全等三角形练习题(5)
- 格式:doc
- 大小:312.50 KB
- 文档页数:6
1.已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 的长.解:延伸AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE∠BDE=∠ADC BD=DC∴△ACD≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22.已知:BC=ED,∠B=∠E,∠C=∠D,F 是CD 中点,求证:∠1=∠2证实:衔接BF 和EFADBC∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 衔接BE在三角形BEF 中,BF=EF ∴∠EBF=∠BEF. ∵∠ABC=∠AED. ∴∠ABE=∠AEB. ∴ AB=AE.在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF和三角形AEF全等.∴∠BAF=∠EAF (∠1=∠2).3.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC过C 作CG∥EF 交AD 的延伸线于点G CG∥EF,可得,∠EFD=CGD DE =DC ∠FDE=∠GDC(对顶角)BA CDF2 1 E∴△EFD≌△CGDEF=CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形, AC=CG 又EF=CG ∴EF=AC4.已知:AD等分∠BAC,AC=AB+BD,求证:∠B=2∠CA证实:延伸AB取点E,使AE=AC,衔接DE∵AD等分∠BAC∴∠EAD=∠C AD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5.已知:AC等分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证实:在AE上取F,使EF=EB,衔接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF(SAS)∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC等分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6. 如图,四边形ABCD中,AB∥DC,BE.CE分离等分∠ABC.∠BCD,且点E在AD上.求证:BC=AB+DC.在BC上截取BF=AB,衔接EF∵BE等分∠ABC∴∠ABE=∠FBE又∵BE=BE∴⊿ABE≌⊿FBE(SAS)∴∠A=∠BFE∵AB//CD∴∠A+∠D=180º∵∠BFE+∠CFE=180º∴∠D=∠CFE又∵∠DCE=∠FCE , CE等分∠BCD ,CE=CE∴⊿DCE≌⊿FCE(AAS)∴CD=CF∴BC=BF+CF=AB+CD7.已知:AB=CD,∠A=∠D,求证:∠B=∠C证实:设线段AB,CD地点的直线交于E,则:△AED是等腰三角形.∴AE=DE而AB=CD∴BE=CE∴△BEC是等腰三角形∴∠B=∠C.8.P是∠BAC等分线AD上一点,AC>AB,求证:PC-PB<AC-AB在AC上取点E, 使AE=AB. ∵A E=ABAP=AP∠EAP=∠BAE,∴△EAP≌△BAP∴PE=PB. PC<EC+PE ∴PC<(AC-AE)+PB ∴PC-PB<AC-AB.9.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE证实:延伸BE交AC于点F,可证△ABE≌△AFE∴∠ABE=∠AFE,AB=AF,BE=FE∴AC –AB =FC,FB=2BE∵∠ABC=3∠C∴∠ABE+∠FBC=3∠C∴∠AFB+∠FBC=3∠C∵∠AFB=∠C+∠FBC∴∠C+∠FBC+∠FBC=3∠C∴∠FBC=2∠C即∠FBC=∠C∴FB=FC∴AC-AB=FB=2BE10.如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.解:延伸AD至BC于点E, ∵BD=DC ∴△BDC是等腰三角形∴∠DBC=∠DCB又∵∠1=∠2 ∴∠DBC+∠1=∠DCB+∠2即∠ABC=∠ACB ∴△ABC是等腰三角形∴AB=AC在△ABD和△ACD中{AB=AC ∠1=∠2BD=DC∴△ABD和△ACD是全等三角形(边角边)∴∠BAD=∠CAD∴AE是△ABC的中垂线∴AE⊥BC∴AD⊥BC11.如图,OM等分∠POQ,MA⊥OP,MB⊥OQ,A.B为垂足,AB交OM于点N.求证:∠OAB=∠OBA证实:∵OM等分∠POQ∴∠POM=∠QOM∵MA⊥OP,MB⊥OQ∴∠MAO=∠MBO=90∵OM=OM∴△AOM≌△BOM (AAS)∴OA=OB∵ON=ON∴△AON≌△BON (SAS)∴∠OAB=∠OBA,∠ONA=∠ONB∵∠ONA+∠ONB=180∴∠ONA=∠ONB=90∴OM⊥AB12.如图,已知AD∥BC,∠PAB的等分线与∠CBA的等分线订交于E,CE的连线交AP于D.求证:AD+BC=AB.做BE的延伸线,与AP订交于F点,∵PA//BC∴∠PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA的角等分线∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形在三角形ABF中,AE⊥BF,且AE为∠FAB的角等分线∴三角形FAB为等腰三角形,AB=AF,BE=EF在三角形DEF与三角形BEC中,∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,∴三角形DEF与三角形BEC为全等三角形,∴DF=BC∴AB=AF=AD+DF=AD+BC13.如图,△ABC中,AD是∠CAB的等分线,且AB=AC+CD,求证:∠C=2∠B延伸AC到 E 使AE=AC 衔接 ED∵ AB=AC+CD∴ CD=CE 可得∠B=∠E△CDE为等腰∠ACB=2∠B14.已知:如图,DC∥AB,且DC=AE,E为AB的中点,(1)求证:△AED≌△EBC.(2)不雅看图前,在不添帮助线的情形下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出成果,不请求证实):证实:∵DC∥AB∴∠CDE=∠AED∵DE=DE,DC=AE∴△AED≌△EDC∵E为AB中点∴AE=BE∴BE=DC∵DC∥AB∴∠DCE=∠BEC∵CE=CE∴△EBC≌△EDC∴△AED≌△EBC15.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的等分线,BD 的延伸线垂直于过C点的直线于E,直线CE交BA的延伸线于F.求证:BD=2CE.证实:∵∠CEB=∠CAB=90°∴ABCE四点共元∵∠ABE=∠CBE∴AE=CE∴∠ECA=∠EAC取线段BD的中点G,衔接AG,则:AG=BG=DG∴∠GAB=∠ABG而:∠ECA=∠GBA (同弧上的圆周角相等)∴∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB∴△AEC≌△AGB∴EC=BG=DG∴BE=2CE16.如图:DF=CE,AD=BC,∠D=∠C.求证:△AED≌△BFC.证实:∵DF=CE,∴DF-EF=CE-EF,即DE=CF,在△AED和△BFC中,∵ AD=BC, ∠D=∠C ,DE=CF ∴△AED≌△BFC(SAS)17.如图:AE.BC交于点M,F点在AM上,BE∥CF,BE=CF.求证:AM是△ABC的中线.证实:∵BE‖CF∴∠E=∠CFM,∠EBM=∠FCM∵BE=CF∴△BEM≌△CFM∴AM是△ABC的中线.18.如图:在△ABC中,BA=BC,D是AC的中点.求证:BD⊥AC.∵△ABD和△BCD的三条边都相等∴△ABD=△BCD∴∠ADB=∠CD∴∠ADB=∠CDB=90°∴BD⊥AC19.AB=AC,DB=DC,F是AD的延伸线上的一点.求证:BF=CF在△ABD与△ACD中AB=ACBD=DCAD=AD∴△ABD≌△ACD∴∠ADB=∠ADC∴∠BDF=∠FDC在△BDF与△FDC中BD=DC∠BDF=∠FDCDF=DF∴△FBD≌△FCD∴BF=FC20.如图:AB=CD,AE=DF,CE=FB.求证:AF=DE.AE=DF,CE=FBCE+EF=EF+FB∴△ABE=△CDF∵∠DCB=∠ABFAB=DC BF=CE△ABF=△CDE∴AF=DE21.公园里有一条“Z”字形道路ABCD,如图所示,个中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试解释三只石凳E,F,M正好在一条直线上.证实:衔接EF ∵AB∥CD∴∠B=∠C∵M是BC中点∴BM=CM在△BEM和△CFM中BE=CF∠B=∠CBM=CM∴△BEM≌△CFM(SAS)22.已知:点 A.F.E.C 在统一条直线上, AF =CE,BE∥DF,BE=DF .求证:△ABE≌△CDF.∵AF=CE,FE=EF.∴AE=CF.∵DF//BE,∴∠AEB=∠CFD(两直线平行,内错角相等)∵BE=DF∴:△ABE≌△CDF(SAS )23.已知:如图所示,AB =AD,BC =DC,E.F 分离是DC.BC 的中点,求证: AE =AF.衔接BD;∵AB=ADBC=D∴∠ADB=∠ABD∠CDB=∠ABD;两角相加,∠ADC=∠ABC;∵BC=DCE \F 是中点∴DE=BF; ∵AB=ADDE=BF ∠ADC=∠ABC ∴AE=AF.24.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.证实:在△ADC,△ABC 中∵AC=AC,∠BAC=∠DAC,∠BCA=∠DCA ∴△ADC≌△ABC(两角加一边) ∵AB=AD,BC=CD 在△DEC 与△BEC 中∠BCA=∠DCA,CE=CE,BC=CD ∴△DEC≌△BEC(双方夹一角) ∴∠DEC=∠BEC25.已知AB∥DE,BC∥EF,D,C 在AF 上,且AD =CF,求证:△ABC≌△DEF. ∵AD=DF ∴AC =DF ∵AB//DE ∴∠A=∠EDF 又∵BC//EF∴∠F=∠BCA∴△ABC≌△DEF(ASA )26.已知:如图,AB=AC,BD AC,CE AB,垂足分离为D.E,BD.CE 订交于点F,求证:BE=CD .证实:ACDEF∵BD⊥AC∴∠BDC=90°∵CE⊥AB∴∠BEC=90°∴∠BDC=∠BEC=90°∵AB=AC∴∠DCB=∠EBC∴BC=BC∴Rt△BDC≌Rt△BEC(AAS) ∴BE=CD27.如图,在△AB C中,AD为∠BAC的等分线,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.证实:∵AD是∠BAC的等分线∴∠EAD=∠FAD∵DE⊥AB,DF⊥AC∴∠BFD=∠CFD=90°∴∠AED与∠AFD=90°在△AED与△AFD中∠EAD=∠FAD AD=AD∠AED=∠AFD∴△AED≌△AFD(AAS ) ∴AE=AF在△AEO 与△AFO 中 ∠EAO=∠FAO AO=AO AE=AF∴△AEO≌△AFO (SAS )∴∠AOE=∠AOF=90° ∴AD⊥EF28.已知:如图, AC BC 于 C , DE AC 于 E , AD AB 于 A , BC=AE .若AB=5 ,求AD 的长?∵AD⊥AB ∴∠BAC=∠ADE 又∵AC⊥BC 于C,DE⊥AC 于 E 依据三角形角度之和等于180度∴∠ABC=∠DAED CBAE∵BC=AE,△ABC≌△DAE(ASA)∴AD=AB=529.如图:AB=AC,ME⊥AB,MF⊥AC,垂足分离为 E.F,ME=MF.求证:MB=MC证实:∵AB=AC∴∠B=∠C∵ME⊥AB,MF⊥AC∴∠BEM=∠CFM=90°在△BME和△CMF中∵∠B=∠C ∠BEM=∠CFM=90° ME=MF∴△BME≌△CMF(AAS)∴MB=MC.30.在△ABC中,,,直线经由点,且于,于.(1)当直线绕点扭转到图1的地位时,求证:①≌;②;(2)当直线绕点扭转到图2的地位时,(1)中的结论还成立吗?若成立,请给出证实;若不成立,解释来由.(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE. ∵AC=BC,∴△ADC≌△CEB. ②∵△ADC≌△CEB, ∴CE=AD,CD=BE. ∴DE=CE+CD=AD+BE.(2)∵∠ADC=∠CEB=∠ACB=90°, ∴∠ACD=∠CBE. 又∵AC=BC,∴△ACD≌△CBE. ∴CE=AD,CD=BE. ∴DE=CE﹣CD=AD ﹣BE31.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF(1)∵AE⊥AB,AF⊥AC, ∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC, 即∠EAC=∠BAF,AE BM CF在△ABF和△AEC中,∵AE=AB,∠EAC=∠BAF,AF=AC,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,依据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°-∠ABF-∠BDM=180°-90°=90°,∴EC⊥BF.32.如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB.求证:(1)AM=AN;(2)AM⊥AN.证实:(1)∵BE⊥AC,CF⊥AB∴∠ABM+∠BAC=90°,∠ACN+∠BAC=90°∴∠ABM=∠ACN∵BM=AC,CN=AB∴△ABM≌△NAC∴AM=AN(2)∵△ABM≌△NAC∴∠BAM=∠N∵∠N+∠BAN=90°∴∠BAM+∠BAN=90°即∠MAN=90°∴AM⊥AN33.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC∥EF在△ABF和△CDE中,AB=DE∠A=∠DAF=CD∴△ABF≡△CDE(边角边)∴FB=CE在四边形BCEF中FB=CEBC=EF∴四边形BCEF是平行四边形∴BC‖EF34.如图,已知AC∥BD,EA.EB分离等分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请解释来由在AB上取点N ,使得AN=AC∵∠CAE=∠EAN∴AE为公共, ∴△CAE≌△EAN∴∠ANE=∠ACE又∵AC平行BD∴∠ACE+∠BDE=180而∠ANE+∠ENB=180∴∠ENB=∠BDE∠NBE=∠EBN∵BE为公共边∴△EBN≌△EBD∴BD=BN∴AB=AN+BN=AC+BD35.如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.证实:∵AD是△ABC的中线BD=CD ∵DF=DE(已知)∠BDE=∠FDC ∴△BDE≌△FDC 则∠EBD=∠FCD ∴BE∥CF(内错角相等,两直线平行).36.已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,.求证:.证实:∵DE⊥AC,BF⊥AC∴∠CED=∠AFB=90º又∵AB=CD,BF=DE∴Rt⊿ABF≌Rt⊿CDE(HL )∴AF=CE∠BAF=∠DCE∴AB//CD37.如图,已知∠1=∠2,∠3=∠4,求证:AB=CD ∵,∠3=∠4∴OB=OC在△AOB 和△DOC 中∠1=∠2OB=OC∠AOB=∠DOC△AOB≌△DOC∴AO=DO AO+OC=DO+OB AC=DB在△ACB 和△DBC 中AC=DB A D ECBF,∠3=∠4BC=CB△ACB≌△DBC∴AB=CD38.如图,已知AC⊥AB,DB⊥AB,AC =BE,AE =BD,试猜测线段CE 与DE 的大小与地位关系,并证实你的结论.CE>DE.当∠AEB 越小,则DE 越小.证实:过D 作AE 平行线与AC 交于F,衔接FB由已知前提知AFDE 为平行四边形,ABEC 为矩形 ,且△DFB 为等腰三角形.RT△BAE 中,∠AEB 为锐角,即∠AEB<90°∵DF//AE ∴∠FDB=∠AEB<90°△DFB 中 ∠DFB=∠DBF=(180°-∠FDB)/2>45°RT△AFB 中,∠FBA=90°-∠DBF <45°∠AFB=90°-∠FBA>45°∴AB>AF∵AB=CE AF=DE∴CE>DE 39.(10分)如图,已知AB =DC,AC =DB,BE =CE,求证:AE =DE. ∵AB=DC,AC=DB,BC=BC∴△ABC≌△DCB,A CE D B A B E CD∴∠ABC=∠DCB又∵BE=CE,AB=DC∴△ABE≌△DCE∴AE=DE40.如图9所示,△ABC 是等腰直角三角形,∠ACB=90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E,交AD 于点F,求证:∠ADC=∠BDE.作CG ⊥AB,交AD 于H, 则∠ACH=45º,∠BCH=45º∵∠CAH=90º-∠CDA, ∠BCE=90º-∠CDA ∴∠CAH=∠BCE又∵AC=CB, ∠ACH=∠B=45º∴△ACH≌△CBE, ∴CH=BE 又∵∠DCH=∠B=45º, CD=DB∴△CFD≌△BED∴∠ADC=∠BDE AB CD E F图9。
全等三角形判断一一、选择题1.△ABC和△中,若AB=,BC=,AC=. 则()A. △ABC≌△B. △ABC≌△C. △ABC≌△D. △ABC≌△2.如图,已知 AB= CD, AD= BC,则以下结论中错误的选项是()∥DC B. ∠B=∠ D C.∠A=∠ C= BC3.以下判断正确的选项是()A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4.如图,AB、CD、EF订交于O,且被O点均分,DF=CE,BF=AE,则图中全等三角形的对数共有()A. 1 对B. 2 对C. 3 对D. 4 对5.如图,将两根钢条,的中点O连在一起,使,能够绕着点O自由转动,就做成了一个测量工件,则的长等于内槽宽AB,那么判断△ OAB≌△的原由是( )A. 边角边B. 角边角C. 边边边D. 角角边6.如图,已知AB⊥BD 于 B,ED⊥BD 于 D, AB=CD, BC= ED,以下结论不正确的选项是()⊥AC= AC+AB=DB D.DC = CB二、填空题7.如图,AB=CD,AC=DB,∠ ABD=25°,∠ AOB=82°,则∠ DCB=_________.8.如图,在四边形 ABCD中,对角线 AC、BD互相均分,则图中全等三角形共有_____对 .9.如图,在△ ABC和△ EFD中,AD=FC,AB=FE,当增加条件_______时,即可得△ ABC≌△ EFD(SSS)10.如图,AC=AD,CB=DB,∠ 2=30°,∠ 3=26°,则∠ CBE=_______.11.如图,点 D在 AB上,点 E 在 AC上, CD与 BE 订交于点 O,且 AD=AE, AB=AC,若∠ B =20°,则∠C =______.12.已知,如图,AB=CD, AC=BD,则△ ABC≌______,△ ADC≌ ______.三、解答题13.已知:如图,四边形 ABCD中,对角线 AC、 BD订交于 O,∠ ADC=∠ BCD, AD=BC,求证: CO= DO.14.已知:如图, AB∥CD, AB=CD.求证: AD∥BC.解析:要证AD∥BC,只要证∠ ______=∠ ______,又需证 ______≌______.证明:∵ AB∥CD (),∴ ∠______=∠ ______ (),在△ ______和△ ______中,∴______≌Δ ______ ().∴∠______=∠ ______ ().∴______ ∥______().15.如图,已知AB=DC, AC= DB, BE= CE求证: AE= DE.答案与解析一. 选择题1.【答案】 B;【解析】注意对应极点写在相应的地址.2.【答案】 D;【解析】连接 AC或 BD证全等 .3.【答案】 D;4.【答案】 C;【解析】△ DOF≌△ COE,△ BOF≌△ AOE,△ DOB≌△ COA.5.【答案】 A;【解析】将两根钢条,的中点O连在一起,说明OA=,OB=,再由对顶角相等可证.6.【答案】 D;【解析】△ ABC≌△ EDC,∠ ECD+∠ ACB=∠ CAB+∠ ACB=90°,所以EC⊥AC, ED + AB = BC+CD = DB.二. 填空题7.【答案】 66°;【解析】可由SSS证明△ ABC≌△ DCB,∠ OBC=∠ OCB=,所以∠ DCB=∠ABC=25°+ 41°= 66°.8.【答案】 4;【解析】△ AOD≌△ COB,△ AOB≌△ COD,△ ABD≌△ CDB,△ ABC≌△ CDA.9.【答案】 BC= ED;10.【答案】 56°;【解析】∠ CBE=26°+ 30°= 56°.11.【答案】 20°;【解析】△ ABE≌△ ACD( SAS)12.【答案】△ DCB,△ DAB;【解析】注意对应极点写在相应的地址上.三. 解答题13. 【解析】证明:在△ ADC 与△ BCD中,14.【解析】3 , 4;ABD,CDB;已知;1, 2;两直线平行,内错角相等;ABD, CDB;AB, CD,已知;∠1=∠ 2,已证;BD= DB,公共边;ABD, CDB, SAS;3, 4,全等三角形对应角相等;AD, BC,内错角相等,两直线平行.15.【解析】证明:在△ ABC 和△ DCB中∴△ ABC≌△ DCB( SSS)∴∠ ABC=∠ DCB,在△ ABE和△ DCE中∴△ ABE≌△ DCE( SAS)∴AE= DE.全等三角形判断二一、选择题1.能确定△ ABC≌△ DEF的条件是()A. AB= DE, BC= EF,∠ A=∠EB. AB= DE, BC= EF,∠ C=∠EC.∠ A=∠ E, AB= EF,∠ B=∠DD.∠ A=∠ D, AB= DE,∠ B=∠E2.如图,已知△ ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()图4- 3A.甲和乙 B .乙和丙 C .只有乙 D .只有丙3. AD是△ ABC的角均分线,作A. DE= DF B . AE= AF DE⊥AB 于 E,DF⊥AC于 C .BD= CDF,以下结论错误的选项是(D.∠ ADE=∠ ADF)4.如图,已知MB=ND,∠ MBA=∠ NDC,以下条件不能够判断△ ABM≌△ CDN的是()A.∠ M=∠N B . AB= CD C .AM= CN D .AM∥CN5.某同学把一块三角形的玻璃打碎成了3块 , 现在要到玻璃店去配一块完满相同的玻璃, 那么最省事的方法是()A. 带①去B. 带②去C. 带③去D.①②③都带去6.如图,∠ 1=∠ 2,∠ 3=∠ 4,下面结论中错误的选项是()A.△ ADC≌△ BCD B .△ ABD≌△ BACC.△ ABO≌△ CDO D .△ AOD≌△ BOC二、填空题7.如图 , ∠1=∠ 2,要使△ ABE≌△ ACE,还需增加一个条件是 _________.( 填上你认为合适的一个条件即可).8.在△ ABC和△中,∠ A=44°,∠ B=67°,∠=69°,∠=44°,且AC=,则这两个三角形 _________全等 . (填“必然”或“不用然”)9.已知,如图,AB∥CD,AF∥DE,AF= DE,且 BE= 2, BC= 10,则 EF= ________.10.如图, AB∥CD,AD∥BC, OE= OF,图中全等三角形共有 ______ 对.11.如图, 已知:∠ 1 =∠ 2 , ∠3 =∠ 4 , 要证BD =CD , 需先证△ AEB ≌△ AEC , 依照是_________ ,再证△ BDE ≌△ ______ ___,依照是_________.12.已知 : 如图,∠ B=∠ DEF, AB= DE,要说明△ ABC≌△ DEF,(1)若以“ ASA”为依照,还缺条件_________(2)若以“ AAS”为依照,还缺条件_________(3)若以“ SAS”为依照,还缺条件_________三、解答题13.阅读下题及一位同学的解答过程:如图,AB和CD订交于点O,且 OA= OB,∠A=∠ C.那么△ AOD与△COB全等吗?若全等,试写出证明过程;若不全等,请说明原由.答:△ AOD≌△ COB.证明:在△ AOD和△ COB中,∴△AOD≌△ COB( ASA).问:这位同学的回答及证明过程正确吗?为什么?14.已知如图, E、 F 在 BD上,且 AB= CD, BF= DE, AE= CF,求证: AC与 BD互相均分 .15.已知:如图, AB∥CD,OA=OD, BC 过 O点 ,点E、F在直线AOD上,且AE=DF.求证: EB∥CF.答案与解析【答案与解析】一.选择题1.【答案】 D;【解析】 A、 B 选项是 SSA,没有这种判断, C 选项字母不对应 .2.【答案】 B;【解析】乙可由 SAS证明,丙可由 ASA证明 .3.【答案】 C;【解析】可由AAS证全等,获取A、 B、 D 三个选项是正确的.4.【答案】 C;【解析】没有 SSA定理判断全等 .5.【答案】 C;【解析】由 ASA定理,能够确定△ ABC.6.【答案】 C;【解析】△ ABO 与△ CDO中,只能找出三对角相等,不能够判断全等.二、填空题7.【答案】∠ B=∠ C;【解析】可由 AAS来证明三角形全等 .8.【答案】必然;【解析】由题意,△ ABC≌△,注意对应角和对应边.9.【答案】 6;【解析】△ ABF≌△ CDE, BE=CF= 2,EF= 10-2- 2= 6.10.【答案】 5;【解析】△ ABO≌△ CDO,△ AFO≌△ CEO,△ DFO≌△ BEO,△ AOD≌△ COB,△ ABD≌△ CDB.11.【答案】 ASA, CDE, SAS;【解析】△ AEB ≌△ AEC 后可得 BE= CE.12.【答案】(1)∠ A=∠D;( 2)∠ ACB=∠F; (3) BC = EF.三、解答题13.【解析】解:这位同学的回答及证明过程不正确.因为∠D 所对的是AO,∠C所对的是OB,证明中用到了OA= OB,这不是一组对应边,所以不能够由ASA去证明全等 .14.【解析】证明:∵ BF= DE,∴B F- EF= DE-EF,即 BE= DF在△ ABE和△ CDF中,∴△ ABE≌△ CDF( SSS)∴∠ B=∠ D,在△ ABO和△ CDO中∴△ ABO≌△ CDO( AAS)∴AO= OC, BO=DO, AC与 BD互相均分 .15.【解析】证明:∵ AB∥CD,∴∠ CDO=∠ BAO在△ OAB和△ ODC中,∴△ OAB≌△ ODC( ASA)∴OC= OB又∵ AE = DF ,∴AE+ OA= DF+ OD,即 OE= OF 在△ OCF和△ OBE中∴△ OCF≌△ OBE( SAS)∴∠ F=∠ E,∴CF∥EB.。
全等三角形的判定一、选择题1.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带( )A .①B .②C .③D .①和②【答案】C .【解析】解带③去可以利用“角边角”得到全等的三角形.故选C .2.如图,已知:∠A=∠D ,∠1=∠2,下列条件中能使△ABC ≌△DEF 的是()A .∠E=∠B B .ED=BC C .AB=EFD .AF=CD【答案】D .【解析】添加AF=CD ,∵AF=CD ,∴AF+FC=CD+FC ,∴AC=FD ,在△ABC 和△DEF 中12A DAC DF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA ),故选D .3.下列关于两个三角形全等的说法:①三个角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和其中一个角的对边对应相等的两个三角形全等;④有两边和一个角对应相等的两个三角形全等.正确的说法个数是( )A .1个B .2个C .3个D .4个【答案】B .【解析】①不正确,因为判定三角形全等必须有边的参与;②正确,符合判定方法SSS ;③正确,符合判定方法AAS ;④不正确,此角应该为两边的夹角才能符合SAS .所以正确的说法有两个.故选B .4.在△ABC 和△A ˊB ′C ′中,已知∠A=∠A ′,AB=A ′B ′,在下面判断中错误的是( )A .若添加条件AC=A ′C ′,则△ABC ≌△A ′B ′C ′B .若添加条件BC=B ′C ′,则△ABC ≌△A ′B ′C ′C .若添加条件∠B=∠B ′,则△ABC ≌△A ′B ′C ′D .若添加条件∠C=∠C ′,则△ABC ≌△A ′B ′C ′【答案】B.【解析】A ,正确,符合SAS 判定;B ,不正确,因为边BC 与B ′C ′不是∠A 与∠A ′的一边,所以不能推出两三角形全等;C ,正确,符合AAS 判定;D ,正确,符合ASA 判定;故选B .5.如图,在等腰△ABC 中,AB=AC ,∠A=20°,AB 上一点D 使AD=BC ,过点D 作DE ∥BC 且DE=AB ,连接EC ,则∠DCE 的度数为( )A .80°B .70°C .60°D .45°【答案】B.【解析】如图所示,连接AE .∵AE=DE,∴∠ADE=∠DAE,∵DE∥BC,∴∠DAE=∠ADE=∠B,∵AB=AC,∠BAC=20°,∴∠DAE=∠ADE=∠B=∠ACB=80°,在△ADE 与△CBA 中,DAE ACB AD BCADE B ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴AE=AC,∠AED=∠BAC=20°,∵∠CAE=∠DAE﹣∠BAC=80°﹣20°=60°,∴△ACE 是等边三角形,∴CE=AC=AE=DE,∠AEC=∠ACE=60°,∴△DCE 是等腰三角形,∴∠CDE=∠DCE,∴∠DEC=∠AEC﹣∠AED=40°,∴∠DCE=∠CDE=(180﹣40°)÷2=70°.故选B .6.如图:AB=AC ,∠B=∠C,且AB=5,AE=2,则EC 的长为( )A .2B .3C .5D .2.5【答案】B.【解析】在△ABE 与△ACF 中,∵A AAB AC B C∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△ACF(ASA ),∴AC=AB=5∴EC=AC﹣AE=5﹣2=3,故选B.二、填空题.7.如图,AB=AC ,要使△ABE≌△ACD,依据ASA ,应添加的一个条件是 .【答案】∠C=∠B .【解析】添加∠C=∠B,在△ACD 和△ABE 中,A AAB AC C B∠=∠⎧⎪=⎨⎪∠=∠⎩,8.如图,AB∥CF,E 为DF 中点,AB=20,CF=15,则BD= 5 .【答案】5.【解析】∵AB∥FC,∴∠ADE=∠EFC,∵E 是DF 的中点,∴DE=EF,在△ADE 与△CFE 中,ADE EFC DE EFAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE≌△CFE,∴AD=CF,∵AB=20,CF=15,∴BD=AB﹣AD=20﹣15=5.9.如图,∠1=∠2,∠3=∠4,BC=5,则BD= .【答案】5. 【解析】∵∠ABD+∠3=180°∠ABC+∠4=180°,且∠3=∠4,∴∠ABD=∠ABC在△ADB 和△ACB 中,1=2AB ABABD ABC ∠∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADB≌△ACB(ASA ),∴BD=BC=5.10.如图,要测量一条小河的宽度AB 的长,可以在小河的岸边作AB 的垂线 MN ,然后在MN 上取两点C ,D ,使BC=CD ,再画出MN 的垂线DE ,并使点E 与点A ,C 在一条直线上,这时测得DE 的长就是AB 的长,其中用到的数学原理是: .【答案】ASA ,全等三角形对应边相等 .【解析】∵AB⊥MN,DE⊥MN,∴∠ABC=∠EDC=90°,在△ABC 和△EDC 中,ABC EDC BC DCACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC≌△EDC(ASA ),∴DE=AB.11.如图,在四边形ABCD 中,AB∥DC,AD∥BC,对角线AC 、BD 相交于点O ,则图中的一对全等三角形为 .(写出一对即可)【答案】△ABC ≌△ADC.【解析】△ABC≌△ADC,理由如下:∵AB∥DC,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,在△ABC 与△ADC 中,BAC DCA AC CADAC BCA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC≌△ADC(ASA ),∴AB=DC,BC=DA ,在△ABO 与△CDO 中,BAO DCO AOB COD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO≌△CDO(AAS ),同理可得:△BCO≌△DAO,三、解答题12.如图,点A ,B ,C ,D 在同一条直线上,AB=FC ,∠A=∠F,∠EBC=∠FCB.求证:BE=CD .【答案】证明见解析.【解析】∵∠EBC=∠FCB,∠EBC+∠ABE=180°,∠FCB+∠FCD=180°,∴∠ABE=∠FCD,在△ABE 与△FCD 中,A F AB FCABE FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE≌△FCD(ASA ),∴BE=CD.13.如图,点D 在AB 上,DF 交AC 于点E ,CF∥AB,AE=EC .求证:AD=CF .【答案】答案见解析.【解析】∵CF∥AB,∴∠A=∠ACF,∠ADE=∠CFE.在△ADE 和△CFE 中,A ACF ADE CFE AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△CFE(AAS ).∴AD=CF.14. 如图,锐角△ABC 中,∠BAC=60°,O 是BC 边上的一点,连接AO ,以AO 为边向两侧作等边△AOD 和等边△AOE,分别与边AB ,AC 交于点F ,G .求证:AF=AG .【答案】答案见解析.【解析】∵△AOD 和△AOE 是等边三角形,∴∠E=∠AOF=60°,AE=AO ,∠OAE=60°,∵∠BAC=60°,∴∠FAO=∠EAG=60°﹣∠CAO, 在△AFO 和△AGE 中, FAO EAG AO AEAOF E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AFO≌△AGE(ASA ), ∴AF=AG.。
第1页(共58页)1 如图所示,.A =/D =:90,AB=DC , AC , BD 相交于点M ,求证:难点突破一一三角形全等证明题练习50道(含详细解析)(1) ABC —DCB ;(2) AM 二 DM .2•如图,点C , F , B , E 在同一条直线上, AC_CE , DF _ CE ,垂足分别为C , F ,且 AB =DE , CF =BE .求证:.A =/D .3•如图,「ABC 中,AD 是BC 边上的中线,E , F 为直线AD 上的点,连接 BE , CF , 且 BE//CF .(1) 求证:DE =DF ; (2) 若在原有条件基础上再添加 AB=AC ,你还能得出什么结论.(不用证明)(写2 个)4. 如图,AB=AC , CD//AB ,点 E 是 AC 上一点,且 ZABE ZCAD ,延长 BE 交 AD 于 点F .(1) 求证: ABE 二 CAD ;(2) 如果.ABC =65 , ■ ABE =25,求.D 的度数.A D C FB EBE 二CF .求AB=AD , . 1=2,添加一个适当的条件,使 厶ABC 三「ADE(不再添加其 它线段,不再标注或使用其他字母)&如图,BE ,AD 是 ABC 的高且相交于点 P ,点Q 是BE 延长线上的一点.(1 )试说明:•仁"2 ;(2)若AP=BC , BQ =AC ,线段CP 与CQ 会相等吗?请说明理由.5•如图,已知D 为BC 的中点,DE_AB , DF _ AC ,点E 、F 为垂足,且.C = . F , . EAC BAF .求证:AC 二 AF .证:「ABC 是等腰三角形.7•如图所示,第3页(共58页)AD 二 BC , CF 平分 DCE .AB=AC , BD_AC_ 于 D , CE _ AB 于 E .求证: AD=AE .9.如图,AB =CD , DE_AC , BF _ AC ,点 E , F 是垂足,AE =CF ,求证:(1) . ABF 三.:CDE ;求证:CF _ DE 于点F .11.如图:已知在 ABC 中,ACB=90 , AC 二BC=1,点D 是AB 上任意一点,AE _ AB , 且AE 二BD ,DE与AC 相交于点F .(1) 试判断 CDE 的形状,并说明理由.(2) 是否存在点D ,使AE =AF ?如果存在,求出此时 AD 的长,如果不存在,请说明理13. 如图,点 A , B , C , D 在一条直线上,且 AC=BD ,若• 1 =/2 , EC=FB .由.求证:ACE = DBF .第5页(共58页)证明:14.已知:如图,点E是. ABC外角.CAF平分线上的一点.(1 )比大小:BE+EC A 申A C填“ A”、“ c” 或“=”)15.如图,在厶ABC中,BD是边AC上的中线,BD _ BC于点B,AE _ BD交BD的延长线于点E , . ABD =30,求证:AB =2BC .16•如图所示,两个形状相同,大小不同的等腰三角形ABC与ADE如图放置,A为它们共同的顶角顶点,B、C、D在同一条直线上,连接CE .(1 )你能在图中找到一对全等三角形吗?证明你的结论;(2)若.BAC =35,求.ECD 的度数.17.已知,如图,直线AB _ BC,线段AB :: BC,点D在直线AB上,且AD = BC , AE _ AB ,且AE 二BD,连接DE、DC , ADE =:.(1)请在下图中补全图形,并写出• CDE的度数 (用含:的代数式表示);(2)如图,当点D在点B下方,点F在线段BC的延长线上,且BD=CF,直线AF与DC交于点P,试问.APD的度数是否是定值?若是定值,求出并说明理由.18•已知等腰三角形ABC中,点D为BC中点,点E是BA延长线上一动点,点F是AC延图1 團2(1)如图1,若/BAC=90,求证:AE ・AC=AF ;(2)如图2,若/BAC =120 , AE、AC、AF三条线段还满足(1)中的结论吗?若满足,则直接证明;若不满足,请写出结论并证明.19•已知D为「ABC所在平面内一点,且DB二DC , DE _ AB , DF _ AC,垂足分别为点E、F , DE 二DF •(1)如图1,当点D在BC边上时,判断厶ABC的形状;并证明你的结论;(2)如图2,当点D在ABC内部时,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请举出反例(画图说明,不需证明)图120.如图,在Rt ABC中,.C =90,点P为AC边上的一点,延长BP至点D,使得AD二AP ,当AD _ AB时,过点D作DE _ AC于E .(1)求证:ZCBP ZABP ;(2)若AB _BC =4 , AC =8 .求AB的长度和DE的长度.,AC =BD =6cm .点P在线段AB上以2m/s 的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动•它们运动的时间为t(s)(1)若点Q的运动速度与点P的运动速度相等,当t = 1时,判断线段PC与PQ满足的关系,并说明理由.(2)如图(2),将图(1)中的AC丄AB , BD丄AB为改“ N CAB=NDBA = a。
全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A 、两条直角边对应相等。
B 、斜边和一锐角对应相等。
C 、斜边和一条直角边对应相等。
D 、两锐角相等。
C. / CD. / B 或/ C3、下列各条件中,不能作岀唯一三角形的是( )A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ DEF 中,已知AB=DE / A =Z D;再加一个条件,却不能判断△ ABC WA DEF 全等的是(A. BC=EF B . AC=DFC.Z B=Z E D ./ C=Z F5、使两个直角三角形全等 的条件是A . —锐角对应相等 D.两条直角边对应相等6、在△ ABC ^A ABC 中有① ABA ' B ,② BC =B C ,③ AC=A C ,④/ A =Z A ,⑤/ B =Z B ,⑥/ C =Z C ,则下列各组条件中不能保证厶 AB9A ABC 的是 ()2、在△ ABC 中,/ B = Z 0与厶ABC 全等的三角形有一个角是100 °,那么在厶ABC 中与这100 °角对应相等的角是B.两锐角对应相等C . 一条边对应相等A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知/ 仁/2,欲得到△ ABD^A ACD 还须从下列条件中补选一个,错误的选法是8、如图,△ ABC^A ADE 若/ BAE =120°,/ BAt =40°,则/ BAC 的度数为9、如图,AE = AF , AB= AC EC 与 BF 交于点 O, / A = 600,/ B = 25°,则/ EOB 的度数为()10、 如图,已知 AB= DC AD= BC,在 DB 上两点且 BF = DE,若/ AEB= 12°°, / ADB= 3°°,则/ BCF= ( )D. 90应相等,以上条件能判断两个三角形全等的是 ( )A 、/ ADB=/ ADCB 、/ B=/C C 、DB=DCD 、 AB=ACA. 40B. 8 0 D.不能确定A . 60°B . 70° C. 75° D. 85°A. 150 11、①两角及一边对应相等②两边及其夹角对应相等 ③两边及一边所对的角对应相等 ④两角及其夹边对A .①③B •②④C •②③④D •①②④B •两边和一角对应相等C .两角及其一角的对边对应相等D •两角和它们的夹边对应相等13、如图,已知…二八二,二归七=4■.二厂,下列条件中不能判定/ 「上工幻/ f 「的是( )15、如图,△ ABC 中,AD 丄BC 于D, BE 丄AC 于E ,AD 与BE 相交于点F ,若BF = AC,则/ ABC 的度数是 _____________________16、在厶 ABC 和△」-'-•中,/ A=44°,Z B=67°,/ -=69 °,/丄=44 °,且 AC='则这两个三角形 ___________________ 全等(填“一定”或“不一定”)17、如图,止,L',丄-在同一直线上,-匚|',若要使一-,则还需要补充个条件: _________________ 或 ______________A .三条边对应相等 (C)--V(B)二二i =-—(D )匚If II -14、如图,AB 与 CD 交于点 O, 0¥OC OD= OB, / A=50°,Z B= 30° ,则/D 的度数为( ).r第上题A . 50B . 30°C . 80°D .10018、(只需填写一个你认为适合的条件)如图,已知/ CABN DBA 要使△ AB3A BAD,需增加的一个条件F21、如图,△ ABD △ ACE都是正三角形,BE和CD交于0点,则/ BOC= ________________ :22、已知:如图,/ ABC=Z DEF,,AB= DE 要说明△ ABC^A DEF,(1)若以“ SAS'为依据,还须添加的一个条件为 _____________________(2)若以“ ASA'为依据,还须添加的一个条件为 _____________________(3)若以“ AAS'为依据,还须添加的一个条件为 _____________________23、如图4,如果AB= AC, ______________________ ,即可判定△ ABD^A AC吕A24、如图2, Z仁/2,由AAS判定△ ABD^A ACD,则需添加的条件是__________________25、如图,已知 / ACBM BDA 只要再添加一个条件: ________________ ,就能使△ ACB^A BDA (填一个即可)26、已知,如图 2:Z ABCK DEF, AB=DE 要说明△ ABC^A DEF⑴ 若以“ SAS'为依据,还要添加的条件为 ___________________(2) 若以“ ASA ”为依据,还要添加的条件为 __________________27、如图9所示,BC=EC /仁/ 2,要使△ ABC^A DEC 则应添加的一个条件为 ________________________________ [答案不唯一,只需填一个]。
全等三角形的判定练习题一、选择题1、如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,且∠B=∠E=90°,判定∠ABC∠∠DEF 的依据是()A.SAS B.ASA C.AAS D.HL答案:D2、如图,AC和BD相交于O点,若OA=OD,用“SAS”证明∠AOB∠∠DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC答案:B3、下列说法中,正确的个数是()①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的对应夹角相等的两个直角三角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1个B.2个C.3个D.4个答案:C解析:①②③正确,④错误。
4、如图,下列条件中不能证明∠ABD∠∠ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,BD=DC D.∠BAD=∠CAD,AB=AC答案:C解析:选项A,利用SSS可证;选项B,利用SAS可证;选项C,不可以;选项D,利用SAS 可证。
5、如图,EA//DF,AE=DF,要使∠AEC∠∠DFB,只要()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC答案:A解析:EA//DF,有∠A=∠F;AE=DF;若AB=CD,则有AC=BD,于是∠AEC∠∠DFB(SAS)。
6、如图为作一个角的角平分线的示意图,该作法的依据是全等三角形判定的基本事实,可简写为()A.SSS B.SAS C.ASA D.AAS答案:A7、如图,已知AB=AC,BD=CD,E是AD上的一点,则下列结论中不成立的是()A.BE=CE B.AE=DE C.∠BAD=∠CAD D.∠BED=∠CED答案:B解析:AB=AC,BD=CD,AE=AE,DE=DE,AD=AD,可得△ACE ≌△ABE,△DCE≌△DBE,△ACD≌△ABD。
北师大新版七年级下学期《4.5 利用三角形全等测距离》同步练习卷一.选择题(共3小题)1.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的到刻度分别与点M、N重合,过角尺顶点C作射线OC由此作法便可得△NOC≌△MOC,其依据是()A.SSS B.SAS C.ASA D.AAS2.如图,要测量河两岸相对两点A、B间的距高,先在过点B的AB的垂线上取两点C、D,使得CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可以证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC 的理由是()A.SAS B.SSS C.ASA D.AAS3.如图所示,为了测量出A,B两点之间的距离,在地面上找到一点C,连接BC,AC,使∠ACB=90°,然后在BC的延长线上确定D,使CD=BC,那么只要测量出AD的长度也就得到了A,B两点之间的距离,这样测量的依据是()A.AAS B.SAS C.ASA D.SSS二.填空题(共2小题)4.如图,小颖要测量池塘两岸相对的两点A、B的距离,她在池塘外AB的垂线BF上取两点C、D,使BC=CD,再出BF的垂线DE,使点E与A、C在一条直线上,则量出的DE长就是A、B的距离.她的依据是.5.如图,两根旗杆间相距12m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3m,该人的运动速度为1m/s,则这个人运动到点M所用时间是s.三.解答题(共6小题)6.如图所示的A、B是两根呈南北方向排列的电线杆,A、B之间有一条小河,小刚想估测这两根电线杆之间的距离,于是小刚从A点开始向正西方向走了20步到达一棵大树C 处,接着又向前走了20步到达D处,然后他左转90°直行,当他看到电线杆B、大树C 和他自己现在所处的位置E恰在同一条直线上时,他从D位置走到E处恰好走了100步,利用上述数据,小刚测出了A、B两根电线杆之间的距离.(1)请你根据上述的测量方法在原图上画出示意图;(2)如果小刚一步大约60厘米,请你求A、B两根电线杆之间的距离.7.如图,点B、F、C、E在一条直线上(点F,C之间不能直接测量),点A,D在直线l 的异侧,测得AB=DE,AB∥DE,AC∥DF.(1)求证:△ABC≌△DEF;(2)若BE=14m,BF=5m,求FC的长度.8.茗茗用同种材料制成的金属框架如图所示,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需材料的长度为多少?9.如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=3m.小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A′处时,有A'B⊥AB.(1)求A′到BD的距离;(2)求A′到地面的距离.10.如图,一块三角形模具的阴影部分已破损.回答下列问题:(1)只要从模具片中度量出哪些边、角,就可以到店铺加工一块与原来的模具△ABC的形状和大小完全相同的△A′B′C′模具?请简要说明理由.(2)按尺规作图的要求,在框内正确作出△A′B′C′图形,保留作图痕迹,不写作法和证明.11.如图,有一个池塘,要到池塘两侧AB的距离,可先在平地上取一个点C,从C不经过池塘可以到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A,B的距离,为什么?北师大新版七年级下学期《4.5 利用三角形全等测距离》2019年同步练习卷参考答案与试题解析一.选择题(共3小题)1.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的到刻度分别与点M、N重合,过角尺顶点C作射线OC由此作法便可得△NOC≌△MOC,其依据是()A.SSS B.SAS C.ASA D.AAS【分析】由作图过程可得MO=NO,NC=MC,再加上公共边CO=CO可利用SSS定理判定△MOC≌△NOC.【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.【点评】此题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.2.如图,要测量河两岸相对两点A、B间的距高,先在过点B的AB的垂线上取两点C、D,使得CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可以证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC 的理由是()A.SAS B.SSS C.ASA D.AAS【分析】根据垂直的定义、全等三角形的判定定理解答即可.【解答】解:∵AB⊥BD,ED⊥BD,∴∠ABD=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA)故选:C.【点评】本题考查的是全等三角形的应用,掌握全等三角形的判定定理是解题的关键.3.如图所示,为了测量出A,B两点之间的距离,在地面上找到一点C,连接BC,AC,使∠ACB=90°,然后在BC的延长线上确定D,使CD=BC,那么只要测量出AD的长度也就得到了A,B两点之间的距离,这样测量的依据是()A.AAS B.SAS C.ASA D.SSS【分析】根据SAS即可证明△ACB≌△ACD,由此即可解决问题.【解答】解:∵AC⊥BD,∴∠ACB=∠ACD=90°,在△ACB和△ACD中,,∴△ACB≌△ACD(SAS),∴AB=AD(全等三角形的对应边相等).故选:B.【点评】本题考查全等三角形的应用,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.二.填空题(共2小题)4.如图,小颖要测量池塘两岸相对的两点A、B的距离,她在池塘外AB的垂线BF上取两点C、D,使BC=CD,再出BF的垂线DE,使点E与A、C在一条直线上,则量出的DE长就是A、B的距离.她的依据是ASA.【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知选择判断方法.【解答】解:在△ABC和△EDC中,∴△ABC≌△EDC(ASA),她的依据是两角及这两角的夹边对应相等即ASA这一方法.故答案为:ASA.【点评】此题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,两根旗杆间相距12m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3m,该人的运动速度为1m/s,则这个人运动到点M所用时间是3s.【分析】根据题意证明∠C=∠DMB,利用AAS证明△ACM≌△BMD,根据全等三角形的性质得到AC=BM=3m,再利用时间=路程÷速度加上即可.【解答】解:∵∠CMD=90°,∴∠CMA+∠DMB=90°,又∵∠CAM=90°,∴∠CMA+∠C=90°,∴∠C=∠DMB.在Rt△ACM和Rt△BMD中,,∴Rt△ACM≌Rt△BMD(AAS),∴AC=BM=3m,∵该人的运动速度为1m/s,∴他到达点M时,运动时间为3÷1=3(s).故答案为3.【点评】本题考查了全等三角形的应用;解答本题的关键是利用互余关系找三角形全等的条件,对应角相等,并巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.本题的关键是求得Rt△ACM≌Rt△BMD.三.解答题(共6小题)6.如图所示的A、B是两根呈南北方向排列的电线杆,A、B之间有一条小河,小刚想估测这两根电线杆之间的距离,于是小刚从A点开始向正西方向走了20步到达一棵大树C 处,接着又向前走了20步到达D处,然后他左转90°直行,当他看到电线杆B、大树C 和他自己现在所处的位置E恰在同一条直线上时,他从D位置走到E处恰好走了100步,利用上述数据,小刚测出了A、B两根电线杆之间的距离.(1)请你根据上述的测量方法在原图上画出示意图;(2)如果小刚一步大约60厘米,请你求A、B两根电线杆之间的距离.【分析】(1)根据题意画出图形即可;(2)根据题意得出各线段长度,再证△ABC≌△DEC得AB=DE=60m.【解答】解:(1)根据题意画出图形,如图所示.(2)由题可知∠BAC=∠EDC=90°,60cm=0.6m,AC=20×0.6=12m,DC=20×0.6=12m,DE=100×0.6=60m,∵点E、C、B在一条直线上,∴∠DCE=∠ACB.∵∠BAC=∠EDC=90°,AC=DC,∠DCE=∠ACB,∴△ABC≌△DEC,∴AB=DE.∵DE=60m,∴AB=60m,答:A、B两根电线杆之间的距离大约为60m.【点评】本题主要考查全等三角形的应用,解题的关键是熟练掌握全等三角形的判定与性质.7.如图,点B、F、C、E在一条直线上(点F,C之间不能直接测量),点A,D在直线l的异侧,测得AB=DE,AB∥DE,AC∥DF.(1)求证:△ABC≌△DEF;(2)若BE=14m,BF=5m,求FC的长度.【分析】(1)先证明∠ABC=∠DEF,再根据ASA即可证明.(2)根据全等三角形的性质即可解答.【解答】(1)证明:∵AB∥DE,∴∠ABC=∠DEF,∴AC∥DF,∴∠ACB=∠DFE,在△ABC与△DEF中,∴△ABC≌△DEF;(AAS)(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=14m,BF=5m,∴FC=14﹣5﹣5=4m.【点评】本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形的条件,记住平行线的判定方法,属于基础题,中考常考题型.8.茗茗用同种材料制成的金属框架如图所示,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需材料的长度为多少?【分析】首先证明△ABC≌△DEF(SAS)可得AC=DF,然后再根据△ABC的周长为24cm,CF=3cm可得制成整个金属框架所需这种材料的长度.【解答】解:∵BF=EC,∴BF+FC=CE+FC,即BC=EF,∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴AC=DF,∵△ABC的周长为24cm,CF=3cm,∴制成整个金属框架所需这种材料的长度为24×2﹣3=45cm.【点评】此题主要考查了全等三角形的应用,关键是掌握证明三角形全等的方法,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.9.如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=3m.小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A′处时,有A'B⊥AB.(1)求A′到BD的距离;(2)求A′到地面的距离.【分析】(1)作A'F⊥BD,垂足为F,根据全等三角形的判定和性质解答即可;(2)根据全等三角形的性质解答即可.【解答】解:(1)如图2,作A'F⊥BD,垂足为F.∵AC⊥BD,∴∠ACB=∠A'FB=90°;在Rt△A'FB中,∠1+∠3=90°;图2又∵A'B⊥AB,∴∠1+∠2=90°,∴∠2=∠3;在△ACB和△BF A'中,∴△ACB≌△BF A'(AAS);∴A'F=BC∵AC∥DE且CD⊥AC,AE⊥DE,∴CD=AE=1.8;∴BC=BD﹣CD=3﹣1.8=1.2,∴A'F=1.2,即A'到BD的距离是1.2m.(2)由(1)知:△ACB≌△BF A'∴BF=AC=2m,作A'H⊥DE,垂足为H.∵A'F∥DE,∴A'H=FD,∴A'H=BD﹣BF=3﹣2=1,即A'到地面的距离是1m.【点评】本题考查全等三角形的应用,解题的关键是正确寻找全等三角形全等的条件,灵活运用所学知识解决问题,属于中考常考题型.10.如图,一块三角形模具的阴影部分已破损.回答下列问题:(1)只要从模具片中度量出哪些边、角,就可以到店铺加工一块与原来的模具△ABC的形状和大小完全相同的△A′B′C′模具?请简要说明理由.(2)按尺规作图的要求,在框内正确作出△A′B′C′图形,保留作图痕迹,不写作法和证明.【分析】(1)根据全等三角形的判定定理,当已知两角及夹边对应相等时,两个三角形全等,据此求解即可.(2)根据角边角作△A′B′C′即可.【解答】解:(1)要从模具片中度量出边BC的长度、∠B及∠C的大小,就可以到店铺加工一块与原来的模具△ABC的形状和大小完全相同的△A′B′C′模具.因为两角及夹边对应相等的两个三角形全等;(2)如图:【点评】本题考查全等三角形的应用,关键知道两角一夹边对应相等的两个三角形全等,根据此也可画出全等三角形.11.如图,有一个池塘,要到池塘两侧AB的距离,可先在平地上取一个点C,从C不经过池塘可以到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A,B的距离,为什么?【分析】利用“边角边”证明△ABC和△DEC全等,再根据全等三角形对应边相等解答.【解答】解:量出DE的长就等于AB的长,理由如下:在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.。
专题05 全等三角形中的常见辅助线【举一反三】【人教版】【考点1 角分线上点向角两边作垂线构全等】【方法点拨】过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题;【例1】如图,已知BP平分∠ABC,PD⊥BC于D,BF+BE=2BD,求证:∠BFP+∠BEP=180°.【变式1-1】(2019秋•汉阳区期中)已知:∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P 在射线OM上滑动,两直角边分别与OA、OB交于C、D.(1)PC和PD有怎样的数量关系是.(2)请你证明(1)得出的结论.【变式1-2】(2019•北京校级期中)已知∠MAN=120°,AC平分∠MAN,点B、D分别在AN、AM上.(1)如图1,若∠ABC=∠ADC=90°,请你探索线段AD、AB、AC之间的数量关系,并证明之;(2)如图2,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.【变式1-3】(2019秋•东区校级月考)如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.请你判断并写出FE与FD之间的数量关系;(不需证明)(2)如图③,在△ABC中,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【考点2 截取法构全等】【方法点拨】利用对称性,在角的两边截取相等的线段,构造全等三角形;【例2】(2019秋•黄浦区校级期中)已知:在四边形ABCD中,BC>BA,∠A+∠C=180°,且∠C=60°,BD平分∠ABC,求证:BC=AB+DC.【变式2-1】已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC的数量关系,并说明理由.【变式2-2】(2019秋•邵阳期末)如图①,在△ABC中,∠ACB=2∠B,AD为∠BAC的角平分线,求证:AB=AC+CD小明同学经过思考,得到如下解题思路:在AB上截取AE=AC,连接DE,得到△ADE≌△ADC,从而易证AB=AC+CD(1)请你根据以上解思路写出证明过程;(2)如图②,若AD为△ABC的外角∠CAE平分线,交BC的延长线于点D,∠D=25°,其他条件不变,求∠B的度数.【变式2-3】(2019•长汀县校级模拟)观察、猜想、探究:在△ABC中,∠ACB=2∠B.(1)如图①,当∠C=90°,AD为∠BAC的角平分线时,求证:AB=AC+CD;(2)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(3)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【考点3 延长垂线段构全等】【方法点拨】题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形;【例3】如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,求证:BE=(AC﹣AB).(提示:延长BE交AC于点F).【变式3-1】已知:如图,在△ABC中,∠ABC=3∠C,∠1=∠2,BE⊥AE.求证:AC﹣AB=2BE.【变式3-2】(2019秋•通州区期末)已知:∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E.求证:BD=2CE.【变式3-3】(2019•成都校级期中)如图,△ABC中,过点A分别作∠ABC,∠ACB的外角的平分线的垂线AD,AE.D,E为垂足,求证:(1)ED∥BC;(2)ED=(AB+AC+BC).【考点4 倍长中线法构全等】【方法点拨】遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形.【例4】(2019秋•津南区校级期中)已知:在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF.【变式4-1】(2019秋•闵行区期中)如图,在△ABC中,AE平分∠BAC,交BC于点E,D是BC边上点,且DE=CE,点F在AE上,联结DF,满足DF=AC,求证:DF∥AB.【变式4-2】(2019春•富阳市校级期中)如图,AD为△ABC的中线,∠ADB和∠ADC的平分线分别交AB、AC于点E、F.求证:BE+CF>EF.【变式4-3】(2019秋•启东市校级月考)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,已知:CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE.【考点5 作平行线构全等】【方法点拨】有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形.或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形.【例5】若两个三角形的一边及其对角对应相等,并有一对角互补(不是直角),则这两个三角形为友好三角形.如图1,点D在AB边上,CD=CB,则△ABC和△ACD就是友好三角形.(1)两个友好三角形全等.(从下面选择一个正确的填入)A.一定B.不一定C.一定不(2)如图2,在△ABC中,AB=AC,点D在AB上,点E在AC延长线上,连结DE交BC于其中BD≠BF,若△BDF和△CEF是友好三角形,求证:DF=EF.(3)如图3,CE是△ABC的中线,点D在AC上,BD与CE交于点F,CF=AE,DF=DC,图中与△ACE 成友好三角形的是.【变式5-1】(2019秋•建湖县期末)如图,在△ABC,AD平分∠BAC,E、F分别在BD、AD上,且DE=CD,EF=AC,求证:EF∥AB.【变式5-2】(2019春•河口区校级期中)如图所示,在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC 交BC于E,交CD于F,FG∥AB交BC于G.试判断CE,CF,GB的数量关系,并说明理由.【变式5-3】△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ.(有多种辅助线作法)【考点6 旋转法构全等】【方法点拨】对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形。
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形AD BC∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)B ACDF21 E∴△EFD≌△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF∵CE ⊥AB∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180°∴∠D =∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC∵AC =AC∴△ADC ≌△AFC (SAS )∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD BCAD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE ∵AB=4即4-2<2AD<4+21<AD<3∴AD=28.已知:D是AB中点,∠ACB=90°,求证:12 CD AB9. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
全等三角形证实经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延伸AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE,∠B=∠E,∠C=∠D,F 是CD 中点,求证:∠1=∠2证实:衔接BF 和EF. 因为AD BCBC=ED,CF=DF,∠BCF=∠EDF. 所以 三角形BCF 全等于三角形EDF(边角边). 所以 BF=EF,∠CBF=∠DEF. 衔接BE. 在三角形BEF 中,BF=EF. 所以 ∠EBF=∠BEF. 又因为 ∠ABC=∠AED. 所以 ∠ABE=∠AEB. 所以 AB=AE. 在三角形ABF 和三角形AEF 中, AB=AE,BF=E F, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF. 所以 三角形ABF 和三角形AEF 全等. 所以∠BAF=∠EAF (∠1=∠2).4. 已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC 证实: 过E 点,作EG//AC,交AD 延伸线于G则∠DEG=∠DCA,∠DGE=∠2 又∵CD=DE ∴⊿ADC≌⊿GDE (AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1 ∵∠1=∠2 ∴∠DFE=∠DGE ∴EF=EG ∴EF=AC5. 已知:AD 等分∠BAC,AC=AB+BD,求证:∠B=2∠C证实: 在AC 上截取AE=AB,衔接ED ∵AD 等分∠BAC ∴∠EAD=∠BAD 又∵AE=AB,AD=AD ∴⊿AED≌⊿ABD (SAS ) ∴∠AED=∠B,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C6. 已知:AC 等分∠BAD,CE ⊥AB,∠B+∠D=180°,求证:AE=AD+BE 证实: 在AE 上取F,使EF =EB,衔接CF 因为CE⊥AB 所以CD B AB AC DF 2 1 E∠CEB=∠CEF=90° 因为EB =EF,CE =CE, 所以△CEB≌△CEF 所以∠B=∠CFE 因为∠B+∠D=180°,∠CFE+∠CFA=180° 所以∠D=∠CFA 因为AC 等分∠BAD 所以∠DAC=∠FAC 又因为AC =AC 所以△ADC≌△AFC(SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC,BE.CE 分离等分∠ABC.∠BCD,且点E 在AD 上.求证:BC=AB+DC.证实:在BC 上截取BF=BA,衔接EF.∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A; AB 平行于CD,则:∠A+∠D=180°; 又∠EFB+∠EFC=180°,则∠EFC=∠D; 又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD. 所以,BC=BF+FC=AB+CD.13.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C D CB A FEAB//ED,AE//BD 推出AE=BD,又有AF=CD,EF=BC所以三角形AEF 全等于三角形DCB,所以:∠C=∠F14. 已知:AB=CD,∠A=∠D,求证:∠B=∠C证实:设线段AB,CD 地点的直线交于E,(当AD<BC 时,E 点是射线BA,CD 的交点,当AD>BC时,E 点是射线AB,DC 的交点).则: △AED 是等腰三角形. 所以:AE=DE 而AB=CD 所以:BE=CE (等量加等量,或等量减等量) 所以:△BEC 是等腰三角形 所以:角B=角C.15. P 是∠BAC 等分线AD 上一点,AC>AB,求证:PC-PB<AC-AB作B 关于AD 的对称点B‘,因为AD 是角BAC 的等分线,B'在线段AC 上(在AC 中央,因为AB 较短) 因为PC<PB’+B‘C,PC -PB’<B‘C,而B'C=AC-AB'=AC-AB,所以PC-PB<AC-AB16. 已知∠ABC=3∠C,∠1=∠2,BE ⊥AE,求证:AC-AB=2BE∠BAC=180-(∠ABC+∠C=180-4∠C∠1=∠BAC/2=90-2∠C∠ABE=90-∠1=2∠C延伸BE 交AC 于F A BC D PD A C B因为,∠1 =∠2,BE⊥AE所以,△ABF 是等腰三角形 AB=AF,BF=2BE ∠FBC=∠ABC -∠ABE=3∠C -2∠C=∠C BF=C F AC-AB=AC-AF=CF=BF=2BE17. 已知,E 是AB 中点,AF=BD,BD=5,AC=7,求DC 作AG∥BD 交DE 延伸线于G AGE 全等BDE AG=BD=5 AGF∽CDFAF=AG=5所以DC=CF=218.(5分)如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .延伸AD 至H 交BC 于H; BD=DC;所以: ∠DBC=∠角DCB; ∠1=∠2;∠DBC+∠1=∠角DCB+∠2; ∠ABC=∠ACB;所以: AB=AC;三角形ABD 全等于三角形ACD;∠BAD=∠CAD; AD 是等腰三角形的顶角等分线 所以: AD 垂直BC19.(5分)如图,OM 等分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A .B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA因为AOM 与MOB 都为直角三角形.共用OM,且∠MOA=∠MOB F A EDCB所以MA=MB 所以∠MAB=∠MBA因为∠OAM=∠OBM=90度所以∠OAB=90-∠MAB ∠OBA=90-∠MBA 所以∠OAB=∠OBA20.(5分)如图,已知AD ∥BC ,∠PAB 的等分线与∠CBA 的等分线订交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .证实: 做BE 的延伸线,与AP 订交于F 点, ∵PA//BC ∴∠PAB+∠CBA=180°,又∵,AE,BE 均为∠PAB 和∠CBA 的角等分线∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB 为直角三角形 在三角形ABF 中,AE⊥BF,且AE 为∠FAB 的角等分线∴三角形FAB 为等腰三角形,AB=AF,BE=EF 在三角形DEF 与三角形BEC 中, ∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB, ∴三角形DEF 与三角形BEC 为全等三角形,∴DF=BC ∴AB=A F=AD+DF=AD+BC21.(6分)如图,△ABC 中,AD 是∠CAB 的等分线,且AB =AC +CD ,求证:∠C =2∠B证实:在AB 上找点E,使AE=AC∵AE=AC,∠EAD=∠CAD,AD=AD∴△ADE≌△ADC.DE=CD,∠AED=∠C∵AB=AC+CD,∴DE=CD=AB -AC=AB-AE=BE∠B=∠EDB ∠C=∠B+∠EDB=2∠B22.(6分)如图①,E .F 分离为线段AC 上的两个动点,且DE ⊥AC 于E,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .PED C BA D C BA(1)求证:MB =MD ,ME =MF(2)当E .F 两点移动到如图②的地位时,其余前提不变,上述结论可否成立?若成立请赐与证实;若不成立请解释来由.剖析:经由过程证实两个直角三角形全等,即Rt△DEC≌Rt△BFA 以及垂线的性质得出四边形BEDF 是平行四边形.再依据平行四边形的性质得出结论.解答:解:(1)衔接BE,DF . ∵DE⊥AC 于E,BF⊥AC 于F,, ∴∠DEC=∠BFA=90°,DE∥BF, 在Rt△DEC 和Rt△BFA 中, ∵AF=CE,AB=CD, ∴Rt△DEC≌Rt△BFA, ∴DE=BF . ∴四边形BEDF 是平行四边形. ∴MB=MD,ME=MF;(2)衔接BE,DF . ∵DE⊥AC 于E,BF⊥AC 于F,, ∴∠DEC=∠BFA=90°,DE∥BF, 在Rt△DEC 和Rt△BFA 中, ∵AF=CE,AB=CD, ∴Rt△DEC≌Rt△BFA, ∴DE=BF . ∴四边形BEDF 是平行四边形. ∴MB=MD,ME=MF.23.(7分)已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)不雅看图前,在不添帮助线的情形下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出成果,不请求证实):(1)DC∥AE,且DC=AE,所以四边形AECD 是平行四边形.于是知AD=EC,且∠EAD=∠BEC.由AE=BE,所以△AED≌△EBC.O ED C B A(2)△AEC.△ACD.△ECD 都面积相等.24.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的等分线,BD 的延伸线垂直于过C 点的直线于E ,直线CE 交BA 的延伸线于F .求证:BD =2CE . 证实:延伸BA.CE,两线订交于点 F ∵BE⊥CE ∴∠BEF=∠BEC=90° 在△BEF 和△BEC 中∠FBE=∠CBE, BE=BE, ∠BEF=∠BEC∴△BEF≌△BEC(ASA) ∴EF=EC ∴CF=2CE∵∠ABD+∠ADB=90°,∠ACF+∠CDE=90° 又∵∠ADB=∠CDE ∴∠ABD=∠ACF 在△ABD 和△ACF 中 ∠ABD=∠ACF, AB=AC, ∠BAD=∠CAF=90° ∴△ABD≌△ACF(ASA) ∴BD=CF ∴BD=2CE25.(10分)如图:DF=CE,AD=BC,∠D=∠C.求证:△AED ≌△BFC.26.(10分)如图:AE.BC 交于点M,F 点在AM 上,BE ∥CF,BE=CF.求证:AM 是△ABC 的中线.证实: ∵BE‖CF∴∠E=∠CFM,∠EBM=∠FCM ∵BE=CF∴△BEM≌△CFM∴BM=CM ∴AM 是△ABC 的中线.27.(10分)如图:在△ABC 中,BA=BC,D 是AC 的中点.求证:BD ⊥AC.FED C B AM F E CBA三角形ABD 和三角形BCD 的三条边都相等,它们全等,所以角ADB和角CDB 相等,它们的和是180度,所以都是90度,BD 垂直AC28.(10分)AB=AC,DB=DC,F 是AD 的延伸线上的一点.求证:BF=CF证实:在△ABD 与△ACD 中AB=AC BD=DCAD=AD∴△ABD≌△ACD ∴∠ADB=∠ADC∴∠BDF=∠FDC 在△BDF 与△FDC 中 BD=DC ∠BDF=∠FDC DF=DF∴△FBD≌△FCD ∴BF=FC29.(12分)如图:AB=CD,AE=DF,CE=FB.求证:AF=DE.因为AB=DC AE=DF, CE=FBCE+EF=EF+FB 所以三角形ABE=三角形CDF因为 角DCB=角ABF AB=DC BF=CE 三角形ABF=三角形CDE 所以AF=DE 30.公园里有一条“Z”字形道路ABCD ,如图所示,个中AB ∥CD ,在AB ,CD ,BC 三段路旁各有一只小石凳E ,F ,M ,且BE =CF ,M 在BC 的中点,试解释三只石凳E ,F ,M 正好在一条直线上.证: ∵AB 平行CD (已知) ∴∠B=∠C(两直线平行,内错角相等) ∵M 在BC 的中点(已知) ∴EM=FM(中点界说) 在△BME DCB A FD CB A F E DC BA和△CMF 中 BE=CF (已知) ∠B=∠C (已证) EM=FM (已证) ∴△BME 全等与△CMF(SAS ) ∴∠EMB=∠FMC(全等三角形的对应角相等)∴∠EMF=∠EMB+∠BMF=∠FMC+∠BMF=∠BMC=180°(等式的性质) ∴E,M,F 在统一向线上31.已知:点A.F.E.C 在统一条直线上, AF =CE,BE∥DF,BE=DF .求证:△ABE≌△CDF.证实: ∵AF=CE ∴AF+EF=CE+EF ∴AE=CF∵BE//DF ∴∠BEA=∠DFC 又∵BE=DF∴⊿ABE≌⊿CDF(SAS )32.已知:如图所示,AB =AD,BC =DC,E.F 分离是DC.BC 的中点,求证: AE =AF.贯穿连接BD,得到等腰三角形ABD 和等腰三角形BDC,由等腰△两底角相等得:角ABC=角ADC 在联合已知前提证得:△ADE ≌△ABF得AE=AF 33.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.因为角1=角2∠3=∠4所以角ADC=角ABC. 又因为AC 是公共边,所以AAS==>三角形ADC 全等于三角形ABC. 所以BC 等于DC,角3等于角4,EC=EC 三角形DEC 全等 DA F E 654321E D CB A于三角形BEC 所以∠5=∠634.已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .因为D,C 在AF 上且AD=CF 所以AC=DF 又因为AB 平行DE,BC 平行EF 所以角A+角EDF,角BCA=角F (两直线平行,内错角相等) 然后SSA (角角边)三角形全等35.已知:如图,AB =AC ,BD AC ,CE AB ,垂足分离为D .E ,BD .CE 订交于点F ,求证:BE =CD .证实:因为 AB=AC, 所以∠EBC=∠DCB 因为 BD⊥AC,CE⊥AB 所以 ∠BEC=∠CDB BC=CB (公共边) 则有 三角形EBC 全等于三角形DCB 所以 BE =CD36、如图,在△ABC 中,AD 为∠BAC 的等分线,DE ⊥AB 于E ,DF ⊥AC 于F .求证:DE =DF .AAS 证△ADE≌△ADF37.已知:如图, AC ⊥BC 于C , DE ⊥AC 于E , AD ⊥AB 于A , BC =AE .若AB =5 ,求AD 的长? 角C=角E=90度 角B=角EAD=90度-角BACBC=AE A C B DE F A EDC FD C B A E△ABC ≌△DAEAD=AB=538.如图:AB=AC,ME ⊥AB,MF ⊥AC,垂足分离为E.F,ME=MF.求证:MB=MC证实∵AB=AC∴△ABC 是等腰三角形 ∴∠B=∠C又∵ME=MF,△BEM 和△CEM 是直角三角形∴△BEM 全等于△CEM ∴MB=MC39.如图,给出五个等量关系:①AD BC =②AC BD =③CE DE =④D C ∠=∠⑤DAB CBA ∠=∠.请你以个中两个为前提,另三个中的一个为结论,推出一个准确的结论(只需写出一种情形),并加以证实.已知:求证:证实:已知1,2 求证4 因为AD=BC AC=BD,在四边形ADBC 中,连AB 所以△ADB 全等于△BCA 所以角D=角C以4,5为前提,1为结论. 即:在四边形ABCD 中,∠D=∠C,∠A=∠B,求证:AD=BC 因为 ∠A+∠B+∠C+∠D=360∠D=∠C,∠A=∠B, 所以 2(∠A+∠D)=360°, ∠A+∠D=180°, 所以 AB//DC40.在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经由点C ,且C A B CD EMN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 扭转到图1的地位时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=;(2)当直线MN 绕点C 扭转到图2的地位时,(1)中的结论还成立吗?若成立,请给出证实;若不成立,解释来由.(1)证实:∵∠ACB=90°, ∴∠ACD+∠BCE=90°, 而AD⊥MN 于D,BE⊥MN 于E, ∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°, ∴∠ACD=∠CBE. 在Rt△ADC 和Rt△CEB中,{∠ADC=∠CEB∠ACD=∠CBE AC=CB, ∴Rt△ADC≌Rt△CEB (AAS ), ∴AD=CE,DC=BE, ∴DE=DC+CE=BE+AD;(2)不成立,证实:在△ADC 和△CEB中,{∠ADC=∠CEB=90°∠ACD=∠CBE AC=CB, ∴△ADC≌△CEB (AAS ), ∴AD=CE,DC=BE, ∴DE=CE -CD=AD-BE;41.如图所示,已知AE ⊥AB,AF ⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC ⊥BF(1)证实;因为AE 垂直AB 所以角EAB=角EAC+角CAB=90度 因为AF 垂直AC 所以角CAF=角CAB+角BAF=90度 所以角EAC=角BAF 因为AE=AB AF=AC 所以三角形EAC和三角形FAB 全等 所以EC=BF 角ECA=角F(2)(2)延伸FB 与EC 的延伸线交于点G 因为角ECA=角F(已证) 所以角G=角CAF 因为角CAF=90度 所以EC 垂直BF42.如图:BE ⊥AC,CF ⊥AB,BM=AC,CN=AB.求证:(1)AM=AN;A E B M C F(2)AM ⊥AN.证实: (1) ∵BE⊥AC,CF⊥AB ∴∠ABM+∠BAC=90°,∠ACN+∠BAC=90° ∴∠ABM=∠ACN ∵BM=AC,CN=AB ∴△ABM≌△NAC ∴AM=AN(2) ∵△ABM≌△NAC ∴∠BAM=∠N ∵∠N+∠BAN=90° ∴∠BAM+∠BAN=90° 即∠MAN=90° ∴AM⊥AN43.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC ∥EF 衔接BF.CE,证实△ABF 全等于△DEC(SAS ),然后经由过程四边形BCEF 对边相等的证得平行四边形BCEF从而求得BC 平行于EF44.如图,已知AC ∥BD,EA.EB 分离等分∠CAB 和∠DBA,CD 过点E,则AB 与AC+BD 相等吗?请解释来由在AB 上取点N ,使得AN=AC∠CAE=∠EAN ,AE 为公共边,所以三角形CAE 全等三角形EAN所以∠ANE=∠ACE 又AC 平行BD所以∠ACE+∠BDE=180 而∠ANE+∠ENB=180所以∠ENB=∠BDE ∠NBE=∠EBN BE 为公共边,所以三角形EBN 全等三角形EBD F C AM N E1234所以BD=BN 所以AB=AN+BN=AC+BD45.(10分) 如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .证实: ∵AD 是中线 ∴BD=CD∵DF=DE,∠BDE=∠CDF ∴△BDE≌△CDF∴∠BED=∠CFD ∴BE‖CF46.(10分)已知:如图,AB =CD ,DE ⊥AC ,BF⊥AC ,E ,F 是垂足,DE BF .求证:AB CD ∥.证实:∵DE⊥AC,BF⊥AC,∴∠DEC=∠AFB=90°, 在Rt△DEC 和Rt△BFA 中,DE=BF,AB=CD, ∴Rt△DEC≌Rt△BFA, ∴∠C=∠A, ∴AB∥CD.47.(10分)如图,已知∠1=∠2,∠3=∠4,求证:AB=CD【待定】48.(10分)如图,已知AC ⊥AB,DB ⊥AB,AC =BE,AE =BD,试猜测线段CE 与DE 的大小与地位关系,并证实你的结论.结论:CE>DE.当∠AEB 越小,则DE 越小. 证实: 过D 作AE 平行线与AC 交于F,衔接FB 由已知前提知AFDE 为平行四边形,ABEC 为矩形 ,且△DFB 为等腰三角形. RT△BAE 中,∠AEB 为锐角,即∠AEB<90° AC E DB A D EC B F∵DF//AE ∴∠FDB=∠AEB<90° △DFB 中∠DFB=∠DBF=(180°-∠FDB)/2>45° RT△AFB 中,∠FBA=90°-∠DBF <45° ∠AFB=90°-∠FBA>45° ∴AB>AF ∵AB=CE AF=DE ∴CE>DE49.(10分)如图,已知AB =DC,AC =DB,BE =CE,求证:AE =DE. 先证实△ABC ≌△BDC 的出角ABC=角DCB 在证实△ABE ≌△DCE得出AE=DE 50.如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E,交AD 于点F,求证:∠ADC =∠BDE .证实:作CG 等分∠ACB 交AD 于G∵∠ACB=90° ∴∠ACG= ∠DCG=45°∵∠ACB=90° AC=BC ∴∠B=∠BAC=45° ∴∠B=∠DCG=∠ACG ∵CF⊥AD ∴∠ACF+∠DCF=90° ∵∠ACF+∠CAF=90°∴∠CAF=∠DCF ∵ AC=CB ∠ACG=∠B ∴△ACG≌△CBE ∴CG=BE ∵∠DCG=∠B CD=BD ∴△CDG ≌△BDE ∴∠ADC=∠BDE AB EC DA B C D E F 图9。
第 - 1 - 页 共 6 页 全等三角形练习题 一、选择题(每小题3分,共30分) 1.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是( ) A.∠A B.∠B C.∠C D.∠B或∠C 2.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是( ) A.线段CD的中点 B.OA与OB的中垂线的交点 C.OA与CD的中垂线的交点 D.CD与∠AOB的平分线的交点 3.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( ) A.△ABD和△CDB的面积相等 B.△ABD和△CDB的周长相等 C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC
(2) (3) (4) (6) 4.如图,已知AB=DC,AD=BC,E,F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( ) A.150° B.40° C.80° D.90° 5.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是( ) A.相等 B.不相等 C.互余或相等 D.互补或相等 6,如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则( ) A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC 7.如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=( ) A.25° B.27° C.30° D.45° 8.如图,在△ABC中,AD平分∠BAC,过B作BE⊥AD于E,过E作EF∥AC交AB于F,则( ) A.AF=2BF B.AF=BF C.AF>BF D.AF<BF
(7) (8) (9) 9.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( ) A.SSS B.SAS C.AAS D.ASA 10.将一张长方形纸片按如图4所示的方式折叠,BCBD,为折痕,则CBD∠的度数为( ) A.60° B.75° C.90° D.95°
AB
CD
E
F1
2
A D
B C E F FEDCBADACEBDACBO D C B
A
A E C B
A′ E′
D 第 - 2 - 页 共 6 页
ABCEF
AB
CDF
EO
二、填空题(每小题3分,共24分) 11. (08牡丹江)如图,BACABD,请你添加一个条件: ,使OCOD(只添一个即可). 12.如图,在△ABC中,AB=AC,BE、CF是中线,则由 可得△AFC≌△AEB.
(11) (12) (13) 13.如图,AB=CD,AD=BC,O为BD中点,过O点作直线与DA、BC延长线交于E、F,若∠ADB=60°,EO=10,则∠DBC= ,FO= . 14.已知Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD∶CD=9∶7,则D到AB边的距离为___. 15.如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________. 16.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有______对.
(16) (17) (18) 17.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,如图,则∠EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______. 18.如图,AD,A′D′分别是锐角三角形ABC和锐角三角形A′B′C′中BC,B′C′边上的高,且AB=A′B′,AD=A′D′.若使△ABC≌△A′B′C′,请你补充条件________.(填写一个你认为适当的条件即可) 三、解答题(第19-25每题8分,第26题10分,共60分) 19.已知:△DEF≌△MNP,且EF=NP,∠F=∠P,∠D=48°,∠E=52°,MN=12cm,求:∠P的度数及DE的长.
20. 如图,∠DCE=90o,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B,试说明AD+AB=BE.
A B C D
A′ B′ D′
C′
DCBAE
D O
C
B A
B 第 - 3 - 页 共 6 页 21.如图,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA和CA上取BE=CG;②在BC上取BD=CF;③量出DE的长a米,FG的长b米.如果a=b,则说明∠B和∠C是相等的.他的这种做法合理吗?为什么?
22.要将如图中的∠MON平分,小梅设计了如下方案:在射线OM,ON上分别取OA=OB,过A作DA⊥OM于A,交ON于D,过B作EB⊥ON于B交OM于E,AD,EB交于点C,过O,C作射线OC即为MON的平分线,试说明这样做的理由.
23.如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,可以得到BD平分EF,为什么?若将△DEC的边EC沿AC方向移动,变为图时,其余条件不变,上述结论是否成立?请说明理由.
A D E C B
F
G
GDFACBEGDFAC
BE第 - 4 - 页 共 6 页
24.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF. (1)求证:BG=CF. (2)请你判断BE+CF与EF的大小关系,并说明理由.
25.(1)如图1,△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连结EG,试判断△ABC与△AEG面积之间的关系,并说明理由. (2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米?
FE
DCB
A
G
A G F C B
D E 图1 图2 第 - 5 - 页 共 6 页
参考答案: 一、选择题 1.A 2.D 3.C提示:∵△ABD≌△CDB,∴AB=CD,BD=DB,AD=CB,∠ADB=∠CBD,∴△ABD和△CDB的周长和面积都分别相等.∵∠ADB=∠CBD,∴AD∥BC. 4.D 5.A 6.D 7.B解析:在Rt△ADB与Rt△EDC中,AD=CD,BD=ED,∠ADB=∠EDC=90°,∴△ADB≌△CDE,∴∠ABD=∠E.在Rt△BDC与Rt△EDC中,BD=DE,∠BDC=∠EDC=90°,CD=CD,∴Rt△BDC≌Rt△EDC,∴∠DBC=
∠E.∴∠ABD=∠DBC=12∠ABC,∴∠E=∠DBC=12×54°=27°.提示:本题主要通过两次三角形全等找出∠ABD=∠DBC=∠E. 8.B 9.D 10. C 二、填空题 11. CD或ABCBAD或ACBD或OADOBC 12.SAS 13.60°,10 14. 14提示:角平分线上的一点到角的两边的距离相等. 15.互补或相等 16.5 17.35° 18.答案不惟一 三、解答题 19.解:∵△DEF≌△MNP,∴DE=MN,∠D=∠M,∠E=∠N,∠F=∠P,∴∠M=48°,∠N=52°,∴∠P=180°-48°-52°=80°,DE=MN=12cm.
20. 解:因为∠DCE=90o (已知),所以∠ECB+∠ACD=90o,因为EB⊥AC,所以∠E+∠ECB=90o(直角三角形两锐角互余).所以∠ACD=∠E(同角的余角相等).因为AD⊥AC,BE⊥AC(已知),所以∠A=∠EBC=90o (垂
直的定义).在Rt△ACD和Rt△BEC中,AEBCACDECDEC,所以Rt△ACD≌Rt△BEC(AAS).所以AD=BC,AC=BE(全等三角形的对应边相等),所以AD+AB=BC+ AB=AC.所以AD+AB=BE. 21.解:DE=AE.由△ABC≌△EDC可知. 22.证明∵DA⊥OM,EB⊥ON,∴∠OAD=∠OBE=90°.
在△OAD和△OBE中,,,(),OADOBEAODBOEOAOB公共角 ∴△OAD≌△OBE(ASA),∴OD=OE,∠ODA=∠OEB,∴OD-OB=OE-OA.即BD=AE. 在△BCD和△ACE中,,,(),ODAOEBBCDACEBDAE对顶角∴△BCD≌△ACE(AAS),∴BC=AC.在Rt△BOC
和Rt△AOC中,,,BCACOBOA∴△BOC≌△AOC(HL),∴∠BOC=∠AOC. 23.∵DE⊥AC于点E,BF⊥AC于点F,∴∠DEF=∠BFE=90°.∵AE=CF,∴AE+EF=CF+FE,即AF=CE.在Rt△ABF与Rt△CDE中,AB=CD,AF=CE,∴Rt△ABF≌Rt△CDE,∴BF=DE.在Rt△DEG≌Rt△BFG中,∠DGE=∠BGF,DE=BF,∴Rt△DEG≌Rt△BFG,∴EG=FG,即BD平分EF.若将△DEC的边EC沿AC方向移动到图2时,其余条件不变,上述结论仍旧成立,理由同上.提示:寻找AF与CE的关系是解决本题的关键. 24.(1)∵AC∥BG,∴∠GBD=∠C,在△GBD与△FCD中,∠GBD=∠C,BD=CD,∠BDG=∠CDF,∴△GBD≌△FCD,∴BG=CF.(2)BE+CF>EF,又∵△GBD≌△FCD(已证) ,∴GD=FD,在△GDE