微分中值定理辅助函数类型的构造技巧
- 格式:doc
- 大小:921.00 KB
- 文档页数:16
罗尔定理构造辅助函数万能公式郭元春陈思源马晓燕1.西安思源学院基础部陕西西安 710038;2.西安思源学院高等教育营销研究中心陕西西安 710038微分中值定理在微积分学中占有十分重要的地位,是用函数局部性质推断整体性质的有力工具。
罗尔定理是微分中值定理中最为基础的一个,定理内容:若函数f(x)满足在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b),则存在某个中值ξ∈(a,b),使得等式f′(ξ)=0。
利用罗尔定理证明中值等式问题的难点就是辅助函数的构造。
刘文武、张军、肖俊等人[1-3]采用逆向思维法对该类问题做了相应的研究。
逆向思维法是从结果出发分析中值等式的特点,选择适当的方法构造辅助函数。
微分中值等式问题常见的形式是:已知函数f(x)满足在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(x)满足某些附加条件,求证存在某个中值ξ∈(a,b),使得等式F(ξ,f(ξ),f′(ξ))=0。
该等式左边看作是某个函数g(x)在点ξ处的导数,即g′(ξ)=0。
由拉格朗日中值定理可知,g(x)=C 是满足该等式的最简单的函数。
显然这个隐函数是原微分方程的通解,因此,在微分中值问题中,一般把通解中的积分常数令为辅助函数。
本文采用逆向思维法,对微分中值问题中构造辅助函数的常见题型作归纳和总结。
一、利用分离变量法构造辅助函数(一)证明的等式是关于ξ,f(ξ),f′(ξ)的微分方程例1[4]:设函数f(x)在闭区间[0,π]上连续,在开区间(0,π)内可导,证明:在开区间(0,π)内至少存在一点ξ,使得f′(ξ)sinξ=-f(ξ)cosξ。
证明:令F(x)=f(x)sinx,显然,F(x)在闭区间[0,π]上连续,在开区间(0,π)内可导,且F(0)=F(π),故由罗尔定理知,在开区间(0,π)内至少存在一点ξ,使得F′(ξ)=0,而F′(ξ)=f′(ξ)sinξ+f(ξ)cosξ,也就是说,在开区间(0,π)内至少存在一点ξ,使得f′(ξ)sinξ=-f(ξ)cosξ。
中值定理构造辅助函数的方法
中值定理是微积分中重要的定理之一,它是用来描述凸函数的性质的。
在构造辅助函数时,我们可以使用中值定理来简化问题或某些证明。
具体方法如下:
1. 构造辅助函数:根据问题的特点,构造一个合适的辅助函数。
辅助函数的选择要根据具体问题来决定,可以是原函数的导数,原函数的积分等。
2. 应用中值定理:利用构造的辅助函数应用中值定理来得到有关函数的性质。
中值定理通常有两种形式:拉格朗日中值定理和柯西中值定理。
具体选择哪个中值定理要根据辅助函数的性质和问题的要求来决定。
3. 利用中值定理的结论解决问题:根据中值定理的结论,进一步推导出问题的解决方法或者证明某些性质。
需要注意的是,构造辅助函数和应用中值定理需要根据具体的问题进行判断和分析。
不同的问题可能需要不同的辅助函数和中值定理形式来求解或证明。
因此,在使用中值定理构造辅助函数的时候,需要根据问题的特点灵活运用。
运用中值定理证题时构造辅助函数的三种方法微分中值定理应用中,怎么寻找辅助函数,是比较头疼的一件事。
今天笔者就介绍下三种方式帮忙寻找到这个函数。
首先声明:这三种方式也不是万能的,但对常见题目还是挺有帮助的,而且学霸们应该都知道这些方法,故慎入。
因此本文目的是向还没留意过这些方法的同学做普及,尤其是线下笔者所带的那些可爱的学生们。
至于还有些仗着自己有点学识就恨不得鄙视这个、鄙视那个,恨不得日天日地日地球的所谓学霸请自行绕道。
一、积分原函数法具体方法简述:将要证明的式子整理为φ(ξ)=0 (一般不包含分式),然后令 F′(ξ)=φ(ξ) ,对两边式子分别积分,则有 F(ξ)=∫φ(ξ)dξ,那么F(x)就是我们所求的辅助函数。
说白了,就是将所证明的表达式进行积分还原,如果能够还原成功,那么成功找到的这个F(x)就是我们苦苦寻找的辅助函数。
还不懂?没事,举两个例子。
例1:设f(x)、g(x)在[a,b]上连续,(a,b)内可导,且 g′(x)≠0 ,证明:在(a,b)存在ξ,使得 f(ξ)−f(a)g(b)−g(ξ)=f′(ξ)g′(ξ) 。
解析:这是非常常见的一道题。
估计即使做过了这道题,还有很多同学很迷惑,解答中的辅助函数到底是咋构建出来的。
其实利用原函数法,很容易就找到这个辅助函数了。
首先先所证明的分式整理成易观的式子,如下:F′(ξ)=g′(ξ)f(ξ)+f′(ξ)g(ξ)−f(a)g′(ξ)−g(b)f′(ξ)然后我们令:F′(ξ)=g′(ξ)f(ξ)+f′(ξ)g(ξ)−f(a)g′(ξ)−g(b)f′(ξ)好,对上式两边进行积分,如下:F(ξ)=∫g′(ξ)f(ξ)+f′(ξ)g(ξ)−f(a)g′(ξ)−g(b)f′(ξ)dξ=∫f(ξ)dg(ξ)+∫g(ξ)df(ξ)−f(a)g(ξ)−g(b)f(ξ)=f(ξ)g(ξ)−∫g(ξ)df(ξ)+∫g(ξ)df(ξ)−f(a)g(ξ)−g(b)f(ξ)=f(ξ)g(ξ)−f(a)g(ξ)−g(b)f(ξ)所以我们要寻找的辅助函数就为:F(x)=f(x)g(x)−f(a)g(x)−g(b)f(x)很容易验证:F(a)=F(b)=−f(a)g(b)于是根据罗尔定理,在(a,b)上存在一点ξ,使得 F′(ξ)=0 ,也就是:g′(ξ)f(ξ)+f′(ξ)g′(ξ)−f(a)g′(ξ)−g(b)f′(ξ)=0整理便可得题目中的式子,因此原题得证。
微分中值定理教学中的几种辅助函数的构造周寿明【期刊名称】《东莞理工学院学报》【年(卷),期】2013(000)003【摘要】辅助函数的构造在很多数学问题的解决中起着非常关键的作用,特别在数学分析中具有广泛的应用。
针对微分中值定理中的几类常见的难题,本文总结了几种常见的辅助函数的构造方法———行列式法、变限积分法、微分方程法、常值 K 法、指数因子法。
% The auxiliary function structure plays a key role in solving many mathematical questions , especially, in the mathematical analysis.Focusing on several kinds of common difficulties in the course of teaching Differential Mean Value Theorem , this paper summarizes some structural methods of common auxiliary functions , such as determinant law, changeable limit integra-tion, differential equation law, the law of constant K, the factor of index.【总页数】3页(P128-130)【作者】周寿明【作者单位】重庆师范大学数学学院,重庆 401331【正文语种】中文【中图分类】O13【相关文献】1.微分中值定理中辅助函数的构造法与应用 [J], 贺艳静;2.关于构造辅助函数的几种方法--谈微分中值定理的证明 [J], 张家秀3.微分中值定理的证明及应用中的辅助函数构造 [J], 余丽4.辅助函数构造法证明微分中值定理及其应用 [J], DONG Shan-shan;QI Xue5.微分中值定理的证明中辅助函数的构造方法 [J], 张坦然因版权原因,仅展示原文概要,查看原文内容请购买。
科技信息高校理科研究浅谈应用微分中值定理解证明题时构造辅助函数的指数因子法中国矿业大学(北京)理学院吴新峰张晓宁[摘要]本文通过典型例子讨论了应用微分中值定理解证明题时构造辅助函数的一种常用的方法:指数因子法。
[关键词]指数因子法微分中值定理辅助函数1.指数因子法的基本原理微分中值定理是高等数学中的一个重要定理,它建立了函数与导数之间的联系,有着十分广泛的应用。
在证明含有抽象函数及其导数值的等式中,微分中值定理,特别是罗尔中值定理,常常发挥着重要的作用。
[1]《高等数学》中的罗尔中值定理是这样叙述的:定理:若函数F(x)在[a,b]上连续,在(a,b)内可导,且F(a)=F(b),则至少存在一点ξ∈(a,b),使F'(ξ)=0。
微积分中,许多与函数及其导数有关的证明题都可用罗尔中值定理证明,关键在于正确构造辅助函数。
而在实践中,学生遇到的困难往往是:如何构造辅助函数F(x),使得它满足罗尔定理的条件,从而推得结论成立?我们知道,构造辅助函数的方法很多,辅助函数也不唯一。
一般而言,构造辅助函数的方法是根据要证明的等式为突破口,其中指数因子法就是一种简单且易掌握的方法。
[2]众所周知,(ex)'=ex,这表明,指数函数ex是“求导”运算的“不动点”。
x正是由于指数函数e的这种特性,使得它在解决很多高等数学问题中由复合函数求导法则,有发挥了重要的作用。
我们假定函数f,φ可导,φ(x)φ(x)[ef(x)]'=e[φ'(x)f(x)+f'(x)]。
再由指数函数恒正,知下面两式等价:(1)φ'(x)f(x)+f'(x)=0(2)[eφ(x)f(x)]'=0因此,凡是欲证明的等式具有(1)的形式或者可以通过恒等变形转化为(1)的形式,我们都可以考虑用指数因子法构造辅助函数:即欲证明(1)式成立,只需证明(2)式成立。
因此,通常可将辅助函数取成:F(x)=eφ(x)f(x)。
2.典型例题例一:设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,k为正实数。
微分中值定理辅助函数类型的构造技巧构造辅助函数是应用微分中值定理的一种常用技巧,通过构造合适的辅助函数,可以简化定理的证明过程,使得结论更容易得到。
下面将介绍几种常见的构造辅助函数的技巧。
1.构造差商辅助函数:差商是在微积分中常用的一个概念,表示函数在一点附近的平均变化率。
通过构造差商辅助函数,可以将函数的变化率转化成差商的形式,从而应用差商的性质进行分析和证明。
具体来说,如果要证明一个函数在一些区间上的平均变化率等于两个点之间的差商,可以构造一个辅助函数,使得辅助函数的导数等于差商,从而可以利用微分中值定理得到所需的结果。
2.构造导函数辅助函数:导函数是函数在一点处的斜率,表示函数的变化速率。
通过构造导函数辅助函数,可以转化函数在区间上的斜率问题为导函数在特定点上的函数值问题。
具体来说,可以通过构造辅助函数的导函数等于原函数的导函数,再利用微分中值定理得到结论。
3.构造积分辅助函数:积分是函数的反导数,表示函数在一点处与坐标轴之间的面积。
通过构造积分辅助函数,可以将函数的积分转化为函数在区间上的平均值。
具体来说,可以通过构造辅助函数的积分等于原函数的积分,再利用微分中值定理得到所需的结论。
4.构造复合函数辅助函数:复合函数是两个或多个函数通过函数运算得到的新函数。
通过构造复合函数辅助函数,可以将定理的证明转化为复合函数的导数的证明。
具体来说,可以通过构造复合函数辅助函数使得辅助函数的导数等于复合函数的导数,再利用微分中值定理得到结论。
总之,构造辅助函数是证明微分中值定理的一种常见技巧,可以简化证明过程,使得结论更容易得到。
不同的辅助函数类型适用于不同的证明问题,具体的构造方法需要根据具体的问题进行选择。
在构造辅助函数时,需要充分发挥函数的性质和微积分的基本概念,灵活运用各种技巧,才能得到令人满意的结果。
应用微分中值定理构造辅助函数的三种方法微分中值定理是微积分中最重要的定理之一,它可以用来构造辅助函数。
在这里,我将介绍三种常见的方法。
方法一:构造辅助函数来证明微分中值定理我们首先回顾微分中值定理的陈述:如果函数f在闭区间[a,b]上连续,在开区间(a,b)上可导,那么存在c∈(a,b),使得f'(c)=(f(b)-f(a))/(b-a)。
为了证明这一定理,我们可以构造一个辅助函数g(x)=f(x)-(f(b)-f(a))/(b-a)*(x-a)。
我们可以计算g(a)和g(b):g(a)=f(a)-(f(b)-f(a))/(b-a)*(a-a)=f(a)g(b)=f(b)-(f(b)-f(a))/(b-a)*(b-a)=f(b)由于g(x)是f(x)的线性函数,我们可以得出g(a)=f(a)和g(b)=f(b)。
根据罗尔定理,存在c∈(a,b),使得g'(c)=0。
将g(x)展开得到:g'(x)=f'(x)-(f(b)-f(a))/(b-a)当x=c时:0=g'(c)=f'(c)-(f(b)-f(a))/(b-a)因此,存在c∈(a,b),使得f'(c)=(f(b)-f(a))/(b-a)。
方法二:构造辅助函数来确定函数的最大值和最小值微分中值定理的一个重要应用是确定函数的最大值和最小值。
我们可以利用此定理构造辅助函数来确定函数在给定闭区间上的最大和最小值。
假设我们要确定函数f在闭区间[a,b]上的最大值和最小值。
我们可以构造辅助函数h(x)=f(x)-M(x-a),其中M是一个足够大的常数。
我们可以选择一个足够大的M,使得h(x)在[a,b]上永远不小于0。
当x=a时,h(a)=f(a)-M(a-a)=f(a)>=0当x=b时,h(b)=f(b)-M(b-a)=f(b)-M(b-a)<=0根据微分中值定理,存在c∈(a,b),使得h'(c)=0。
一类与中值公式相关的辅助函数的构造方法微分中值定理在数学分析中起着非常重要的作用,关于定理本身的证明以及应用中值定理证明某一些等式,都需要构造相应的辅助函数,使其满足罗尔定理的条件,从而达到证明目的。
一、构造辅助函数的具体方法证明中值定理及相关等式往往与函数在某一点?灼的导数有关,因此在构造辅助函数时一般需分三个步骤:第一,先将等式两端的点?灼换成x;第二,分别求出等式两端函数的原函数;第三,求出等式两端原函数的差即为所求的辅助函数。
如拉格朗日中值定理的结论是f′(?灼)=,首先将?灼换成x,即为f′(x)=,而左端的原函数为f(x),右端的原函数为x,令f(x)=f(x)-x,则容易验证f(x)满足罗尔定理的三个条件,因此定理立即得证。
例1,设f(x)在[a,b]上可微,试证明存在?灼∈(a,b),使2?灼[f(b)-f(a)]=(b2-a2)f′(?灼)分析:将?灼换成x得2x[f(b)-f(a)]=(b2-a2)f′(x),左端的原函数为x2[f(b)-f(a)],右端的原函数为(b2-a2)f (x),于是作辅助函数f(x)=x2[f(b)-f(a)]-(b2-a2)f (x)即可。
证明:令f(x)=x2[f(b)-f(a)]-(b2-a2)f(x),则f (x)在[a,b]上可微,且满足f(a)=a2f(b)-b2f(a)=f(b),所以f(x)在[a,b]上满足罗尔定理条件,于是存在?灼∈(a,b),使得f′(?灼)=0,即f′(?灼)=2?灼[f(b)-f(a)]-(b2-a2)f′(?灼)=0,从而得2?灼[f(b)-f(a)]=(b2-a2)f′(?灼)。
二、构造辅助函数的简单技巧某一些中值恒等式不能直接应用上述三个步骤证明,因此在证明之前需要先作恒等变形,或者先将?灼换成x后再作恒等变形。
例如:柯西中值定理结论为=,将?灼换成x后为=,而的原函数不易求得,因此将等式变形为f′(x)=g′(x),而后求得左端的原函数为f(x),右端的原函数为g(x),于是令辅助函数f(x)=f (x)-g(x),则易证f(x)满足罗尔定理的条件,于是定理容易得证。
1.反向演绎法(移项+反导+罗尔)(原函数法)
2.乘积因子法
对于某些要证明的结论,往往出现函数的导数与函数之间关系的证明,直接构造辅助函数比较困难,将所证结论的两端都乘以或除以一个恒正或恒负的函数,证明结论往往不受影响,eλ(x λ为常数)是常用的乘积因子。
例4 若函数f(x)在[a,b]上连续,在(a,b)内可
导,且f(a)=f(b)=0,证明存在一点ξ∈(a,b),使得f'
(ξ)=f(ξ)。
分析:e^x是个恒为正的因子,所证明等式或不等式的两端都乘以或除以这样一个因子,等式或不等式仍然成立,于是想到e^x是个理想的乘积因子。
构造辅助函数,F(x)=f(x)/e^x
3.不定积分法
4.常数K值法
5.几何直观法
6.函数增量法
7.观察法(最基本):根据式子两侧的函数形式,进行构造。
尽量先将原式整理成整齐的式子,根据所需的定理进行构造。
微分中值定理应用中的辅助函数的构造方法
1.微分中值定理介绍:
微分中值定理(Differential Mean Value Theorem)是求取极限内函数导数的一种数学定理。
它是物理学和工程学中常用的,用于推导和求解常微分方程的一种有用工具。
它描述的是随着函数值的变化,函数的导数值也可以发生改变,但在某一点上,函数的导数必定是一个确定的、固定的、线性变化的值。
2.辅助函数的构造方法:
(1)首先,我们要找到一个可以表达某一函数的函数的导数的函数,这个函数就是我们要构建的辅助函数,它可以帮助我们求取微分中值定理中函数的导数。
(2)然后,应用微分中值定理求取函数的导数,需要在该函数的极限点处计算微分,而极限点则是指函数的两侧,其函数值接近零的一对点。
(3)接下来,根据辅助函数的性质,在每个极限点处,构造出一个可以将函数的值表达出来的函数,并让它与辅助函数极限点处作差,计算出该函数的绝对值。
(4)最后,比较绝对值大小,将小于或等于微分中值定理规定的阈值的绝对值画出来,即可求得函数对应的导数值。
专题四关于中值定理证明中辅助函数的构造构造函数法的内涵十分丰富,没有固定的模式和方法,构造过程充分体现了数学的发现、类比、逆向思维及归纳、猜想、分析与化归等思想.使用构造法是一种创造性的思维活动,一般无章可循,它要求既要有坚实的基础知识背景,又要有丰富的想象力和敏锐的洞察力,针对问题的具体特点而采用相应的构造方法,常可使论证过程简洁明了.在教学中,不失时机地加强对学生的构造性思维的训练,对培养学生的创新意识、创新能力大有裨益.同时构造性思维的形成是培养创造性思维能力的一种途径.它是在数学教学中用数、形结合,沟通问题条件与结论,构造出数学模型,从而达到解决问题目的的一种解题数学法.这种方法要求综合应用各种知识,把各科知识有机结合,根据问题的条件、结论、性质及特征,横向联系,纵向渗透,构造出辅助图形或辅助关系式、使问题思路清晰,解法巧妙.有一些数学问题在常规下束手无策,而构造法使问题得到别开生面、简洁而新颖的解法.数学中的许多问题,往往可以通过构造辅助函数,利用间接方法得到解决.这一方法应用的广泛性,在于其灵活性.例如,证明拉格朗日定理时,通常都是采用引入一个辅助函数,把适合拉格朗日定理的函数转换成适合罗尔定理的函数的方法.在这里,辅助函数是使问题转化的桥梁.构造辅助问题,并非是为了它本身,而是要通过辅助问题帮助我们解决原来的问题.那个原来的问题才是我们要达到的目标,而辅助问题只是我们试图达到的手段,是原来问题转化的桥梁.针对所要解决的问题构造一个辅助问题,则原来问题的求解或证明,就转化为对一个函数的性质的研究,可以运用函数的定义域、值域、单调性、最大最小值、连续和微分积分等性质来帮助解决,运算过程就比较简单了.微分中值定理是沟通函数及导数之间的桥梁,是研究函数性质的有力工具.而各种辅助函数又往往有所不同,这些辅助函数之间有没有内在的联系呢?引入这些辅助函数有没有一般规律呢?为解答上面的问题,给出辅助函数的一般表达式:F(x)=f(x)—()()f b f ab a--x c+此式可以作为证明拉格朗日中值定理所引用的辅助函数,其中c为任意常.容易验证,当f(x)满足拉格朗日中值定理的条件时,相应的F(x)满足罗尔定理的条件.由于它们都含有任意的常数c ,所以具有某种一般性,是辅助函数的最简单的一种形式.每给出一个c的具体的辅助函数,对应一个具体的证法.不难看出将F(x)与某些函数复合所得的函数,也可以作为辅助函数.问题1:罗尔中值定理、拉格朗日中值定理的内容是什么?有什么样的几何意义?答:罗尔中值定理的内容如下:设函数()f x 满足如下条件:(1)在闭区间[,]a b 上连续;(2)在开区间(,)a b 上可微;(3)()()f a f b =; 则在(,)a b 内至少存在一点ξ,使得'()f ξ=0.注:罗尔定理一般是作为拉格朗日中值定理和柯西中值 定理证明的预备定理,故若对其加强仔细分析、证明,也 可以加以对拉格朗日中值定理的理解和应用.罗尔中值定理的几何意义指:在两个高度相同的点A 、B 之间的一段连续曲线上,若除端点外,它在每一点都有不垂直于x 轴的切线,则该曲线至少存在一点,过该点的切线平行于x 轴(过两端点A 、B 的弦).拉格朗日中值定理的内容如下: 设函数()f x 满足如下条件:(1)在闭区间[,]a b 上连续;(2)在开区间(,)a b 上可微; 则在(,)a b 内至少存在一点ξ,使得()()f b f a b a--='()f ξ.拉格朗日中值定理的几何意义是:若曲线()y f x =在(,)a b内每一点都有不平行于y 轴的切线,则在该曲线上至少存在一点P (ξ, f (ξ) ), 使曲线在该点的切线平行于过曲线两端点A 、B 的弦.注:对于拉格朗日中值定理与罗尔定理仅相差在区间端点的函数值相等(即()()f a f b =)这一条件.因此,证明拉格朗日中值定理的关键是,构造一个合适罗尔定理条件的辅助函数()F x ,对()F x 应用罗尔定理,即可得到拉格朗日中值定理的结论.问题2:构造辅助函数一般有哪几种方法?答:构造辅助函数一般有下面几种方法:分析法、几何直观法、凑原函数法、常数k 值法、积分法、解微分方程法、第二类积分法。
辅助函数的几种特殊用法在高等数学中,证明一些中值等式的题目也是比较困难的。
因为一般我们要花大量的时间去找一个恰当的辅助函数,如果我们能熟悉一些特殊类型题目的辅助函数的构造及相关定理的运用,这样就会为我们解题提供方便,从而节约大量的时间。
为此我们需要牢记以下几种常见题型中辅助函数的特殊用法。
(1)若题目中出现等式“'()()f kf ζζ-”时,一般可以考虑作辅助函数)()(x f e x F kx -=.例:设函数f 在[,]a b 上可微,且()()0f a f b ==证明:k R ∀∈,(,)a b ζ∃∈,使得'()()f kf ζζ=分析:要证'()()f kf ζζ=,即证'()()0f kf ζζ-=,也就是证ζ函数)()(x kf x f -'的零点.注意到[()]'['()()]kx kx f x e f x kf x e --=-,因此,只要检验函数()()kx F x f x e -=是否满足罗尔中值定理条件,但这是明显的.证明:构造辅助函数()()kx F x f x e -=,(,)x a b ∈,则()F x 在[,]a b 上满足罗尔定理条件,故(,)a b ζ∃∈,使得0)(='ζF , 而[])()()()()(ζζζζζkf f e e x kf e x f F k x kxkx -'=-'='-=--,则['()()]0k e f kf ζζζ--=,即'()()f kf ζζ=.(2)若题目结论中出现等式“1'()n A f ζζ-=)0(≠A ”时,可考虑作副主函数()()F x f x =,()n G x x =.例:设函数f 在[,]a b 上连续,在(,)a b 内可微.证明:(,)a b ζ∃∈,使得:222(()())'()()f b f a f b a ζζ-=-.证明: i )若0(,)a b ∉作辅助函数()()F x f x =,2()G x x =,()F x ,()G x 均满足柯西中值定理条件 所以(,)a b ζ∃∈使得22()()'()2f b f a f b a ζζ-=-,即222(()())'()()f b f a f b a ζζ-=-.ii )若0(,)a b ∈,'(0)0,0f a b ≠+≠由i )可类似得证. iii )若0(,)a b ∈,'(0)0f ≠,取0ζ=,即证.(3)若题目结论中出现“()'()f f ζζζ-”时,可以考虑作辅助函数()()f x F x x =,1()G x x=. 例:设函数f 在[,]a b 上连续)0(>a ,在(,)a b 内可微.证明:(,)a b ζ∃∈使得1()'()()()a b f f f a f b a b ζζζ=--,证明:因为2)()()(x x f x f x x x f -'='⎥⎦⎤⎢⎣⎡, 考虑作辅助函数()()f x F x x =,1()G x x=,显然F 与G 在[,]a b 上满足柯西中值 定理条件,所以必(,)a b ζ∃∈, 使得)()()()()()(ζζG F a G b G a F b F ''=--即221)()(11)()(ζζζζζ--'=--f f a b a a f b b f [])()()()(1ζζζf f a bf b af b a '-=--⇒证毕.(4)若命题结论中出现式“()'()f f ζζζ+”时,可考虑作辅助函数()()F x xf x =,()G x x =.例:设函数f 在[,]a b 上连续,在(,)a b 内可导,证明:必有(,)a b ζ∈,使得()()()'()bf a af a f f b aζζζ-=+-.分析:我们熟悉[])()()(x f x x f x xf '+=',因此作辅助函数()()F x xf x =,()G x x =,且知()F x ,()G x 在给定区间内均满足柯西中值定理条件,故有)()()()()()(ζζG F a G b G a F b F ''=--,即()()()'()bf a af a f f b aζζζ-=+-得证.(5)若题目中出现式“'()f ζζ”时,可考虑作辅助函数()()F x f x =,()ln G x x =.例:设函数f 在[,]a b (0)a >上连续,在(,)a b 内可导,则存在(,)a b ζ∈使得()()'()lnbf b f a f aζζ-= 证明:由我们熟悉的xx 1)(ln =',考虑作辅助函数()()F x f x =,()ln G x x =且)(),(x G x F 在给定的区间内均满足柯西中值定理条件,于是),(b a ∈∃ζ,使得()()'()1ln ln f b f a f b aζζ-=-,即()()'()lnbf b f a f aζζ-=,证毕.(6)若命题结论中出现等式“()()f kf ζζζ'-”的关系时,可考虑的辅助函数为).()(x f x x F k -=例:设)(x f 在[]b a ,上连续,)0(b a <<,在),(b a 内可导,且)()(a bf b af =,证明:),(b a ∈∃ζ使得)()(ζζζf f '=.证明:设)()(1x f x x -=ϕ,显然ϕ在[]b a ,上连续, 而2)()()(xx f x f x x -'='ϕ在在),(b a 内存在, 且)()()(11b f b a f a a --==ϕ,故ϕ在[]b a ,上满足罗尔中值定理条件, 于是必),(b a ∈∃ζ使得0)()(2=-'='ζζζζζϕf f )(, 所以0)()(=-'ζζζf f ,而0>ζ,所以)()(ζζζf f '=.证毕.(7)若题目中出现等式“2f ff '''+”,的关系时,则往往考虑构造辅助函数)()(2x f x F =,因为)(x F 经过一次求导为)()(2)(x f x f x F '=',再次求导后,即[])()()(2)(x f x f x f x F ''+'=''.例:设)(x f 在[]b a ,上连续,在),(b a 内二阶可导,且0)()(==b f a f ,证明:),(b a ∈∃ζ,使得.0)()()(2=''+'ζζζf f f证明:设辅助函数),()(2x f x F =则)()(2)(x f x f x F '=', 因为)(x F '在[]b a ,上连续,在),(b a 内可导, 且0)()(2)()()(2)(='='='='b f b f b F a f a f a F ,所以由罗尔中值定理知:必),(b a ∈∃ζ使0)(=''ζF ,而[]0)()()(2)(2=''+'=''ζζζζf f f F ,即0)()()(2=''+'ζζζf f f .证毕.(8)若题目中出现等式“2ff f '''-的关系时,则需构造辅助函数)(ln )(x f x F =,因为)(x F 经过一次求导后为)()()(x f x f x F '=',再次求导后得到.)()()()()(2x f x f x f x f x F '-''='' 例:设)(x f 在[]b a ,上连续,在),(b a 内可导,且[]b a x x f ,,0)(∈>,)()()()(b f a f a f b f '⋅='⋅,试证:必),(b a ∈∃ζ使得.0)()()(2='-''ζζζf f f证明:设)(ln )(x f x F =,得)()()(x f x f x F '=', 显然)(x F '在[]b a ,上连续,在),(b a 内可导,则)()()()()()(b F b f b f a f a f a F '='='=', 故满足罗尔中值定理条件,因此必),(b a ∈∃ζ使得0)(=''ζF ,而0)()()()()(22='-''=''=ζζx x f x f x f x f F ,即.0)()()(2='-''ζζζf f f证毕.(9)若题目结论中出现等式“0)()(0=+⎰ζζf dx x f ”,的关系时,则可考虑构造辅助函数.)()(0⎰=xx dt t f ex ϕ例:设f 在[]a ,0上连续,在),0(a 内可导,且⎰=a dx x f 0.0)(证明:),0(a ∈∃ζ使得0)()(0=+⎰ζζf dx x f .证明:作辅助函数⎰=xxdt t f e x 0)()(ϕ,显然)(x ϕ在[]a ,0上连续,在),0(a 内可导,且)0(0)()(0ϕϕ===⎰aa dt t f e a ,故满足罗尔中值定理条件,因此,必),0(a ∈∃ζ使得0)(='ζϕ,而⎥⎦⎤⎢⎣⎡+=+='⎰⎰)()()()()(00x f dt t f e x f e dt t f e x xx x x x ϕ,由于0≠ζe , 故0)()(0=+⎰ζζf dx x f .证毕.(10)若题目出现等式“()()f f ζζ''-”的关系时,则需两次构造辅助函数,第一次构造)()(x f e x g x =,第二次构造[])()()(x f x f e x x '+=-ϕ.例:设设)(x f 在[]b a ,上可导,在),(b a 内二阶可导,0)()(==b f a f ,0)()(>''b f a f ,试证:),(b a ∈∃ζ,使得).()(ζζf f =''证明:因为0)()(>'⋅'b f a f ,所以)(a f '与)(b f '同号,设0)(>'a f ,即0)(lim _)()(lim >-=-++→→ax x f a x a f x f a x ax ,所以),,(,01δδ+∈∃>∃a a x 使得0)(1>x f , 0)(lim )()(lim >-=----→→bx x f b x b f x f b x bx ,所以),(,02b b x δδ-∈∃>∃,使得.0)(2<x f 又因为f 在[]b a ,上可导,故f 在[]b a ,上连续,即f 在),(21x x 上连续, 而0)(,0)(21<>x f x f ,所以由介值定理(或零点定理),),(21x x ∈∃η使得.0)(=ηf再看,由题目结论,构造辅助函数),()(x f e x g x = 因为)()()(ηf b f a f ==,所以0)()()(===b g g a g η,故),(1ηηa ∈∃,使得,0)(1='ηg ),(2b ηη∈∃,使得.0)(2='ηg因为[])()()()()(x f x f e x f e x f e x g x x x '+='+=',由0)()(21='='ηηg g ,可得.0)()(,0)()(2211='+='+ηηηηf f f f令[])()()(x f x f e x x '+=-ϕ, 所以有[]0)()()(1111='+=-ηηηϕηf f e ,[],0)()()(2222='+=-ηηηϕηf f e即0)()(21==ηϕηϕ,又因为)(x ϕ在[]21,ηη上连续可导, 所以),()(2,1b a ⊂∈∃ηηζ,使得0)(='ζϕ,即[]0)()()(=-''='=-ζζϕx x x f x f e ,而0≠-ζe ,故0)()(=-''ζζf f .证毕.涉及罗尔定理证明中值等式的命题罗尔定理:如果函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且在区间端点的函数值相等,即()()f a f b =.那么在区间(,)a b 内至少有一点()a b ξξ<<,使得()f x 在该点的导数等于零,0)('=ξf .题型一:设函数)(x f 在],[b a 上连续,在),(b a 内可导,且0)()(==b f a f ,证明对任何实数k ,至少存在一点),(b a ∈ξ使)()(ξξkf f ='成立.分析:首先从结论看起,欲证)()(ξξkf f =',即证0)()(=-'k f f ξξ,即0)()(=-'=ξx k x f x f .而要0)()(=-'=ξx k x f x f 就促使我们想到去构造辅助函数的思路,即构造的函数)(x F 应该满足在],[b a 上连续,在),(b a 内可导,)()(b F a F =,k x f x f x F -'=')()()(,如果这样的话kx x f x F -=)(ln )(,但是)(x F 在点a 和点b 处都没有定义,所以不满足)()(b F a F =,从而kx x f x F -=)(ln )(不是我们所需要的辅助函数,但是注意到指数函数)(x F e 的特点,当对数运算和指数运算相互抵消后得到的新函数的定义域可能会扩大,从而)(x F e 可能成为我们找的辅助函数.若令)()()(x f e e x G kx x F -==,则)(x G 满足)(0)(b G a G ==以及罗尔定理的其他条件,所以,由罗尔定理得知:至少),(b a ∈∃ξ使得0)(='ξG ,而[])()()(x kf x f G -'='ξ,所以[]0)()()(=-'='-ξξξξkf f e G k ,而0>-kx e ,所以只能0)()(=-'ξξkf f ,即)()(ξξkf f ='成立,由此)(x G 就是我们所需构造的辅助函数.注意:在分析题目时,如果我们从不同的角度看它就可能会构造不同的辅助函数,也就是说,对于解决同一个题目,所构造的辅助函数可能是不唯一的.例:设)(x ϕ为[]c c ,-上的连续奇函数,且在()c c ,-内可导,又0)(=c ϕ,证明:对任何实数λ,都存在()c c ,-∈ζ使得0)()(=+'ζλϕζϕ.证法一:由题型一的结论可作辅助函数)()(x e x G x ϕλ=,则)(x G 在[]c c ,-上连续,又因为[])()()()()(x x e x e x e x G x x x ϕλϕϕϕλλλλ'+='+='在()c c ,-内存在,且0)()(==-c G c G ,(0)()(=--=c c ϕϕ),所以它满足罗尔定理条件,故必),(c c -∈∃ζ,使得0)(='ζG ,即0)()(=+'ζλϕζϕ.证毕.证法二:若设dt t x x G xc⎰-+=)()()(ϕλϕ,则)(x G 在[]c c ,-上连续,且)()()(x x x G λϕϕ+'='在()c c ,-内存在,又因为0)()()(=+=⎰-dt t c c G ccϕλϕ,0)()()()()(=-=-=+-=-⎰--c c dt t c c G ccϕϕϕλϕ,所以它满足罗尔定理条件,故必),(c c -∈∃ζ,使得0)()()(=+'='ζλϕζϕζG .证毕.题型二:证明),(b a ∈∃ζ,使得0)()()(='+'ζζζf g f .分析:仍然从结论入手,把0)()()(='+'ζζζf g f 变形,且将ζ变为x ,则有0)()()(='+'=ζx x g x f x f ,而)()()(x g x f x f '+'有一个原函数)()(ln )(x g x f x F +=,由题型一,最好将辅助函数)(x T 作为)()()(x f e x T x g =.例:取函数()f x 在[]k k ,-上连续,在),(k k -内可导,且)()(k f k f =-,试证明在),(k k -内至少存在η,使得)(2)(ηηηf f ='.分析:由该题型的辅助函数为可知,待证等式中的)(2ηηg '=-,从而得到2)(ηη-='g ,将ηζ改为x 即2()g x x =-,因此辅助函数2()()x F x e f x -=.证明:取辅助函数2()()x F x e f x -=.则()F x 在[]k k ,-上连续,在),(k k -内可导,且)()(k F k F =-,满足罗尔定理, 故必),(k k -∈∃η使得)(ηF '0=, 由于[])(2)()(2x xf x f e x F x -'='-,将η=x 带入上式,并去掉非零因子2η-e ,即得证原式成立.附注:读者可将题型二的()g x 取为x λ或2x λ带入'()'()()0f x g x f x +=将得到一系列的命题.题型三:证明存在(,)a b ξ∈使得1()'()0k k k f f ζζζζ-+=构造的辅助函数()()k F x x f x =例:设函数()f x 在[1,2]上连续,在(1,2)内可导,1(1)2f =,(2)2f =,证明:存在(1,2)ζ∈,使得'()2()f f ζζζ=.分析:待证等式可变形为2()'()0f f ζζζ-=,即0)()(22='+-ζζζζf f .与题型二的一般形式进行比较可知k 为-2的情况,因此可作辅助函数()()x f x x F 2-=.证明:取辅助函数2()()F x x f x -=,则易知()F x 在[1,2]上连续,在(1,2)内可导,且(1)(2)0.5F F ==,由罗尔定理,至少存在一点(1,2)ζ∈使得'()0F ζ=, 由于12'()['()2()]F x x x f x xf x -=-,将x ζ=带入上式,即有 2()'()0f f ζζζ-=,故'()2()f f ζζζ=.证毕.附注:由题型三可以演变出一系列的题型.如:证明存在(,)a b ξ∈使'()''()()0kf f ζζζλ+-=,k R ∈,R λ∈ 构造的辅助函数()()'()k F x x f x λ=-例:设函数()f x 在[0,1]二阶可导,(0)(1)f f =,求证:存在(0,1)ζ∈,使得2'()''()(1)0f f ζζζ+-=.证明:取辅助函数2()(1)'()F x x f x =-.由于(0)(1)f f =,()f x 在[0,1]上二阶可导,对()f x 在[0,1]上应用罗尔定理, 则必存在(0,1)η∈使得'()0f η=,于是有()0F η=,因为(1)0F =且()F x 在[0,1]上可导,对()F x 在[,1]η上应用罗尔定理,必存在(,1)(0,1)ζη∈⊂使得'()0F ζ=, 由于2'()2(1)'()(1)''()F x x f x x f x =-+-,将x ζ=带入上式,并去掉非零因子1ζ-,即证得原式成立,证毕.题型四:证明存在)(b a ,∈η使得)()(2ηληf f ='',λ为常数.(注意:此题型需要构造两次辅助函数,第一次构造()()x F x e f x λ=;第二次构造2()'()x G x e F x λ-=).例:设函数()f x 在[,]a b 上连续,()f x 在(,)a b 内二阶可导,()()0f a f b ==,'()'()0f a f b >,求证:存在(,)a b ζ∈,使得''()4()f f ζζ=证明:由()()0>'⋅'b f a f ,不妨设'()0f a >,'()0f b >, 由导数的几何意义,在x a =的右领域中存在1B ,使得()()01=>a f B f , 在x b =的左领域中存在2B ,使得()()02=<b f B f ,且令21B B <,则由应用零点定理可知存在()21B B B ,∈,使得 ()0=B f ,取2()()x F x e f x =,则()F x 在(,)a b 上可导,且()()()0===B F b F a F ,所以分别在][B a ,和][b B ,上应用罗尔定理,存在)(B a ,1∈∃η使得()01='ηF ;)(b B ,2∈∃η,使得()02='ηF . 因此11'()2()0f f ηη+=,12'()2()0f f ηη+=,令4()x G x e -=2'()['()2()]x F x e f x f x -=+, 则()G x 在(,)a b 内可导,由于12()()0G G ηη==在12[,]ηη上应用罗尔定理,存在12(,)(,)a b ζηη∈⊂, 使得'()0G ζ=,由于()2'()''()2'()2'()4()x G x e f x f x f x f x -=+-+⎡⎤⎣⎦,故有''()4()f f ζζ=,证毕.提示:其实在涉及一些利用罗尔中值定理证明一些等式的时候,一般都是先从题目的结论入手,把结论中的等式经过变形后,观察该式,看看什么样的函数经过求导后(一次或两次等)含有如结论中的式子作为因子,则我们一般就取这样的函数为我们需要找的辅助函数.但是需要强调一点,就是我们选取的辅助函数在题目给定区间要有意义,且满足罗尔定理的条件,这种就是前面所讲的原函数法.涉及拉格朗日中值定理证明中值等式的命题拉格朗日中值定理:如果函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,那么在区间),(b a 内至少有一点)(b a <<ξξ,使等式))((')()(a b f a f b f -=-ξ成立.亦即)(')()(ξf ab a f b f =--成立.例:设函数()f x 在[,]a b 上连续,在(,)a b 内可导0a >,()()1f a f b ==,证明:存在ζ使得1(,)()'()n a b f f ηηηζζζζ-⎡⎤∈∍=+⎢⎥⎣⎦. 分析:先将等式变形,即有11()'()(*)n n n n n f f ηζζζζ--=+,通过观察,我们会发现等式(*)的右边是(1()()0k k k f f ζζζζ-+=,[()]'0k x f x =,()k x f x )形式,因此构造的辅助函数()()n F x x f x =,再观察等式(*)左边可知1()'n n n ηη-=,从而得到辅助函数()n g x x =,通过拉格朗日中值定理寻找'()F x 与'()G x 的相同部分,得出待证结论.证明:取辅助函数()()n F x x f x =,易知()F x 在[,]a b 上满足拉格朗日中值定理条件.则存在),(b a ∈ξ使得⇒--='ab a F b F F )()()(ξ1()()()'()n n n nb f b a f a n f f b a ζζζζ--+=- 又()()1f a f b ==, 所以1()'()n nn nb a n f f b aζζζζ--+=- (1)取 ()n g x x =,易知()g x 在[,]a b 上满足拉格朗日中值定理条件, 则()()(,)'()n ng b g a b a a b g b a b aηη--∈∍==-- (2)比较(1)(2)可得11()()n n n n n f f ηζζζζ--=+, 即1()'()n f f ηζζζζη-⎡⎤=+⎢⎥⎣⎦, 证毕.。