初中数学全部公式
- 格式:docx
- 大小:37.84 KB
- 文档页数:4
初中数学公式总结数学作为一门学科,离不开公式的运用。
在初中阶段,学生们需要掌握各种不同的数学公式,并能够灵活运用它们来解决各种数学问题。
下面是一些初中数学常用公式的总结。
1. 等式变形公式1.1 相等式变形公式- 同加同减律:若 a = b,则 a ± c = b ± c;- 同除律:若 a = b,则 a/c = b/c(c ≠ 0);- 同乘同除律:若 a = b,则 ac = bc。
1.2 方程变形公式- 加减法原则:对方程两边加减同一个数,仍得一个真等式;- 平方根法:设 a² = c(a > 0),则a = ±√c;- 当等式两边都是完全平方时,可以使用因式分解法。
2. 定义公式2.1 同底数幂相乘法则:aⁿ * aᵐ= aⁿ⁺ᵐ2.2 同底数幂相除法则:aⁿ / aᵐ= aⁿ⁻ᵐ2.3 幂的乘方法则:(aⁿ)ᵐ= aⁿᵐ3. 平面几何公式3.1 长方形面积公式: S = 长 ×宽3.2 正方形面积公式: S = 边长²3.3 三角形面积公式:- 一般三角形面积公式: S = 1/2 ×底 ×高- 海伦公式:S = √[ p(p-a)(p-b)(p-c) ],其中 p = (a + b + c)/2- 直角三角形面积公式:S = 1/2 ×底 ×高3.4 平行四边形面积公式: S = 底 ×高3.5 梯形面积公式: S = (上底 + 下底) ×高 / 24. 数列与函数公式4.1 等差数列通项公式:aₙ = a₁ + (n-1)d4.2 等差数列前 n 项和公式:Sₙ = n/2 × [2a₁ + (n-1)d]4.3 等比数列通项公式:aₙ = a₁ × r^(n-1)4.4 等比数列前 n 项和公式:Sₙ = a₁ × (1 - rⁿ) / (1 - r)4.5 一次函数方程:y = kx + b,其中 k 为斜率,b 为截距。
初中数学计算公式大全1.四则运算公式:-加法公式:a+b=b+a-减法公式:a-b≠b-a-乘法公式:a×b=b×a-除法公式:a÷b≠b÷a2.约数公式:-a是b的约数表达式:b÷a=n(n为整数)-b是a的倍数表达式:b=a×n(n为整数)3.最大公约数(GCD)与最小公倍数(LCM)公式:-GCD(a,b)表示a和b的最大公约数-LCM(a,b)表示a和b的最小公倍数4.百分比公式:-a%表示a的百分之几,即a×0.01-a的百分之b,表示a的b%,即a×b×0.015.平均数和中位数公式:- 平均数:a1, a2, ..., an 的平均数为(a1 + a2 + ... + an) ÷ n-中位数:将一组数据按照大小排列,若数据个数n为奇数,则中位数为第(n+1)÷2个数;若n为偶数,则中位数为第n÷2个数与第(n÷2+1)个数的平均数。
6.平方公式:- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²-(a+b)(a-b)=a²-b²7.三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:c² = a² + b² - 2ab·cosC- 正切定理:tanA = a/b,tanB = b/a8.勾股定理:-直角三角形中,c²=a²+b²,其中c为斜边,a、b为两个边的长度。
9.平行线关系公式:-对顶角相等:a,b,两直线被一条直线截断,其对应的内角互为对顶角,对顶角相等。
-同位角相等:a,b,一条直线与两平行线相交,所形成的内角和两平行线间的对应内角互为同位角。
初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
初中数学公式大全完整版可打印一、有理数。
1. 有理数加法法则。
- 同号两数相加,取相同的符号,并把绝对值相加。
例如:3 + 5=8,( - 3)+(-5)= - 8。
- 异号两数相加,绝对值相等时和为0(即互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如:3+( - 5)= - 2,5+( - 3)=2。
- 一个数同0相加,仍得这个数。
例如:0 + 3=3。
2. 有理数减法法则。
- 减去一个数,等于加上这个数的相反数。
即a - b=a+( - b)。
例如:5 - 3 =5+( - 3)=2。
3. 有理数乘法法则。
- 两数相乘,同号得正,异号得负,并把绝对值相乘。
例如:3×5 = 15,( - 3)×(-5)=15,3×(-5)= - 15。
- 任何数同0相乘,都得0。
4. 有理数除法法则。
- 除以一个不等于0的数,等于乘这个数的倒数。
即a÷ b=a×(1)/(b)(b≠0)。
- 两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
5. 乘方的定义。
- 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在a^n中,a 叫做底数,n叫做指数。
例如:2^3=2×2×2 = 8。
二、整式的加减。
1. 单项式。
- 由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
例如:3x,-5,a都是单项式。
- 单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如:在单项式3x^2中,系数是3,次数是2。
2. 多项式。
- 几个单项式的和叫做多项式。
其中每个单项式叫做多项式的项,不含字母的项叫做常数项。
例如:2x^2+3x - 1,2x^2、3x、-1都是它的项,-1是常数项。
- 多项式里次数最高项的次数,叫做这个多项式的次数。
圆的周长=直径*3.14
圆的周长=2*半径*3.14
圆柱的侧面积=底面周长*高
圆柱的表面积=圆柱的侧面积+两个底面的面积圆柱的体积=底面积*高
圆锥的体积=底面积*高/3
每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
速度×时间=路程
路程÷速度=时间
路程÷时间=速度
单价×数量=总价
总价÷单价=数量
总价÷数量=单价
工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
加数+加数=和
和-一个加数=另一个加数
被减数-减数=差
被减数-差=减数
差+减数=被减数
因数×因数=积
积÷一个因数=另一个因数
被除数÷除数=商
被除数÷商=除数
商×除数=被除数。
初中数学必背100公式,初中一到六年级数学公式大全总结公式一:点、角、线。
公式二:平行。
公式三:三角形基本性质。
公式四:三角形全等。
公式五:等腰三角形。
公式六:等边三角形。
公式七:比例。
公式八:相似三角形。
公式九:圆初中生学习数学要掌握和熟悉基本公式。
以下是初中数学公式汇总,希望对考生学习数学有所帮助。
初中数学全部公式总结1一元二次方程解答公式二次函数表达式ax²+bx+c=0;(a≠0),一元二次方程可以参考二次函数进行变形。
解答一元二次方程,我们可以先做出抛物线,然后看与x轴交点。
△=b²-4ac;解答公式:x=(-b±V△)/2a;2因式分解经常会用到公式1、平方差公式:a²-b²=(a+b)(a-b)。
2、完全平方公式:a²+2ab+b²=(a+b)²。
3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。
4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。
5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。
6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。
7、三项完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。
8、三项立方和公式:a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)。
3三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg认为有用点个赞吧初中生学习数学要掌握和熟悉基本公式。
初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
初中数学全部定义定理公式
一、定义
1、数:由数字表示的量或标志符号,用来代替实物,并用来计算、比较和研究事物的结果或关系。
2、集合:按照其中一种特征组织起来的一系列元素的有序统一体。
3、元素:又称成员,是组成集合的基本和最小单位。
4、空集:没有任何元素的集合称为空集,表示为∅。
5、并集:两个集合的所有元素的结合体。
表示为A∪B,即A和B的“或”集合。
6、交集:两个集合的公共部分,表示为A∩B,即A和B的“且”集合。
7、补集:指一个集合中不属于另一个集合中的元素与另一个集合相对应的集合,表示为A-B。
8、差集:指两个集合A和B中不同时属于两个集合的元素的集合,表示为A\B。
9、概率:是指在一定条件下,随机事件发生的可能性的大小指标。
10、函数:在其中一变量与另一变量之间关系的函数用等号表示,叫做函数。
二、公式
1、交集的公式:A∩B={x,x∈A且x∈B}
2、并集的公式:A∪B={x,x∈A或x∈B}
3、差集的公式:A\B={x,x∈A且x∉B}
4、补集的公式:A-B={x,x∈A且x∉B}
5、阶乘的公式:n!=1×2×3×4×…×n
6、数列求和的公式:Sn=a1+a2+a3+…+an
7、有理数的乘法的公式:(m/n)×(r/s) = (mr)/(ns)
8、有理数的除法的公式:(m/n)÷(r/s) = (ms)/(nr)。
完整版)初中数学公式大全(整理打印版) 与代数1.数与式1) 实数实数具有以下性质:①实数a的相反数是-a,实数a的倒数是1/a(a≠0);②实数a的绝对值:当a>0时,|a|=a;当a=0时,|a|=0;当a<0时,|a|=-a。
③正数大于0,负数小于0,两个负实数,绝对值大的反而小。
二次根式:①积与商的方根的运算性质:当a≥0,b≥0时,√(ab)=√a×√b;当a≥0,b>0时,√(a/b)=√a/√b;②二次根式的性质:当a≥0时,√(a²)=a;当a<0时,√(a²)=-a。
2) 整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即am×an=am+n (m、n为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即am/an=am-n (a≠0,m、n为正整数,m>n);③幂的乘方法则:幂的乘方,底数不变,指数相乘,即(ab)^n=a^n×b^n(n 为正整数);④零指数:a^0=1(a≠0);⑤负整数指数:a^-n=1/(a^n)(a≠0,n为正整数);⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即(a+b)(a-b)=a²-b²;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即(a±b)²=a²±2ab+b²;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即a/a×m=b/b×m,其中m是不等于零的代数式;②分式的乘法法则:a/c×b/d=a×b/c×d(a、b、c、d≠0);③分式的除法法则:a/c÷b/d=a/c×d/b(c、d≠0);④分式的乘方法则:a/c)^n=a^n/c^n(n为正整数);⑤同分母分式加减法则:a/b±c/b=(a±c)/b;⑥异分母分式加减法则:a/b±c/d=(ad±bc)/bd(b、d≠0)。
初中数学各种常用公式大全初中数学是我们学习过程中的重要学科之一,其中包含了大量的公式。
接下来,本文将为大家整理出初中数学中各种常用公式大全。
1. 直线方程:点斜式:y - y1 = k(x - x1)斜截式:y = kx + b截距式:x/a + y/b = 12. 二次函数:标准式:y = a(x - m)² + n顶点式:y = a(x - h)² + k一般式:y = ax² + bx + c3. 三角函数:正弦函数:sin θ = 对边 / 斜边余弦函数:cos θ = 临边 / 斜边正切函数:tan θ = 对边 / 临边余切函数:cot θ = 临边 / 对边4. 平面几何:欧拉公式:V - E + F = 2三角形面积公式:S = 1/2bh 正方形面积公式:S = a²长方形面积公式:S = ab圆面积公式:S = πr²圆周长公式:C = 2πr5. 空间几何:球体表面积公式:S = 4πr²球体体积公式:V = (4/3)πr³直角坐标系中两点距离公式:d = √((x2-x1)² + (y2-y1)² + (z2-z1)²)6. 概率统计:全概率公式:P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn) 贝叶斯公式:P(B|A) = P(A|B)P(B) / [P(A|B)P(B) + P(A|Bc)P(Bc)]期望公式:E(X) = ∑xiP(xi)方差公式:Var(X) = E(X²) - [E(X)]²以上就是初中数学各种常用公式的大全。
在学习过程中,我们需要结合不同的题型,运用不同的公式,寻找最佳解决方案,让我们更好地应对数学考试。
初中数学全部公式
初中数学常用公式:
一、代数公式:
1.两数相加的和等于它们反过来相加的和:a+b=b+a
2.两数相减的差等于它们反过来相减的差:a-b≠b-a
3.两数相乘的积等于它们反过来相乘的积:a×b=b×a
4.两数相除的商等于它们分子、分母反过来相除的商:a÷b≠b÷a
5. 两个数之和的平方等于它们的平方和加上两倍的它们的积:(a +
b)² = a² + 2ab + b²
6. 平方差公式:(a - b)² = a² - 2ab + b²
7. 平方和公式:a² + b² = (a +b)² - 2ab
8.两个平方差的乘积等于两个数之和与差的平方差:(a+b)(a-b)=a²-b²
9.一次方差公式:(a+b)×(a-b)=a²-b²
10. 完全平方公式:(a + b)² = a² + 2ab + b²
11. 平方完全差公式:(a - b)² = a² - 2ab + b²
12.两个完全平方的乘积等于两个数之和与差的平方差:(a+b)(a-
b)=a²-b²
13.四平方定理:任何一个正整数都可以表示成不超过四个正整数的平方之和。
14.二项式定理:
(a+b)ⁿ=C(n,0)aⁿ+C(n,1)aⁿ⁻¹b+C(n,2)aⁿ⁻²b²+...+a(b+a)ⁿ⁻¹bⁿ⁻¹+bⁿ
15.幂运算的乘法法则:aⁿ×aᵐ=aⁿ⁺ᵐ
16.幂运算的除法法则:aⁿ÷aᵐ=aⁿ⁻ᵐ
二、几何公式:
1.线段等分点公式:已知线段AB,M为AB的中点,则AM=MB=AB/2
2.垂直平分线公式:已知线段AB,O为线段AB的中点,则AO⊥OB,
并且AO=OB=AB/2
3.线段外一点到线段的距离公式:已知线段AB和一点C,以A、B为
两端点作线段AB的垂直平分线,交垂直平分线于点D,则CD为点C到线
段AB的距离。
4.倍比公式:线段相等的倍数比相等,线段成同一比例的倍数相等。
5.各角平分线的性质:平分一个角的直线叫做该角的角平分线,三角
形内部的角平分线相交于一点,且这个点到三条边的距离相等。
6.相似三角形的性质:相似三角形的对应角相等,对应边成比例。
7.同位角性质:同位角是指两条平行线被一条直线截断而成的对应角。
同位角相等。
8.圆的面积公式:S=πr²,其中S为圆的面积,r为半径。
9.球的表面积公式:S=4πr²,其中S为球的表面积,r为半径。
10.球的体积公式:V=(4/3)πr³,其中V为球的体积,r为半径。
11.圆柱的体积公式:V=πr²h,其中V为圆柱的体积,r为底圆半径,h为高度。
12.矩形的面积公式:S=l×w,其中S为矩形的面积,l为长,w为宽。
13.正方形的面积公式:S=a²,其中S为正方形的面积,a为边长。
14. 三角形的面积公式:S = (1/2)bh,其中S为三角形的面积,b
为底,h为高。
15.直角三角形的勾股定理:a²+b²=c²,其中a、b为两直角边,c为
斜边(斜边为直角三角形的边中最长的一条)
16. 平行四边形的面积公式:S = bh,其中S为平行四边形的面积,
b为底,h为高。
三、函数公式:
1.平均数定义:若有n个数,则平均数等于这n个数的和除以n。
2.绝对值函数的性质:,a×b,=,a,×,b
3. 一次函数的函数表达式:y = kx + b,其中k为斜率,b为截距。
4. 二次函数的顶点坐标公式:对于函数y = ax² + bx + c,其中
a≠0,则它的顶点坐标为(-b/2a, f(-b/2a))
5.一次函数和二次函数的图像性质:一次函数的图像是一条直线;二
次函数的图像是一条抛物线,开口方向由二次项系数a的正负决定。
6. 对数函数的定义:y = logarithm(x) a,其中a为任何大于0且
不等于1的实数。
7. 三角函数的定义:正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)在单位圆中的定义。
8. 三角函数的周期性:sin和cos函数的周期为2π,tan函数的周
期为π。
9. 三角函数的性质:sin²(x) + cos²(x) = 1
以上是初中数学中常用的各类公式,这些公式在解题时能够提供帮助,有效地简化计算过程。
对这些公式的理解和掌握能够帮助学生提高解题效
率和准确性,进一步加深对数学知识的理解。