(2)可能发生,因为袋中刚好有2个白球;(3)不可能发生,因为袋中只有2个白球,取不出3个白球.【总结升华】了解并掌握三种事件的区别和联系.举一反三【变式】甲、乙两人做掷六面体骰子的游戏,双方规定,若掷出的骰子的点数大于3,则甲胜,若掷出的点数小于3,则乙胜,游戏公平吗?若不公平,请你设计出一种对于双方都公平的游戏.【答案】不公平,小于3的点数有1、2,大于3的点数有4、5、6,因此,它们的可能性是不同的,所以不公平.可设计掷出的点数为偶数时甲胜,掷出的点数为奇数时乙胜.类型二、概率3.(2015春•山亭区期末)一只口袋里放着4个红球、8个黑球和若干个白球,这三种球除颜色外没有任何区别,并搅匀.(1)取出红球的概率为,白球有多少个?(2)取出黑球的概率是多少?(3)再在原来的袋中放进多少个红球,能使取出红球的概率达到?【答案与解析】解:(1)设袋中有白球x个.由题意得:4+8+x=4×5,解得:x=8,答:白球有8个;(2)取出黑球的概率为:,答:取出黑球的概率是,(3)设再在原来的袋中放入y个红球.由题意得:3(4+y)=20+y,或2(4+y)=8+8,解得:y=4,答:再在原来的袋中放进4个红球,能使取出红球的概率达到.【总结升华】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.举一反三【变式】(2014•宁波模拟)中央电视台“非常6+1”栏目中有个互动环节,在电视直播现场有三个“金蛋”三个“银蛋”其中只有一个“金蛋”内有礼物,银蛋也是如此.有一个打进电话的观众,选择并打开后得到礼物的可能性是()A.B.C.D.【答案】D.【 391875 名称:随机事件与概率初步:例6及思考题】投篮次数n8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率nm(1)计算表中各场次比赛进球的频率;(2)这位运动员每次投篮,进球的概率约为多少? 【答案与解析】 (1)投篮次数n 8 10 12 9 16 10 进球次数m 6897127进球频率nm0.75 0.8 0.75 0.78 0.75 0.7 (2)P(进球)≈0.75.【总结升华】频率和概率的关系:当大量重复试验时,频率会稳定在概率附近. 举一反三【变式】某射手在同一条件下进行射击,结果如下表所示:射击次数(n) 10 20 50 100 200 500 击中靶心次数(m)9 19 44 91 178 451 击中靶心频率()(1)计算表中击中靶心的各个频率(精确到0.01);(2)这个射手射击一次,击中靶心的概率约是多少(精确到0.1)?【答案】 (1)击中靶心的各个频率依次是:0.90,0.95,0.88,0.91,0.89,0.90. (2)这个射手击中靶心的概率约为0.9.。
【人教版】初中数学九年级知识点总结概率概率是初中数学的常考知识点,但考题难度不大。
本章内容要求学生了解事件的可能性,在探究交流中学习体验概率在生活中的乐趣和实用性,学会计算概率。
由浅入深,层层递进,解决问题以学生为主,发挥学生的集体智慧,利用所学知识解决问题,突现应用意识,进一步巩固所学知识。
一、目标与要求1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义二、知识框架三、重点、难点在具体情境中了解概率意义。
对频率与概率关系的初步理解。
四、知识点、概念总结1. 随机事件:在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件,简称事件。
随机事件通常用大写英文字母A、B、C等表示。
2.特殊的事件必然事件记作Ω,样本空间Ω也是其自身的一个子集,Ω也是一个“随机”事件,每次试验中必定有Ω中的一个样本点出现,必然发生。
不可能事件记作Φ,空集Φ也是样本空间的一个子集,Φ也是一个特殊的“随机”事件,不包含任何样本点,不可能发生。
3.随机事件的关系和运算(1)交换律:A∪B=B∪A、AB=BA(2)结合律:( A∪B )∪C=A∪( B∪C )(3)分配律:A∪( BC )=( A∪B )( A∪C )A( B∪C )=( AB )∪( AC )(具体图表意义请参照初中数学九年级上册人教版课本P135页)6.频率与概率的区别与联系从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表。
第25章概率初步本章学情分析与教材分析(一)学情分析:“概率初步”是《课程标准》“统计与概率”的重要内容. 本章是学生在已经了解了统计知识的相关知识,掌握了方差、频率等知识的基础上继续学习概率的相关知识. 由于学生初学概率,面对概率意义的描述,学生容易产生困惑:概率是什么?概率是否就是频率?何时用列表法,何时用树状图等等问题都有待师生一起去探索. 因此,学生对这部分内容学习是一大难点. 但这部分内容在人们的生活和生产建设中有着广泛的应用,也是今后运用概率知识解决实际问题的预备知识,所以它在教材中处于非常重要的地位.本章共包含三部分内容,分别是:随机事件与概率、用列举法求概率、用频率估计概率. 本章既有理论知识,又有实验研究,内容丰富. 本章的教学,无论是在知识上,还是对学生能力的培养上,都有着十分重要的作用.须注意的是,本学段的概率内容还处在一个比较初级的水平,就《课程标准》来看,这个阶段的学生并没有学习概率中的乘法,所以他们还只能用列表法和树形图法计算一些简单的概率问题.因此,如果问题超过3步的难度,学生完成起来就会非常吃力.所以一般来说,不宜将问题的难度超过3步.(二)教材分析:1.核心素养在随机事件的学习中,通过抽样体会样本及估计结果的随机性,培养学生的随机观念;在用概率解决日常生活中遇到的问题时(如抽奖等),培养学生的概率思想;通过用列表和画树状图求概率,提高学生用枚举的数学思想方法解决问题的能力;通过频率估计概率,进一步培养学生“用样本估计总体”的统计思想.2.本章学习目标(1)了解必然事件、不可能事件和随机事件的概念;(2)在具体情境中了解概率的意义,体会概率是描述不确定现象发生可能性大小的数学概念,理解概率的取值范围的意义;(3)能够运用列举法(包括列表、画树状图)计算简单随机试验中事件发生的概率;(4)能够通过随机试验,获得事件发生的频率;知道通过大量重复试验,可以用频率估计概率,了解频率与概率的区别与联系;(5)通过实例进一步丰富对概率的认识,并能解决一些简单的实际问题.3.课时安排本章教学时间约需6课时,具体分配如下(仅供参考):25.1 随机事件与概率2课时25.2 用列举法求概率 2课时25.3 用频率估计概率1课时章末回顾+检测题1课时4.本章重点(1)随机事件的特点;(2)在具体情境中了解概率意义;(3)运用列表法或树状图法计算事件的概率.5.本章难点(1)对生活中的随机事件作出准确判断;(2)对频率与概率关系的初步理解;(3)能根据不同情况选择恰当的方法进行列举,解决较复杂的事件概率的计算问题.。
第二十五章概率初步(本章第1课时)25.1 概率(共2课时)25.1.1 随机事件(第1课时)教学内容:必然会发生、都不会发生事件和随机事件的概念;一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
教学目标:了解必然会发生、都不会发生事件和随机事件的概念;理解一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
设置问题情景,由问题抽象,归纳概念,利用概念归纳总结结论。
教学重点:一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
教学难点与关键:难点:理解一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
关键:设置问题情景,概括概念。
教具、学具准备:小黑板、黑白小球若干个和骰子。
教学过程:一、回顾知识(复习引入,学生活动):请同学们完成下面各题:1.2006年8月,某书店各学科点拨书销售情况如下图:(1)这个月语文点拨与数学点拨销售量的比是多少?(2)这个月总共销售了多少本书?(3)语文书占总销售量的百分之多少?(4)四种类型的书籍中哪一种所占的百分比最大?哪一种最小呢?2.(1)你能说,进店又买点拨书,买哪一种点拨书可能性最大?买哪一种可能性最小?(2)进书店有买点拨书,有可能买数学点拨书吗?(3)进书店有可能买猪肉吗?(4)进书店又有买点拨书,就是买四种书籍(假如书店只有这四种书籍)的其中一种。
教师点评:(1)买语文点拨最大,买思品点拨最小;(2)有可能;(3)书店中没有买猪肉,因此在书店中是买不到猪肉的。
(4)进店又有买点拨书,肯定是四种中任意一种。
二、新课(探索新知):1.从回顾知识后导出今节学习的内容:(1)师生共同分析第136页“问题1”。
(2)师生共同分析第136页“问题2”。
2.引出结论:必然会发生、都不会发生事件和随机事件等概念。
三、训练(巩固练习):课本第138页练习题(抄于小黑板备用)。
人教版数学九年级上册25.1.2《概率的意义》说课稿一. 教材分析《概率的意义》是人教版数学九年级上册第25章第1节的一部分,本节课的主要内容是让学生理解概率的定义,掌握概率的基本性质和运算方法。
教材通过具体的例子让学生体会概率在实际生活中的应用,培养学生的数学应用意识。
二. 学情分析九年级的学生已经具备了一定的数学基础,对数学概念和运算方法有一定的了解。
但是,对于概率这一概念,学生可能比较陌生,难以理解其本质和应用。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出概率模型,培养学生的抽象思维能力。
三. 说教学目标1.知识与技能目标:让学生理解概率的定义,掌握概率的基本性质和运算方法,能解决一些简单的实际问题。
2.过程与方法目标:通过具体的例子,让学生体会概率在实际生活中的应用,培养学生的数学应用意识。
3.情感态度与价值观目标:激发学生对概率学习的兴趣,培养学生积极思考、合作交流的良好学习习惯。
四. 说教学重难点1.教学重点:概率的定义,概率的基本性质和运算方法。
2.教学难点:概率的本质理解,如何从实际问题中抽象出概率模型。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,通过具体的例子引导学生理解概率的概念,运用概率的知识解决实际问题。
2.教学手段:利用多媒体课件,展示具体的例子和概率运算过程,帮助学生形象地理解概率的概念。
六. 说教学过程1.导入新课:通过一个简单的摸球游戏,引导学生思考概率的概念。
2.讲解概率的定义:解释概率的概念,让学生理解概率的本质。
3.讲解概率的基本性质:介绍概率的基本性质,让学生掌握概率的运算方法。
4.应用举例:通过具体的例子,让学生运用概率的知识解决实际问题。
5.课堂练习:布置一些简单的练习题,巩固学生对概率知识的掌握。
6.总结与反思:让学生总结本节课所学的内容,反思自己在学习过程中的收获和不足。
七. 说板书设计板书设计如下:1.概率的定义:反映事件A发生的可能性。
人教版九年级数学上册25.1.2《概率》教案一. 教材分析人教版九年级数学上册第25.1.2节《概率》是概率统计部分的重要内容。
本节主要介绍了概率的定义、计算方法以及如何运用概率解决实际问题。
通过本节的学习,学生能够理解概率的概念,掌握基本的概率计算方法,并能够运用概率知识解决生活中的问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算方法有一定的了解。
但是,对于概率这一抽象的概念,学生可能难以理解和接受。
因此,在教学过程中,需要注重引导学生从实际问题中理解概率的概念,并通过大量的实例让学生掌握概率的计算方法。
三. 教学目标1.知识与技能:让学生理解概率的概念,掌握基本的概率计算方法,能够运用概率知识解决实际问题。
2.过程与方法:通过实例分析,让学生体验概率的计算过程,培养学生的逻辑思维能力。
3.情感态度与价值观:让学生感受数学与生活的紧密联系,培养学生的数学应用意识。
四. 教学重难点1.重点:概率的定义,概率的计算方法。
2.难点:如何从实际问题中抽象出概率模型,运用概率解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入概率的概念,让学生感受数学与生活的联系。
2.启发式教学法:在教学过程中,引导学生主动思考,通过讨论、交流等方式,让学生理解概率的计算方法。
3.巩固练习法:通过大量的练习,让学生掌握概率的计算方法,并能够运用到实际问题中。
六. 教学准备1.教学课件:制作相关的教学课件,以便于直观地展示概率的计算过程。
2.练习题:准备一些与本节课内容相关的练习题,以便于学生在课堂上进行操练。
七. 教学过程1.导入(5分钟)通过一个简单的实例引入概率的概念,如抛硬币、抽签等,让学生思考:这些事件的结果是随机的,那么我们如何来描述这种随机性呢?2.呈现(10分钟)讲解概率的定义,让学生理解概率的意义。
如:抛一枚硬币,正面朝上的概率是1/2。
同时,介绍如何用数学符号表示概率,如P(A)、P(B)等。
九年级数学教案备课序号:第节问:(1)根据上面的理解,你认为问题2中向上的一面为偶数的概率是多少?(2)像上述试验,可列举的有限等可能事件的概率,可以怎样表达事件的概率?【讨论结果】(1)“向上一面为偶数”这个事件包括2、4、6三种可能结果,在全部6种可能的结果中所占的比为3/6=1/2.∴P(向上一面为偶数)=1/2.(2)一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n.问:(3)请同学们思考P(A)的取值范围是多少?分析:∵m≥0,n>0,∴0≤m≤n,∴0≤mn≤1,即0≤P(A)≤1.问:(4)P(A)=1,P(A)=0各表示什么事件呢?【讨论结果】当A为必然事件时,P(A)=1.当A为不可能事件时,P(A)=0.由此可知:事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0,如下图:三、典例精析,掌握新知例1掷一个骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5.分析:(1)掷一个质地均匀的骰子,向上一面的点数共有几种情况?(2)点数为2时有几种可能?点数为奇数有几种可能?点数大于2且小于5有几种可能呢?例2如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作向右的扇形).求下列事件的概率:(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.分析:①指针停止后所指向的位置是否是有限等可能性事件?为什么?②指针指向红色有几种可能?③指针指向红色或黄色是什么意思?④指针不指向红色等价于什么说法?例3 教材第133页例3.分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.问1:若例3中,小王在游戏开始时踩中的第一个格上出现了标号1,则下一步踩在哪一区域比较安全?答案:一样,每个区域遇雷的概率都是1/8.问2:谁能重新设计,通过改换雷的总数,使得下一步踩在A区域合适?并计算说明.。
第二十五章概率初步《第一单元课时1 随机事件与概率的意义》学历案【学习主题】第一单元课时1 随机事件与概率的意义【学习课时】1课时【课标要求】在具体情境中,通过实例感受简单的随机现象;能列出简单的随机现象中所有可能发生的结果.通过试验、游戏等活动,感受随机现象结果发生的可能性是有大小的,能对一些简单的随机现象发生的可能性大小作出定性描述,并能进行交流.能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率.知道通过大量的重复试验,可以用频率来估计概率.【学习目标】1.理解随机事件的意义,会判断必然事件、随机事件、不可能事件.能列举一些生活中的随机事件.2.理解概率的意义,知道概率的取值范围,并知道概率数值大小与可能性之间的关系.3.了解频率和概率之间的区别与联系, 会用频率估计概率.【评价任务】【资源与建议】1.本节课的目标是让学生在理解概率的意义的基础上理解其核心思想——随机思想.随机思想在当今社会有着广泛的应用,在概率成为普通生活常识的今天,对随机现象有一个较清楚的认识,成为每一个公民文化素质的基本要求.生活中存在着大量的随机现象,如天气、保险、彩票等.随机现象中存在着一定的规律性,因而我们可以运用数学方法来定量地研究它们.研究随机性有助于探究大自然和社会生活中事件发生的规律,从而方便人们的生活和生产.初中阶段,要求学生初步学习随机事件和概率,对随机现象有了一定的了解,高中阶段将进一步学习概率的知识.本节是初中概率的起始内容,理解好本节知识是学习本章后续古典概型和几何概型的重要前提.此外,随机思想是自然辩证法的重要思想,理解随机思想有助于培养学生用一分为二、对立统一的辩证唯物主义观点分析问题和认识世界.随机事件广泛存在于生活中,学生对随机事件和概率在生活中都有感性的体验,比如天气、彩票等,但是学生对随机思想的认识比较少,对随机现象理论也没有形成系统的认识.2.本主题的学习流程:生活情景探究→事件的可能性大小,事件的分类→试验探究,硬币模拟试验→概率的意义,概念总结→探究问题,练习应用→综合演练与提升.3.重点:随机事件、必然事件、随机事件、不可能事件,事件概率的意义等.难点:理解事件概率的意义.一、学习准备1.想一想,生活中常见的抽奖类情景,获奖的可能性大吗?试举例说明.2.通过预习,你提出了哪些问题?二、学习新知活动一情景探究(指向目标1)游戏:生肖转盘.随机转动圆盘,指针指向哪个生肖图案,艺人就用糖画出指针所指的生肖图案.思考:每次转生肖转盘,停下时候是不是指针一定指向生肖龙呢?如果不是,那指向生肖龙的可能性究竟有多大?如何衡量这个可能性大小呢?预习教材,回答问题:事件按照发生的可能性的大小可以分成哪几类?问题:下列事件哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边落山;(2)22a b +=-1(其中a ,b 都是实数);(3)水往低处流;(4)三个人性别各不相同;(5)一元二次方程2x 2x ++3=0无实数解;(6)经过有信号灯的十字路口,遇见红灯.活动二 试验探究(指向目标2、3)投硬币试验试验:做20次投硬币试验,在离桌面相同的高度让一元硬币自由落下,记录桌面上硬币“正面向上”的次数.可用如下表格记录数据:概念:在相同条件下进行n 次重复试验,某一事件A 出现的次数A n 称为事件A 发生的__________; 称事件A 出现次数占试验总次数的比例A n f n为事件A 发生的____________.观察计算机投币模拟试验的统计数据:图(1):用条形统计图描述频率的变化情况.图(2):随着试验次数增加,频率值也在不停地变化,根据点的变化描述出变化的轨迹. 由以上两个数据统计图可得出频率什么样的变化情况和变化趋势?1.思考与交流从以上三个投硬币试验,你能得出什么样的结论?2.抽象概括—概率的定义一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的_________,记为P(A).3.定义的理解(1)必然事件的概率是,不可能事件的概率是,随机事件概率的范围是 .(2)在试验之前,某一事件发生的无法确定,在不同的试验中也可能不同;而是一个常数,是客观存在的,与每次试验 .(3)在随机试验中,频率表示在这次试验中事件A发生的频繁程度;概率表示事件A发生的 .(4)在条件下,可以用频率近似地估计概率.4.总结概念上述抛硬币的试验有两个共同特点:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.对于满足上述两个特征的随机试验,我们可以通过对试验结果以及事件本身的分析,求出相应事件的概率.一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m n.活动三问题解决(指向目标2、3)根据频率和概率的相关知识,思考下面的问题:1.生肖转盘问题生肖转盘游戏中,A同学一次就转到了自己的属相,而B同学转了10次也没有转到和A同学相同的属相.于是B同学愤怒地说:“这个转盘被动了手脚!”你认为B同学的说法合理吗?2.做重复试验:抛掷同一枚啤酒瓶盖1000次,经过统计得出“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率为 .3.某鱼塘中有200条鲤鱼、若干条草鱼和150条鲢鱼,该鱼塘主人通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右.若该鱼塘主人随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率为 .活动四思维提升(指向目标2、3)掷一枚骰子,观察向上一面上的点数,求下列事件的概率:(1)事件A:点数为2;(2)事件B:点数为奇数;(3)事件C:点数大于2且小于5.活动五练习巩固(检测目标1、2、3)1.下列事件中:(1)投掷一枚均匀的硬币,正面朝上;(2)投掷一枚均匀的骰子,点数为6的一面朝上;(3)任意找367人中,至少有2人的生日相同;(4)打开电视,正在播放广告;(5)某人买体育彩票中奖;(6)明年的元旦北京将下雪;(7)买一张电影票,座位号正好是偶数;(8)到2020年世界上将没有饥荒和战争;(9)抛掷一枚质地均匀的骰子两次,朝上面的点数之和一定大于等于2;(10)抛掷一枚图钉,钉尖朝上.其中,确定的事件有,随机事件有 . 随机事件中,你认为发生的可能性最小的是 .(填序号)2.在一副洗好的52张扑克牌中(没有大小王),闭上眼睛,随机地抽出一张牌.(1)求抽出的一张牌的花色是红桃的概率;(2)请你根据题意写出一个事件,使这个事件发生的概率是0.3.一个口袋中有4个红球、3个黑球、2个白球,如果小明邀请小华玩一个“摸球”游戏,游戏的规则是:摸出一个红球,小华赢得1分;摸出其他球,小明贏得1分,这个游戏公平吗?活动六总结归纳回顾本节课的内容,总结梳理本节知识重点:【达标检测】1.(检测目标1)下列事件中必然事件有,随机事件有 .(填序号)①北京市早晨的太阳一定从东方升起;②打开数学课本时刚好翻到第6页;③从一定高度落下的图钉,落地后钉尖朝上;④今年14岁的孩子一定是初中学生.2.(检测目标1)不可能事件的概率是,随机事件的概率范围是,必然事件的概率是 .3.(检测目标2)某城市天气预报显示某天降水概率为80%,80%的含义是什么?4.(检测目标2)一只口袋中放着若干个黄球和绿球,这两种球除了颜色之外没有其他任何区别,袋中的球已经搅匀,从口袋中取出一个球,取出黄球的概率是25,取出绿球的概率是多少?5.(检测目标2)甲、乙两人玩一种游戏:共有20张牌,牌面上分别写有数字:-10,-9,-8,…,-1,1,2,…,10,洗好牌后,将背面朝上,每人从中任意抽取3张,然后将牌面上的三个数相乘,结果较大者赢.(1)你认为抽取到哪三张牌时,不管对方抽到其他怎样的三张,你都会赢?(2)你认为抽取到哪三张牌时,不管对方抽到其他怎样的三张,你都会输?(3)结果等于6的可能性有几种?把每一种都写出来.【学后反思】1.本节课学习的知识要点是:2.我的达标情况:3.自己需要求助的困惑或分享自己如何学会的经验:。