2017届中考数学一轮复习第12讲一次函数的应用专题精练
- 格式:doc
- 大小:151.50 KB
- 文档页数:5
第三篇 函数专题12一次函数及其应用知 识 点名师点晴1.一次函数会判断一个函数是否为一次函数.2.正比例函数知道正比例函数是特殊的一次函数.3.一次函数的图象知道一次函数的图象是一条直线.一次函数与正比例函数4.一次函数的性质会准确判断k 的正负、函数增减性和图象经过的象限.5.一次函数与一元一次方程、二元一次方程组、一元一次不等式(组)的联系会用数形结合思想解决此类问题.6.一次函数图象的应用能根据图象信息,解决相应的实际问题.一次函数的应用7.一次函数的综合应用能解决与方程(组)、不等式(组)的相关实际问题.归纳 1:正比例函数和一次函数的概念基础知识归纳:1、一般地,如果(k ,b 是常数,k 0),那么y 叫做x 的一次函数.b kx y +=≠特别地,当一次函数中的b 为0时,(k 为常数,k 0).这时,y 叫做x 的正比例函b kx y +=kx y =≠数.基本方法归纳:判断一个函数是否是一次函数关键是看它的k 是否不为0和自变量指数是否为1;而要判断是否为正比例函数还要在一次函数基础上加上b =0这个条件.注意问题归纳:当k 及自变量x 的指数含字母参数时,要同时考虑k 0及指数为1.≠【例1】(2019广西梧州市,第4题,3分)下列函数中,正比例函数是( )A .y =﹣8xB .yC .y =8x 2D .y =8x ﹣48x=归纳 2:一次函数的图像基础知识归纳:所有一次函数的图像都是一条直线;一次函数的图像是经过点(0,b )的直b kx y +=线;正比例函数的图像是经过原点(0,0)的直线.kx y =k >0,b >0时,图像经过一、二、三象限,y 随x 的增大而增大.k >0,b <0时,图像经过一、三、四象限,y 随x 的增大而增大.k <0,b >0时,图像经过一、二、四象限,y 随x 的增大而减小.k <0,b <0时,图像经过二、三、四象限,y 随x 的增大而减小.当b =0时,一次函数变为正比例函数,正比例函数是一次函数的特例.基本方法归纳:一次函数是由正比例函数上下平移得到的,要判断一次函数经过的象b kx y +=kx y =限,先由k 的正负判断是过一、三象限还是过二、四象限,再由b 的正负得向上平移还是向下平移,从而得出所过象限.而增减性只由k 的正负决定,与b 的取值无关.注意问题归纳:准确抓住k 、b 的正负与一次函数图象的关系是解答关键.【例2】(2019广安,第6题,3分)一次函数y =2x ﹣3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、三、四D .一、二、四归纳 3:正比例函数和一次函数解析式的确定基础知识归纳:确定一个正比例函数,就是要确定正比例函数定义式(k 0)中的常数k .确定kx y =≠一个一次函数,需要确定一次函数定义式(k 0)中的常数k 和b .解这类问题的一般方法是b kx y +=≠待定系数法.基本方法归纳:求正比例函数解析式只需一个点的坐标,而求一次函数解析式需要两个点的坐标.注意问题归纳:数形结合思想,将线段长度,图形面积与点的坐标联系起来是关键,同时注意坐标与线段间的转化时符号的处理.【例3】(2019江苏省盐城市,第16题,3分)如图,在平面直角坐标系中,一次函数y =2x ﹣1的图象分别交x 、y 轴于点A 、B ,将直线AB 绕点B 按顺时针方向旋转45°,交x 轴于点C ,则直线BC 的函数表达式是 .归纳 4:一次函数图象与坐标轴围成的三角形的面积基础知识归纳:直线y =kx +b 与x 轴的交点坐标为(,0),与y 轴的交点坐标为(0,b );直线与两b k-坐标轴围成的三角形的面积为S △=||·|b |=.12b k-22||b k 基本方法归纳:直线与两坐标轴交点是关键.注意问题归纳:对于 k 不明确时要分情况讨论,否则容易漏解.【例4】(2019辽宁省锦州市,第6题,2分)如图,一次函数y =2x +1的图象与坐标轴分别交于A ,B 两点,O 为坐标原点,则△AOB 的面积为( )A .B .C .2D .41412【例5】(2019上海,第21题,10分)在平面直角坐标系xOy 中(如图),已知一次函数的图象平行于直线y x ,且经过点A (2,3),与x 轴交于点B .12(1)求这个一次函数的解析式;(2)设点C 在y 轴上,当AC =BC 时,求点C 的坐标.归纳 5:一次函数的应用基础知识归纳:主要涉及到经济决策、市场经济等方面的应用.利用一次函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.基本方法归纳:利用函数知识解应用题的一般步骤:(1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案..注意问题归纳:读图时首先要弄清横纵坐标表示的实际意义,还要会将图象上点的坐标转化成表示实际意义的量;自变量取值范围要准确,要满足实际意义.【例6】(2019湖北省恩施州,第22题,10分)某县有A 、B 两个大型蔬菜基地,共有蔬菜700吨.若将A 基地的蔬菜全部运往甲市所需费用与B 基地的蔬菜全部运往甲市所需费用相同.从A 、B 两基地运往甲、乙两市的运费单价如下表:(1)求A 、B 两个蔬菜基地各有蔬菜多少吨?(2)现甲市需要蔬菜260吨,乙市需要蔬菜440吨.设从A 基地运送m 吨蔬菜到甲市,请问怎样调运可使总运费最少?【2019年题组】一、选择题1.(2019广西河池市,第8题,3分)函数y =x ﹣2的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限2.(2019广西梧州市,第6题,3分)直线y =3x +1向下平移2个单位,所得直线的解析式是( )A .y =3x +3B .y =3x ﹣2C .y =3x +2D .y =3x ﹣13.(2019江苏省扬州市,第6题,3分)若点P 在一次函数y =﹣x +4的图象上,则点P 一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限4.(2019湖北省荆门市,第9题,3分)如果函数y =kx +b (k ,b 是常数)的图象不经过第二象限,那么k ,b 应满足的条件是( )A .k ≥0且b ≤0B .k >0且b ≤0C .k ≥0且b <0D .k >0且b <05.(2019上海,第3题,4分)下列函数中,函数值y 随自变量x 的值增大而增大的是( )A .yB .yC .yD .y 3x =3x =-3x =3x=-6.(2019内蒙古包头市,第12题,3分)如图,在平面直角坐标系中,已知A (﹣3,﹣2),B (0,﹣2),C (﹣3,0),M 是线段AB 上的一个动点,连接CM ,过点M 作MN ⊥MC 交y 轴于点N ,若点M 、N 在直线y =kx +b 上,则b 的最大值是( )A .B .C .﹣1D .078-34-7.(2019内蒙古通辽市,第5题,3分)如图,直线y =kx +b (k ≠0)经过点(﹣1,3),则不等式kx +b ≥3的解集为( )A .x >﹣1B .x <﹣1C .x ≥3D .x ≥﹣18.(2019内蒙古通辽市,第9题,3分)关于x 、y 的二元一次方程组的解满足x <y ,则2234x y k x y k -=⎧⎨-=-⎩直线y =kx ﹣k ﹣1与双曲线y 在同一平面直角坐标系中大致图象是( )k x=A . B .C .D .9.(2019内蒙古鄂尔多斯市,第10题,3分)在“加油向未来”电视节目中,王清和李北进行无人驾驶汽车运送货物表演,王清操控的快车和李北操控的慢车分别从A ,B 两地同时出发,相向而行.快车到达B 地后,停留3秒卸货,然后原路返回A 地,慢车到达A 地即停运休息,如图表示的是两车之间的距离y (米)与行驶时间x (秒)的函数图象,根据图象信息,计算a 、b 的值分别为( )A .39,26B .39,26.4C .38,26D .38,26.410.(2019台湾,第16题,3分)小涵与阿嘉一起去咖啡店购买同款咖啡豆,咖啡豆每公克的价钱固定,购买时自备容器则结帐金额再减5元.若小涵购买咖啡豆250公克且自备容器,需支付295元;阿嘉购买咖啡豆x 公克但没有自备容器,需支付y 元,则y 与x 的关系式为下列何者?( )A .y xB .y x 295250=300250=C .y x +5 D .y x +5295250=300250=11.(2019四川省广元市,第10题,3分)如图,过点A 0(0,1)作y 轴的垂线交直线l :y 于点=A 1,过点A 1作直线l 的垂线,交y 轴于点A 2,过点A 2作y 轴的垂线交直线l 于点A 3,…,这样依次下去,得到△A 0A 1A 2,△A 2A 3A 4,△A 4A 546,…,其面积分别记为S 1,S 2,S 3,…,则S 100为( )A .)100B .(100C .4199D .239512.(2019四川省雅安市,第12题,3分)如图,在平面直角坐标系中,直线l 1:y +1与直线l 2:y =交于点A 1,过A 1作x 轴的垂线,垂足为B 1,过B 1作l 2的平行线交l 1于A 2,过A 2作x 轴的垂线,=垂足为B 2,过B 2作l 2的平行线交l 1于A 3,过A 3作x 轴的垂线,垂足为B 3…按此规律,则点A n 的纵坐标为( )A .()nB .()n +1C .()n ﹣1D .32123212+312n -13.(2019山东省东营市,第8题,3分)甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s (米)与时间t (秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是( )A .乙队率先到达终点B .甲队比乙队多走了126米C .在47.8秒时,两队所走路程相等D .从出发到13.7秒的时间段内,乙队的速度慢14.(2019德州,第11题,4分)在下列函数图象上任取不同两点P 1(x 1,y 1)、P 2(x 2,y 2),一定能使0成立的是( )2121y y x x --<A .y =3x ﹣1(x <0) B .y =﹣x 2+2x ﹣1(x >0)C .y (x >0) D .y =x 2﹣4x ﹣1(x <0)=15.(2019枣庄,第4题,3分)如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过点P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是( )A .y =﹣x +4B .y =x +4C .y =x +8D .y =﹣x +816.(2019聊城,第10题,3分)某快递公司每天上午9:00﹣10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间x (分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为( )A .9:15B .9:20C .9:25D .9:3017.(2019广西桂林市,第12题,3分)如图,四边形ABCD 的顶点坐标分别为A (﹣4,0),B (﹣2,﹣1),C (3,0),D (0,3),当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线l 所表示的函数表达式为( )A .y xB .y xC .y =x +1D .y x 1110=65+23=13+54=32+18.(2019浙江省绍兴市,第6题,4分)若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于( )A .﹣1B .0C .3D .419.(2019湖北省咸宁市,第7题,3分)已知点A (﹣1,m ),B (1,m ),C (2,m ﹣n )(n >0)在同一个函数的图象上,这个函数可能是( )A .y =xB .yC .y =x 2D .y =﹣x 22x=-20.(2019湖北省荆州市,第6题,3分)若一次函数y =kx +b 的图象不经过第二象限,则关于x 的方程x 2+kx +b =0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定21.(2019湖北省鄂州市,第10题,3分)如图,在平面直角坐标系中,点A 1、A 2、A 3…A n 在x 轴上,B 1、B 2、B 3…B n 在直线y 上,若A 1(1,0),且△A 1B 1A 2、△A 2B 2A 3…△A n B n A n +1都是等边三角形,=从左到右的小三角形(阴影部分)的面积分别记为S 1、S 2、S 3…S n .则S n 可表示为( )A .22B .22n ﹣C .22n ﹣D .22n ﹣22.(2019湖南省邵阳市,第7题,3分)一次函数y 1=k 1x +b 1的图象l 1如图所示,将直线l 1向下平移若干个单位后得直线l 2,l 2的函数表达式为y 2=k 2x +b 2.下列说法中错误的是( )A .k 1=k 2B .b 1<b 2C .b 1>b 2D .当x =5时,y 1>y 223.(2019贵州省遵义市,第9题,4分)如图所示,直线l 1:y x +6与直线l 2:y x ﹣2交于点P 32=52=-(﹣2,3),不等式x +6x ﹣2的解集是( )3252->A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣224.(2019辽宁省辽阳市,第10题,3分)一条公路旁依次有A,B,C三个村庄,甲乙两人骑自行车分别从A村、B村同时出发前往C村,甲乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B两村相距10km;②出发1.25h后两人相遇;③甲每小时比乙多骑行8km;④相遇后,乙又骑行了15min或65min时两人相距2km.其中正确的个数是( )A.1个 B.2个 C.3个 D.4个二、填空题25.(2019内蒙古鄂尔多斯市,第15题,3分)如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(4,4),A2(8,0)组成的折线依次平移8,16,24,…个单位得到的,直线y=kx+2与此折线有2n(n≥1且为整数)个交点,则k的值为.26.(2019四川省成都市,第13题,4分)已知一次函数y=(k﹣3)x+1的图象经过第一、二、四象限,则k的取值范围是.27.(2019四川省攀枝花市,第16题,4分)正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…按如图所示的方式放置,点A1,A2,A3,…和点B1,B2,B3,…分别在直线y=kx+b(k>0)和x轴上.已知点A1(0,1),点B1(1,0),则C5的坐标是 .28.(2019山东省泰安市,第17题,4分)在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n个正方形对角线长的和是.29.(2019山东省济南市,第17题,4分)某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多 元.30.(2019滨州,第18题,5分)如图,直线y =kx +b (k <0)经过点A (3,1),当kx +b x 时,x 的取13<值范围为.31.(2019山东省潍坊市,第14题,3分)当直线y =(2﹣2k )x +k ﹣3经过第二、三、四象限时,则k 的取值范围是.32.(2019山东省烟台市,第16题,3分)如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为.33.(2019山东省菏泽市,第14题,3分)如图,直线y x ﹣3交x 轴于点A ,交y 轴于点B ,点P 34=-是x 轴上一动点,以点P 为圆心,以1个单位长度为半径作⊙P ,当⊙P 与直线AB 相切时,点P 的坐标是.34.(2019江苏省徐州市,第18题,3分)函数y =x +1的图象与x 轴、y 轴分别交于A 、B 两点,点C 在x 轴上.若△ABC 为等腰三角形,则满足条件的点C 共有个.35.(2019江苏省无锡市,第14题,2分)某个函数具有性质:当x >0时,y 随x 的增大而增大,这个函数的表达式可以是(只要写出一个符合题意的答案即可).36.(2019湖北省襄阳市,第13题,3分)从2,3,4,6中随机选取两个数记作a 和b (a <b ),那么点(a ,b )在直线y =2x 上的概率是.37.(2019湖北省鄂州市,第14题,3分)在平面直角坐标系中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为:dP (3,﹣3)到直线y x 的距离为 .23=-53+38.(2019湖南省株洲市,第18题,3分)如图所示,在平面直角坐标系xOy 中,在直线x =1处放置反光镜Ⅰ,在y 轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB ,其中点A (0,1),点B 在点A 上方,且AB =1,在直线x =﹣1处放置一个挡板Ⅲ,从点O 发出的光线经反光镜Ⅰ反射后,通过缺口AB 照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为.39.(2019贵州省贵阳市,第12题,4分)在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组的解是.1122y k x b y k x b -=⎧⎨-=⎩40.(2019贵州省黔东南州,第19题,3分)如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b<1的解集为.41.(2019辽宁省丹东市,第15题,3分)如图,在平面直角坐标系中,点A,C分别在x轴、y轴上,四边形ABCO是边长为4的正方形,点D为AB的中点,点P为OB上的一个动点,连接DP,AP,当点P 满足DP+AP的值最小时,直线AP的解析式为 .42.(2019辽宁省大连市,第16题,3分)甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时间x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x(单位:min)的函数图象,则a﹣b= .43.(2019重庆A ,第17题,4分)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是米.44.(2019重庆,第17题,4分)一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人54之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为米.三、解答题45.(2019内蒙古赤峰市,第24题,12分)阅读下面材料:我们知道一次函数y =kx +b (k ≠0,k 、b 是常数)的图象是一条直线,到高中学习时,直线通常写成Ax+By+C=0(A≠0,A、B、C是常数)的形式,点P(x0,y0)到直线Ax+By+C=0的距离可用公式d例如:求点P(3,4)到直线y=﹣2x+5的距离.解:∵y=﹣2x+5,∴2x+y﹣5=0,其中A=2,B=1,C=﹣5,∴点P(3,4)到直线y=﹣2x+5的距离为:d=根据以上材料解答下列问题:(1)求点Q(﹣2,2)到直线3x﹣y+7=0的距离;(2)如图,直线y=﹣x沿y轴向上平移2个单位得到另一条直线,求这两条平行直线之间的距离.46.(2019北京,第25题,5分)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.47.(2019吉林省,第23题,8分)甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地.甲、乙两车距B地的路程y(km)与各自行驶的时间x(h)之间的关系如图所示.(1)m= ,n= ;(2)求乙车距B地的路程y关于x的函数解析式,并写出自变量x的取值范围;(3)当甲车到达B地时,求乙车距B地的路程.48.(2019吉林省长春市,第21题,8分)已知A、B两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为千米/时,a= ,b= .(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.49.(2019四川省乐山市,第21题,10分)如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(﹣1,a).(1)求直线l1的解析式;(2)求四边形PAOC的面积.50.(2019四川省内江市,第26题,12分)某商店准备购进A、B两种商品,A种商品毎件的进价比B种商品每件的进价多20元,用3000元购进A种商品和用1800元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A、B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决定对每件A种商品售价优惠m(10<m<20)元,B种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.51.(2019四川省南充市,第19题,6分)现有四张完全相同的不透明卡片,其正面分别写有数字﹣2,﹣1,0,2,把这四张卡片背面朝上洗匀后放在桌面上.(1)随机的取一张卡片,求抽取的卡片上的数字为负数的概率.(2)先随机抽取一张卡片,其上的数字作为点A的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A的纵坐标,试用画树状图或列表的方法求出点A在直线y=2x上的概率.52.(2019四川省攀枝花市,第24题,12分)在平面直角坐标系xOy中,已知A(0,2),动点P在y的图象上运动(不与O重合),连接AP.过点P作PQ⊥AP,交x轴于点Q,连接AQ.(1)求线段AP长度的取值范围;(2)试问:点P运动的过程中,∠QAP是否为定值?如果是,求出该值;如果不是,请说明理由.(3)当△OPQ为等腰三角形时,求点Q的坐标.53.(2019四川省雅安市,第20题,9分)某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:若用360元购进甲种商品的件数与用180元购进乙种商品的件数相同.(1)求甲、乙两种商品的进价是多少元?(2)若超市销售甲、乙两种商品共50件,其中销售甲种商品为a件(a≥30),设销售完50件甲、乙两种商品的总利润为w元,求w与a之间的函数关系式,并求出w的最小值.54.(2019宁夏,第25题,10分)在综合与实践活动中,活动小组对学校400米的跑道进行规划设计,跑道由两段直道和两端是半圆弧的跑道组成.其中400米跑道最内圈为400米,两端半圆弧的半径为36米.(π取3.14).(1)求400米跑道中一段直道的长度;(2)在活动中发现跑道周长(单位:米)随跑道宽度(距最内圈的距离,单位:米)的变化而变化.请完成下表:若设x表示跑道宽度(单位:米),y表示该跑道周长(单位:米),试写出y与x的函数关系式:(3)将446米的跑道周长作为400米跑道场地的最外沿,那么它与最内圈(跑道周长400米)形成的区域最多能铺设道宽为1.2米的跑道多少条?55.(2019山东省临沂市,第24题,9分)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.56.(2019德州,第23题,12分)下表中给出A,B,C三种手机通话的收费方式.(1)设月通话时间为x小时,则方案A,B,C的收费金额y1,y2,y3都是x的函数,请分别求出这三个函数解析式.(2)填空:若选择方式A最省钱,则月通话时间x的取值范围为;若选择方式B最省钱,则月通话时间x的取值范围为;若选择方式C最省钱,则月通话时间x的取值范围为;(3)小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,求小王该月的通话时间.57.(2019济宁,第19题,8分)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系.请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段BC所表示的y与x之间的函数解析式,并写出自变量x的取值范围.58.(2019山西省,第19题,8分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x 次,选择方式一的总费用为y 1(元),选择方式二的总费用为y 2(元).(1)请分别写出y 1,y 2与x 之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x 在什么范围时,选择方式一比方式二省钱.59.(2019广州,第19题,10分)已知P (a ≠±b )2221a a b a b=--+(1)化简P ;(2)若点(a ,b )在一次函数y =x 的图象上,求P 的值.60.(2019南京,第23题,8分)已知一次函数y 1=kx +2(k 为常数,k ≠0)和y 2=x ﹣3.(1)当k =﹣2时,若y 1>y 2,求x 的取值范围.(2)当x <1时,y 1>y 2.结合图象,直接写出k 的取值范围.61.(2019天津,第23题,10分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过50kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超过50kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为xkg (x >0).(1)根据题意填表:(2)设在甲批发店花费y 1元,在乙批发店花费y 2元,分别求y 1,y 2关于x 的函数解析式;(3)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为 kg ;②若小王在同一个批发店一次购买苹果的数量为120kg ,则他在甲、乙两个批发店中的 批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的 批发店购买数量多.【2018年题组】一、选择题1.(2018湖南省娄底市,第9题,3分)将直线y =2x ﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .y =2x ﹣4B .y =2x +4C .y =2x +2D .y =2x ﹣22.(2018湖南省常德市,第4题,3分)若一次函数y =(k ﹣2)x +1的函数值y 随x 的增大而增大,则( )A .k <2B .k >2C .k >0D .k <03.(2018辽宁省本溪市,第7题,3分)若一次函数y =kx +b (k ≠0)的图象经过第一、三、四象限,则k ,b 满足( )A .k >0,b <0B .k >0,b >0C .k <0,b >0D .k <0,b <04.(2018辽宁省辽阳市,第8题,3分)如图,直线y =ax +b (a ≠0)过点A (0,4),B (﹣3,0),则方程ax +b =0的解是( )A .x =﹣3B .x =4C .xD .x 43=-34=-5.(2018贵州省遵义市,第7题,3分)如图,直线y =kx +3经过点(2,0),则关于x 的不等式kx +3>0的解集是( )A .x >2B .x <2C .x ≥2D .x ≤26.(2018内蒙古呼和浩特市,第6题,3分)若以二元一次方程x +2y ﹣b =0的解为坐标的点(x ,y )都在直线y =﹣x +b ﹣1上,则常数b =( )12A . B .2 C .﹣1 D .1127.(2018四川省南充市,第7题,3分)直线y =2x 向下平移2个单位长度得到的直线是( )A .y =2(x +2)B .y =2(x ﹣2)C .y =2x ﹣2D .y =2x +28.(2018四川省资阳市,第9题,3分)已知直线y 1=kx +1(k <0)与直线y 2=mx (m >0)的交点坐标为(,m ),则不等式组mx ﹣2<kx +1<mx 的解集为( )1212A .xB .C .xD .012>1322x <<32<32x <<9.(2018广西玉林市,第5题,3分)等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数10.(2018江苏省宿迁市,第8题,3分)在平面直角坐标系中,过点(1,2)作直线l ,若直线l 与两坐标轴围成的三角形面积为4,则满足条件的直线l 的条数是( )A .5B .4C .3D .211.(2018辽宁省辽阳市,第10题,3分)晓琳和爸爸到太子河公园运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,晓琳继续前行5分钟后也原路返回,两人恰好同时到家.晓琳和爸爸在整个运动过程中离家的路程y 1(米),y 2(米)与运动时间x (分)之间的函数关系如图所示,下列结论:①两人同行过程中的速度为200米/分;②m 的值是15,n 的值是3000;③晓琳开始返回时与爸爸相距1800米;④运动18分钟或30分钟时,两人相距900米.其中正确结论的个数是( )。
的2的0的1的3的年的中的考的数的学的专的题的复的习的第的十的二的讲的:的一的次的函的数的的【的基的础的知的识的回的顾的】的一、的一的次的函的数的的的定的义的:的的的的的一的般的的的:的如的果的y的=的(的的的的的的)的即的y的叫的x的的的一的次的函的数的的特的别的的的:的当的b的=的时的,的一的次的函的数的就的变的为的y的-的k的x的(的k的≠的0的)的,的这的时的y的叫的x的的的的【的赵的老的师的提的醒的:的正的比的例的函的数的是的一的次的函的数的,的反的之的不的一的定的成的立的,的是的有的当的b的=的0的时的,的它的才的是的正的比的例的函的数的】的的二的、的一的次的函的数的的的同的象的及的性的质的:的的1的、的一的次的函的数的y的=的k的x的+的b的的的同的象的是的经的过的点的(的0的,的b的)的(的-的,的0的)的的的一的条的的正的比的例的函的数的y的=的的k的x的的的同的象的是的经的过的点的的和的的的的一的条的直的线的的【的赵的老的师的提的醒的:的同的为的一的次的函的数的的的同的象的是的一的条的直的线的,的所的以的函的数的同的象的是的需的返的取的的个的特的殊的的的点的过的这的两的个的点的画的一的条的直的线的即的可的】的的2的、的正的比的例的函的数的y的=的的k的x的(的k的≠的0的)的当的k的>的0的时的,的其的同的象的过的、的的象的限的,的时的y的随的x的的的增的大的而的的的的的的的的的的的的的的的的的的的的的的的的)的当的k的<的0的时的,的其的同的象的过的的、的的象的限的,的时的y的随的x的的的增的大的而的3、的一的次的函的数的y的=的的k的x的+的b的,的同的象的及的函的数的性的质的的①的、的k的>的0的b的>的0的过的象的限的的k的>的0的b的<的0的过的象的限的的k的<的0的b的>的0的过的象的限的的k的<的0的b的>的0的过的象的限的的4的、的若的直的线的y的=的的k的1的x的+的b的1的与的l的1的y的=的的k的2的x的+的b的2的平的解的,的则的k的1的k的2的,的若的k的1的≠的k的2的,的则的l的1的与的l的2的的的的的【的赵的老的师的提的醒的:的y的随的x的的的变的化的情的况的,的只的取的决的于的的的的符的号的与的的的无的关的,的而的直的线的的的平的移的,的只的改的变的的的值的的的的值的不的变的】的的三的、的用的系的数的法的求的一的次的函的数的解的析的式的:的的关的键的:的确的定的一的次的函的数的y的=的的k的x的+的b的中的的的字的母的与的的的的值的的的的步的骤的:的1的、的设的一的次的函的数的表的达的式的的的的的的的的的的2的、的将的x的,的y的的的对的应的值的或的点的的的坐的标的代的入的表的达的式的的的的的的的的的的3的、的解的关的于的系的数的的的方的程的或的方的程的组的的的的的的的的的的4的、的将的所的求的的的系的数的代的入的等的设的函的数的表的达的式的中的的四的、的一的次的函的数的与的一的元的一的次的方的程的,的一的元的一的次的不的等的式的和的二的元的一的次的方的程的组的的的的的1的、的一的次的函的数的与的一的元的一的次的方的程的:的一的般的地的将的x的=的或的y的解的一的元的一的次的方的程的求的直的线的与的坐的标的轴的的的交的点的坐的标的,的代的入的y的=的的k的x的+的b的中的的2的、的一的次的函的数的与的一的元的一的次的不的等的式的:的k的x的+的b的>的0的或的k的x的+的b的<的0的即的一的次的函的数的同的象的位的于的x的轴的上的方的或的下的方的时的相的应的的的x的的的取的值的范的围的,的反的之的也的成的立的的3的、的一的次的函的数的与的二的元的一的次的方的程的组的:的两的条的直的线的的的交的点的坐的标的即的为的两的个的一的次的函的数的列的二的元的一的次的方的程的组的的的解的,的反的之的根的据的方的程的组的的的解的可的求的两的条的直的线的的的交的点的坐的标的的【的赵的老的师的提的醒的:的1的、的一的次的函的数的与的三的者的之的间的的的关的系的问的题的一的定的要的结的合的同的象的去的解的决的的2的、的在的一的次的函的数的中的讨的论的交的点的问的题的即的是的讨的论的一的元的一的次的不的等的式的的的解的集的或的二的元的一的次的方的程的组的解的得的问的题的】的的五的、的一的次的函的数的的的应的用的的的一的般的步的骤的:的1的、的设的定的问的题的中的的的变的量的的的的的2的、的建的立的一的次的函的数的关的系的式的的的的的的的的3的、的确的定的取的值的范的围的的的的的的的的4的、的利的用的函的数的性的质的解的决的问的题的的的5的、的作的答的的【的赵的老的师的提的醒的:的一的次的函的数的的的应的用的多的与的二的元的一的次的方的程的组的或的一的元的一的次的不的等的式的(的组的)的相的联的系的,的经的常的涉的及的交的点的问的题的,的方的案的涉的及的问的题的等的】的的【的重的点的考的点的例的析的】的的的考的点的一的:的一的次的函的数的的的同的象的和的性的质的的例的1的的的(的2的0的1的2的•的黄的石的)的已的知的反的比的例的函的数的y的=的(的b的为的常的数的)的,的当的x的>的0的时的,的y的随的x的的的增的大的而的增的大的,的则的一的次的函的数的y的=的x 的+的b的的的图的象的不的经的过的第的几的象的限的.的(的的的)的的A的.的一的的B的.的二的的C的.的三的的D的.的四的的的思的路的分的析的:的先的根的据的反的比的例的函的数的的的增的减的性的判的断的出的b的的的符的号的,的再的根的据的一的次的函的数的的的图的象的与的系的数的的的关的系的判的断的出的次的函的数的y的=的x的+的b 的的的图的象的经的过的的的象的限的即的可的.的的解的:的∵的反的比的例的函的数的y的=的(的b的为的常的数的)的,的当的x的>的0的时的,的y的随的x 的的的增的大的而的增的大的,的的∴的b的<的0的,的的∵的一的次的函的数的y的=的x的+的b的中的k的=的1的>的0的,的b的<的0的,的的∴的此的函的数的的的图的象的经的过的一的、的三的、的四的限的,的的∴的此的函的数的的的图的象的不的经的过的第的二的象的限的.的的故的选的B的.的的点的评的:的本的题的考的查的的的是的一的次的函的数的的的图的象的与的系的数的的的关的系的及的反的比的例的函的数的的的性的质的,的一的次的函的数的y的=的k 的x的+的b的的的图的象的有的四的种的情的况的:的的①的当的k的>的0的,的b的>的0的,的函的数的y 的=的k的x的+的b的的的图的象的经的过的第的一的、的二的、的三的象的限的,的y的的的值的随的x的的的值的增的大的而的增的大的;的的②的当的k的>的0的,的b的<的0的,的函的数的y 的=的k的x的+的b的的的图的象的经的过的第的一的、的三的、的四的象的限的,的y的的的值的随的x的的的值的增的大的而的增的大的;的的③的当的k的<的0的,的b的>的0的时的,的函的数的y的=的k的x的+的b的的的图的象的经的过的第的一的、的二的、的四的象的限的,的y的的的值的随的x的的的值的增的大的而的减的小的;的的④的当的k的<的0的,的b的<的0的时的,的函的数的y的=的k的x的+的b的的的图的象的经的过的第的二的、的三的、的四的象的限的,的y的的的值的随的x的的的值的增的大的而的减的小的.的的例的2的的的(的2的0的1的2的•的上的海的)的已的知的正的比的例的函的数的y的=的k的x的(的k的≠的0的)的,的点的(的2的,的-的3的)的在的函的数的上的,的则的y的随的x的的的增的大的而的(的增的大的或的减的小的)的.的的思的路的分的析的:的首的先的利的用的待的定的系的数的法的确的定的正的比的例的函的数的解的析的式的,的再的根的据的正的比的例的函的数的的的性的质的:的k的>的0的时的,的y的随的x的的的增的大的而的增的大的,的k的<的0的时的,的y的随的x的的的增的大的而的减的小的确的定的答的案的.的的解的:的∵的点的(的2的,的-的3的)的在的正的比的例的函的数的y的=的k的x的(的k的≠的0的)的上的,的的∴的2的k的=的-的3的,的的解的得的:的k的=的-的,的的∴的正的比的例的函的数的解的析的式的是的:的y的=的-的x的,的的∵的k的=的-的<的0的,的的∴的y的随的x的的的增的大的而的减的小的,的的故的答的案的为的:的减的小的.的的点的评的:的此的题的主的要的考的查的了的正的比的例的函的数的的的性的质的,的以的及的待的定的系的数的法的确的定的正的比的例的函的数的解的析的式的,的关的键的是的掌的握的反的比的例的函的数的的的性的质的.的的对的应的训的练的的1的.的(的2的0的1的2的•的沈的阳的)的一的次的函的数的y的=的-的x的+的2的图的象的经的过的(的的的)的的A的.的一的、的二的、的三的象的限的的的的的的的的的的B的.的一的、的二的、的四的象的限的的C的.的一的、的三的、的四的象的限的的的的的的的的的的D的.的二的、的三的、的四的象的限的的的1的.的B的的2的.的(的2的0的1的2的•的贵的阳的)的在的正的比的例的函的数的y的=的-的3的m的x的中的,的函的数的y的的的值的随的x的值的的的增的大的而的增的大的,的则的P的(的m的,的5的)的在的第的象的限的.的的2的.的二的的2的.的解的:的∵的正的比的例的函的数的y的=的-的3的m的x的中的,的函的数的y的的的值的随的x的值的的的增的大的而的增的大的,的的∴的-的3的m的>的0的,的解的得的m的<的0的,的的∴的点的P的(的m的,的5的)的在的第的二的象的限的.的的故的答的案的为的:的二的.的的的考的点的二的:的一的次的函的数的解的析的式的的的确的定的的例的3的的的(的2的0的1的2的•的聊的城的)的如的图的,的直的线的A的B的与的x的轴的交的于的点的A的(的1的,的0的)的,的与的y的轴的交的于的点的B的(的0的,的-的2的)的.的的(的1的)的求的直的线的A的B的的的解的析的式的;的的(的2的)的若的直的线的A的B的上的的的点的C的在的第的一的象的限的,的且的S的△的B的O的C的=的2的,的求的点的C的的的坐的标的.的的思的路的分的析的:的(的1的)的设的直的线的A的B 的的的解的析的式的为的y的=的k的x的+的b的,的将的点的A的(的1的,的0的)的、的点的B的(的0的,的-的2的)的分的别的代的入的解的析的式的即的可的组的成的方的程的组的,的从的而的得的到的A的B的的的解的析的式的;的的(的2的)的设的点的C的的的坐的标的为的(的x的,的y的)的,的根的据的三的角的形的面的积的公的式的以的及的S的△的B的O的C的=的2的求的出的C的的的横的坐的标的,的再的代的入的直的线的即的可的求的出的y 的的的值的,的从的而的得的到的其的坐的标的.的的解的:的(的1的)的设的直的线的A的B的的的解的析的式的为的y的=的k的x的+的b的,的的∵的直的线的A的B的过的点的A的(的1的,的0的)的、的点的B的(的0的,的-的2的)的,的的∴的的k的+的b的=的0的的b的=的-的2的的的的,的的解的得的的k的=的2的的b的=的-的2的的的的,的的∴的直的线的A的B的的的解的析的式的为的y的=的2的x的-的2的.的的(的2的)的设的点的C的的的坐的标的为的(的x的,的y的)的,的的∵的S的△的B的O的C的=的2的,的的∴的•的2的•的x的=的2的,的的解的得的x的=的2的,的的∴的y的=的2的×的2的-的2的=的2的,的的∴的点的C的的的坐的标的是的(的2的,的2的)的.的的点的评的:的本的题的考的查的了的待的定的系的数的法的求的函的数的解的析的式的,的解的答的此的题的不的仅的要的熟的悉的函的数的图的象的上的点的的的坐的标的特的征的,的还的要的熟的悉的三的角的形的的的面的积的公的式的.的的对的应的训的练的的3的.的(的2的0的1的2的•的湘的潭的)的已的知的一的次的函的数的y的=的k的x的+的b的(的k的≠的0的)的图的象的过的点的(的0的,的2的)的,的且的与的两的坐的标的轴的围的成的的的三的角的形的面的积的为的2的,的求的此的一的次的函的数的的的解的析的式的.的的3的.的解的:的∵的一的次的函的数的y的=的k的x的+的b的(的k的≠的0的)的图的象的过的点的(的0的,的2的)的,的的∴的b的=的2的,的的令的y的=的0的,的则的x的=的-的2的的k的的,的的∵的函的数的图的象的与的两的坐的标的轴的围的成的的的三的角的形的面的积的为的2的,的的∴的×的2的×的|的|的=的2的,的即的|的|的=的2的,的的当的k的>的0的时的,的=的2的,的解的得的k的=的1的;的的当的k的<的0的时的,的-的=的2的,的解的得的k的=的-的1的.的的故的此的函的数的的的解的析的式的为的:的y的=的x的+的2的或的y的=的-的x的+的2的.的的的考的点的三的:的一的次的函的数的与的方的程的(的组的)的不的等的式的(的组的)的的的关的系的的例的4的的的(的2的0的1的2的•的恩的施的州的)的如的图的,的直的线的y的=的k的x的+的b的经的过的A的(的3的,的1的)的和的B的(的6的,的0的)的两的点的,的则的不的等的式的组的0的<的k的x的+的b 的<的x的的的解的集的为的.的的思的路的分的析的:的将的A的(的3的,的1的)的和的B的(的6的,的0的)的分的别的代的入的y的=的k的x的+的b的,的求的出的k的、的b的的的值的,的再的解的不的等的式的组的0的<的k的x的+的b的<的x的的的解的集的.的的解的:的将的A的(的3的,的1的)的和的B的(的6的,的0的)的分的别的代的入的y的=的k的x的+的b的得的,的的的的,的的解的得的的的,的的则的函的数的解的析的式的为的y的=的-的x的+的2的.的的可的得的不的等的式的组的,的的解的得的3的<的x的<的6的.的的故的答的案的为的3的<的x的<的6的.的的点的评的:的本的题的考的查的了的一的次的函的数的与的一的元的一的次的不的等的式的,的利的用的待的定的系的数的法的求的出的函的数的解的析的式的是的解的题的的的关的键的.的的例的5的的的(的2的0的1的2的•的贵的阳的)的如的图的,的一的次的函的数的y的=的k的1的x的+的b 的1的的的图的象的与的y的=的k的2的x的+的b的2的的的图的象的相的交的于的点的P的,的则的方的程的组的的的的解的是的(的的的)的的A的.的的的的的的B的.的的的的的C的.的的的的的的的D的.的的思的路的分的析的:的根的据的图的象的求的出的交的点的P的的的坐的标的,的根的据的点的P的的的坐的标的即的可的得的出的答的案的.的的解的:的∵的由的图的象的可的知的:的一的次的函的数的y的=的k的1的x的+的b的1的的的图的象的与的y的=的k的2的x的+的b的2的的的图的象的相的交的于的点的P的的的坐的标的是的(的-的2的,的3的)的,的的∴的方的程的组的的的解的是的,的的故的选的A的.的的点的评的:的本的题的考的查的了的对的一的次的函的数的与的二的元的一的次的方的程的组的的的关的系的的的理的解的和的运的用的,的主的要的考的查的学的生的的的观的察的图的形的的的能的力的和的理的解的能的力的,的题的目的比的较的典的型的,的但的是的一的道的比的较的容的易的出的错的的的题的目的.的的对的应的训的练的的4的.的(的2的0的1的2的•的桂的林的)的如的图的,的函的数的y的=的a的x的-的1的的的图的象的过的点的(的1的,的2的)的,的则的不的等的式的a的x的-的1的>的2的的的解的集的是的.的的4的.的x的>的1的的4的.的解的:的方的法的一的∵的把的(的1的,的2的)的代的入的y的=的a的x的-的1的得的:的2的=的a 的-的1的,的的解的得的:的a的=的3的,的的∴的y的=的3的x的-的1的>的2的,的的解的得的:的x的>的1的,的的方的法的二的:的根的据的图的象的可的知的:的y的=的a的x的-的1的>的2的的的x的的的范的围的是的x 的>的1的,的的即的不的等的式的a的x的-的1的>的2的的的解的集的是的x的>的1的,的的故的答的案的为的:的x的>的1的.的的点的评的:的本的题的考的查的了的一的次的函的数的与的一的元的一的次的不的等的式的的的应的用的,的主的要的考的查的学的生的的的观的察的图的形的的的能的力的和的理的解的能的力的,的能的把的一的次的函的数的与的一的元的一的次的不的等的式的结的合的起的来的是的解的此的题的的的关的键的.的的5的.的(的2的0的1的2的•的呼的和的浩的特的)的下的面的四的条的直的线的,的其的中的直的线的上的每的个的点的的的坐的标的都的是的二的元的一的次的方的程的x的-的2的y的=的2的的的解的是的(的的的)的的A的.的的的的的的的的的的的的的的的的的的B的.的的C的.的的的的的的的的的的的的的的的的的的D的.的的5的.的C的的解的:的∵的x的-的2的y的=的2的,的的∴的y的=的x的-的1的,的的∴的当的x的=的0的,的y的=的-的1的,的当的y的=的0的,的x的=的2的,的的∴的一的次的函的数的y的=的x的-的1的,的与的y的轴的交的于的点的(的0的,的-的1的)的,的与的x的轴的交的于的点的(的2的,的0的)的,的的即的可的得的出的C的符的合的要的求的,的的故的选的:的C的.的的考的点的四的:的一的次的函的数的的的应的用的的例的6的的的(的2的0的1的2的•的遵的义的)的为的了的促的进的节的能的减的排的,的倡的导的节的约的用的电的,的某的市的将的实的行的居的民的生的活的用的电的阶的梯的电的价的方的案的,的图的中的折的线的反的映的了的每的户的每的月的用的电的电的费的y的(的元的)的与的用的电的量的x的(的度的)的间的的的函的数的关的系的式的.的的(的1的)的根的据的图的象的,的阶的梯的电的价的方的案的分的为的三的个的档的次的,的填的写的下的表的:的的(的2的)的小的明的家的某的月的用的电的1的2的0的度的,的需的交的电的费的元的;的的(的3的)的求的第的二的档的每的月的电的费的y的(的元的)的与的用的电的量的x的(的度的)的之的间的的的函的数的关的系的式的;的的(的4的)的在的每的月的用的电的量的超的过的2的3的0的度的时的,的每的多的用的1的度的电的要的比的第的二的档的多的付的电的费的m的元的,的小的刚的家的某的月的用的电的2的9的0的度的,的交的电的费的1的5的3的元的,的求的m的的的值的.的的思的路的分的析的:的(的1的)的利的用的函的数的图的象的可的以的得的出的,的阶的梯的电的价的方的案的分的为的三的个的档的次的,的利的用的横的坐的标的可的得的出的:的第的二的档的,的第的三的档的中的x的的的取的值的范的围的;的的(的2的)的根的据的第的一的档的范的围的是的:的0的<的x的≤的1的4的0的,的利的用的图的象的上的点的的的坐的标的得的出的解的析的式的,的进的而的得的出的x的=的1的2的0的时的,的求的出的y的的的值的;的的(的3的)的设的第的二的档的每的月的电的费的y的(的元的)的与的用的电的量的x的(的度的)的之的间的的的函的数的关的系的式的为的:的y的=的a的x的+的c的,的将的(的1的4的0的,的6的3的)的,的(的2的3的0的,的1的0的8的)的代的入的得的出的即的可的;的的(的4的)的分的别的求的出的第的二的、的三的档的每的度的电的的的费的用的,的进的而的得的出的m的的的值的即的可的.的的解的:的(的1的)的利的用的函的数的图的象的可的以的得的出的,的阶的梯的电的价的方的案的分的为的三的个的档的次的,的利的用的横的坐的标的可的得的出的:的的第的二的档的:的1的4的0的<的x的≤的2的3的0的,的第的三的档的x的>的2的3的0的;的的(的2的)的根的据的第的一的档的范的围的是的:的0的<的x的≤的1的4的0的,的的根的据的图的象的上的点的的的坐的标的得的出的:的设的解的析的式的为的:的y的=的k的x的,的将的(的1的4的0的,的6的3的)的代的入的得的出的:的k的=的=的0的.的4的5的,的的故的y的=的0的.的4的5的x的,的的当的x的=的1的2的0的,的y的=的0的.的4的5的×的1的2的0的=的5的4的(的元的)的,的的故的答的案的为的:的5的4的;的的(的3的)的设的第的二的档的每的月的电的费的y的(的元的)的与的用的电的量的x的(的度的)的之的间的的的函的数的关的系的式的为的:的y的=的a的x的+的c的,的的将的(的1的4的0的,的6的3的)的,的(的2的3的0的,的1的0的8的)的代的入的得的出的:的的的的的,的的解的得的:的的,的的则的第的二的档的每的月的电的费的y的(的元的)的与的用的电的量的x的(的度的)的之的间的的的函的数的关的系的式的为的:的y的=的x的-的7的(的1的4的0的<的x的≤的2的3的0的)的;的的(的4的)的根的据的图的象的可的得的出的:的用的电的2的3的0的度的,的需的要的付的费的1的0的8的元的,的用的电的1的4的0的度的,的需的要的付的费的6的3的元的,的的故的,的1的0的8的-的6的3的=的4的5的(的元的)的,的2的3的0的-的1的4的0的=的9的0的(的度的)的,的的4的5的÷的9的0的=的0的.的5的(的元的)的,的的则的第的二的档的电的费的为的0的.的5的元的/的度的;的的∵的小的刚的家的某的月的用的电的2的9的0的度的,。
第12讲 一次函数的应用及综合问题(本试题满分120分,建议测试时间60分钟)一.选择题(共10小题,每题3分,满分30分)1.(2018·辽阳)如图,直线y=ax+b(a ≠0)过点A (0,4)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=-3B .x=4C .x=﹣43D .x=﹣342.(2019·通辽市)如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-3.(2018·呼和浩特市)若以二元一次方程x+2y ﹣b=0的解为坐标的点(x ,y )都在直线y=﹣12x+b ﹣l 上,则常数b=( ) A .12B .2C .﹣1D .14.(2018·遵义市)如图,直线y=kx+3经过点(2,0),则关于x 的不等式kx+3>0的解集是( )A .x >2B .x <2C .x≥2D .x≤25.如图,一次图数y =﹣x+3与一次函数y =2x+m 图象交于点(2,n ),则关于x 的不等式组3023x x m x -+>⎧⎨+>-+⎩的解集为( )A .x >﹣2B .x <3C .﹣2<x <3D .0<x <36.已知直线y =-x +4与y =x +2如图所示,则方程组42y x y x =-+⎧⎨=+⎩的解为( )A .31x y =⎧⎨=⎩B .13x y =⎧⎨=⎩C .04x y =⎧⎨=⎩D .40x y =⎧⎨=⎩7.一次函数1y kx b =+与2y x a =+的图象如图,则下列结论:①k<0;②a<0;③b<0;④方程kx b x a +=+的解为x=3;⑤当x<3时,12y y <.正确的是( )A .0B .1C .2D .38.直线4y x =+和直线4y x =-+与x 轴围成的三角形的面积是( ) A .32B .64C .16D .89.如图,某电信公司提供了A ,B 两种方案的移动通讯费用y (元)与通话时间x (分)之间的关系,则以下说法正确的是( )①若通话时间少于120分,则A 方案比B 方案便宜 ②若通话时间超过200分,则B 方案比A 方案便宜 ③通讯费用为60元,则B 方案比A 方案的通话时间多④当通话时间是170分钟/时,两种方案通讯费用相等A.1个B.2个C.3个D.4个10.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③二.填空题(共10小题,每题3分,满分30分)11.(2017·贵州黔南州)一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为__________.12.一段抛物线C:y=﹣x2+3x+m(0≤x≤3)与直线y=x+1有唯一公共点,若m为整数,则符合条件的所有m的值的和为_____.13.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_____.14.一次函数1y kx b =+与2y x a =+的图象如图,则下列结论:①k 0<;②0a >;③当3x <时,12y y <,正确的是__________.15.如图,函数3y x =-和4y ax =+的图像相交于点A (m ,3),则不等式34x ax ->+的解集为____.16.如图,已知一次函数y=2x+b 和y=kx ﹣3(k≠0)的图象交于点P ,则二元一次方程组23x y bkx y -=-⎧⎨-=⎩ 的解是_____.17.如图,直线y kx b =+与直线24y x =-+相交,则关于x 、y 的方程组240kx y bx y -=-⎧⎨+-=⎩ 的解是____ .18.已知关于x,y 的方程组4223344a y x b x b a y +=-⎧⎨-=+⎩的解是31x y =⎧⎨=⎩,则直线y ax b =+与坐标轴围成的三角形的面积是__________。
备战2017中考系列:数学2年中考1年模拟第三篇函数☞解读考点知识点名师点晴一次函数与正比例函数1.一次函数会判断一个函数是否为一次函数.2.正比例函数知道正比例函数是特殊的一次函数.3.一次函数的图象知道一次函数的图象是一条直线.4.一次函数的性质会准确判断k的正负、函数增减性和图象经过的象限.一次函数的应用5.一次函数与一元一次方程、二元一次方程组、一元一次不等式(组)的联系会用数形结合思想解决此类问题.6.一次函数图象的应用能根据图象信息,解决相应的实际问题.7.一次函数的综合应用能解决与方程(组)、不等式(组)的相关实际问题.☞考点归纳归纳1:正比例函数和一次函数的概念基础知识归纳:1、一般地,如果(k,b是常数,k0),那么y叫做x的一次函数.特别地,当一次函数中的b为0时,(k为常数,k0).这时,y叫做x的正比例函数.基本方法归纳:判断一个函数是否是一次函数关键是看它的k是否不为0和自变量指数是否为1;而要判断是否为正比例函数还要在一次函数基础上加上b=0这个条件.注意问题归纳:当k及自变量x的指数含字母参数时,要同时考虑k0及指数为1.【例1】某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系.归纳2:一次函数的图像基础知识归纳:所有一次函数的图像都是一条直线;一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线.k>0,b>0时,图像经过一、二、三象限,y随x的增大而增大.k>0,b<0时,图像经过一、三、四象限,y随x的增大而增大.k<0,b>0时,图像经过一、二、四象限,y随x的增大而减小.k<0,b<0时,图像经过二、三、四象限,y随x的增大而减小.当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例.基本方法归纳:一次函数是由正比例函数上下平移得到的,要判断一次函数经过的象限,先由k的正负判断是过一、三象限还是过二、四象限,再由b的正负得向上平移还是向下平移,从而得出所过象限.而增减性只由k的正负决定,与b的取值无关.注意问题归纳:准确抓住k、b的正负与一次函数图象的关系是解答关键.【例2】(2016某某呼和浩特市)已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0B.k>1,b>0C.k>0,b>0D.k>0,b<0归纳3:正比例函数和一次函数解析式的确定基础知识归纳:确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k.确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b.解这类问题的一般方法是待定系数法.基本方法归纳:求正比例函数解析式只需一个点的坐标,而求一次函数解析式需要两个点的坐标.注意问题归纳:数形结合思想,将线段长度,图形面积与点的坐标联系起来是关键,同时注意坐标与线段间的转化时符号的处理.【例3】(2016某某省某某市)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.归纳4:一次函数图象与坐标轴围成的三角形的面积基础知识归纳:直线y=kx+b与x轴的交点坐标为(,0),与y轴的交点坐标为(0,b);直线与两坐标轴围成的三角形的面积为S△=||·|b|=.基本方法归纳:直线与两坐标轴交点是关键.注意问题归纳:对于k不明确时要分情况讨论,否则容易漏解.【例4】(2016某某省某某市)一次函数y=2x﹣4的图象与x轴、y轴分别交于A,B两点,O为原点,则△AOB的面积是()A.2 B.4 C.6 D.8【例5】(2016市)如图,在平面直角坐标系xOy中,过点A(-6,0)的直线与直线;y=2x相交于点B(m,4).(1)求直线的表达式;(2)过动点P(n,0)且垂于x轴的直线与,的交点分别为C,D,当点C位于点D上方时,写出n 的取值X围.归纳5:一次函数的应用基础知识归纳:主要涉及到经济决策、市场经济等方面的应用.利用一次函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.基本方法归纳:利用函数知识解应用题的一般步骤:(1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值X围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案..注意问题归纳:读图时首先要弄清横纵坐标表示的实际意义,还要会将图象上点的坐标转化成表示实际意义的量;自变量取值X围要准确,要满足实际意义.【例6】(2016某某省某某市)A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36天,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值X围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?☞2年中考【2016年题组】一、选择题1.(2016某某巴彦淖尔市)如图,直线l经过第一、二、四象限,l的解析式是y=(m﹣3)x+m+2,则m的取值X围在数轴上表示为()A.B.C.D.2.(2016某某省枣庄市)若关于x的一元二次方程有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.3.(2016某某省某某市)如图,若一次函数y=﹣2x+b的图象交y轴于点A(0,3),则不等式﹣2x+b >0的解集为()A.x>B.x>3 C.x<D.x<34.(2016某某省某某市)定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值X围是()A.0≤m≤1 B.﹣3≤m≤1 C.﹣3≤m≤3 D.﹣1≤m≤05.(2016某某省某某市)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是()A.ab>0 B.a﹣b>0 C.D.a+b>06.(2016某某来宾市)已知直线l1:y=﹣3x+b与直线l2:y=﹣kx+1在同一坐标系中的图象交于点(1,﹣2),那么方程组的解是()A.B.C.D.7.(2016某某某某市)如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2B.x=0C.x=﹣1D.x=﹣38.(2016某某省某某市)一次函数与的图象之间的距离等于3,则b的值为()A.﹣2或4 B.2或﹣4 C.4或﹣6 D.﹣4或69.(2016某某省)已知一次函数和,假设k>0且k'<0,则这两个一次函数的交点在()A.第一象限B.第二象限C.第三象限D.第四象限10.(2016某某省某某市)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5B.y=x+10C.y=﹣x+5D.y=﹣x+1011.(2016某某省某某市)如图,已知直线l:y=2x,分别过x轴上的点A1(1,0)、A2(2,0)、…、A n(n,0),作垂直于x轴的直线交l于点B1、B2、…、B n,将△OA1B1,四边形A1A2B2B1、…、四边形A n﹣1A n B n B n﹣1的面积依次记为S1、S2、…、S n,则S n=()A.n2B.2n+1 C.2n D.2n﹣112.(2016某某省黔南州)王杰同学在解决问题“已知A、B两点的坐标为A(3,﹣2)、B(6,﹣5)求直线AB关于x轴的对称直线A′B′的解析式”时,解法如下:先是建立平面直角坐标系(如图),标出A、B两点,并利用轴对称性质求出A′、B′的坐标分别为A′(3,2),B′(6,5);然后设直线A′B′的解析式为y=kx+b(k≠0),并将A′(3,2)、B′(6,5)代入y=kx+b中,得方程组:,解得,最后求得直线A′B′的解析式为y=x﹣1.则在解题过程中他运用到的数学思想是()A.分类讨论与转化思想B.分类讨论与方程思想C.数形结合与整体思想D.数形结合与方程思想13.(2016某某省某某市)如图,已知点A(﹣8,0),B(2,0),点C在直线上,则使△ABC是直角三角形的点C的个数为()A.1 B.2 C.3 D.414.(2016某某省某某市)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m215.(2016某某某某市)如图,直线与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(,0)D.(,0)二、填空题16.(2016某某市)若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是(写出一个即可).17.(2016某某省内江市)如图所示,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是.18.(2016某某省某某市)已知二元一次方程组的解为,则在同一平面直角坐标系中,直线l1:y=x+5与直线l2:的交点坐标为.19.(2016某某省甘孜州)如图,已知一次函数y=kx+3和y=﹣x+b的图象交于点P(2,4),则关于x 的方程kx+3=﹣x+b的解是.20.(2016某某省眉山市)若函数是正比例函数,则该函数的图象经过第象限.21.(2016某某省某某市)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为cm2.22.(2016某某省资阳市)已知关于x的方程mx+3=4的解为x=1,则直线y=(m﹣2)x ﹣3一定不经过第象限.23.(2016某某省东营市)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b >kx+6的解集是.24.(2016某某省威海市)如图,直线与x轴交于点A,与y轴交于点B,△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,则点B的对应点B′的坐标为.25.(2016某某省某某市)如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为.26.(2016某某省枣庄市)如图,点A的坐标为(﹣4,0),直线与坐标轴交于点B、C,连接AC,如果∠ACD=90°,则n的值为.27.(2016某某省某某市)将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第象限.三、解答题28.(2016某某省某某市)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?29.(2016某某省某某市)我们规定:若=(a,b),=(c,d),则=ac+bd.如=(1,2),=(3,5),则=1×3+2×5=13.(1)已知=(2,4),=(2,﹣3),求;(2)已知=(x﹣a,1),=(x﹣a,x+1),求y=,问y=的函数图象与一次函数y=x﹣1的图象是否相交,请说明理由.30.(2016某某省某某市)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?31.(2016某某省某某市)已知点P(,)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P (﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.32.(2016某某省某某市)某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节”活动计划书书本类别A类B类进价(单位:元)18 12备注1、用不超过16800元购进A、B两类图书共1000本;2.A类图书不少于600本;…(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A、B两类图书的标价;(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?33.(2016某某市)公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(1)设租用甲种货车x辆(x为非负整数),试填写表格.表一:租用甲种货车的数量/辆 3 7 x租用的甲种货车最多运送机器的数量/台135租用的乙种货车最多运送机器的数量/台150表二:租用甲种货车的数量/辆 3 7 x租用甲种货车的费用/元2800租用乙种货车的费用/元280(2)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.34.(2016某某省某某市)如图,在平面直角坐标系xOy中,一次函数的图象与x轴、y 轴分别交于点A、B,把Rt△AOB绕点A顺时针旋转角α(30°<α<180°),得到△AO′B′.(1)当α=60°时,判断点B是否在直线O′B′上,并说明理由;(2)连接OO′,设OO′与AB交于点D,当α为何值时,四边形ADO′B′是平行四边形?请说明理由.35.(2016某某省某某市)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为L/km、L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?36.(2016某某省某某市)2016年3月27日“某某半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回中点万地广场西门.设该运动员离开起点的路程S(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题:(1)求图中a的值;(2)组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次经过C点到第二次经过C点所用的时间为68分钟.①求AB所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?37.(2016某某省某某市)(操作发现】在计算器上输入一个正数,不断地按“”键求算术平方根,运算结果越来越接近1或都等于1.【提出问题】输入一个实数,不断地进行“乘以常数k,再加上常数b”的运算,有什么规律?【分析问题】我们可用框图表示这种运算过程(如图a).也可用图象描述:如图1,在x轴上表示出x1,先在直线y=kx+b上确定点(x1,y1),再在直线y=x上确定纵坐标为y1的点(x2,y1),然后再x轴上确定对应的数x2,…,以此类推.【解决问题】研究输入实数x1时,随着运算次数n的不断增加,运算结果x,怎样变化.(1)若k=2,b=﹣4,得到什么结论?可以输入特殊的数如3,4,5进行观察研究;(2)若k>1,又得到什么结论?请说明理由;(3)①若,b=2,已在x轴上表示出x1(如图2所示),请在x轴上表示x2,x3,x4,并写出研究结论;②若输入实数x1时,运算结果x n互不相等,且越来越接近常数m,直接写出k的取值X围及m的值(用含k,b的代数式表示)38.(2016某某省某某市)根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.39.(2016某某省某某市)在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式;(2)若α为锐角,tanα=,当AE取得最小值时,求正方形OEFG的面积;(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由.40.(2016某某省某某市)快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.41.(2016某某省某某市)某绿色食品某某准备购进A和B两种蔬菜,B种蔬菜每吨的进价比A中蔬菜每吨的进价多0.5万元,经计算用4.5万元购进的A种蔬菜的吨数与用6万元购进的B种蔬菜的吨数相同,请解答下列问题:(1)求A,B两种蔬菜每吨的进价;(2)该公司计划用14万元同时购进A,B两种蔬菜,若A种蔬菜以每吨2万元的价格出售,B种蔬菜以每吨3万元的价格出售,且全部售出,请求出所获利润W(万元)与购买A种蔬菜的资金a(万元)之间的函数关系式;(3)在(2)的条件下,要求A种蔬菜的吨数不低于B种蔬菜的吨数,若公司欲将(2)中的最大利润全部用于购买甲、乙两种型号的电脑赠给某中学,甲种电脑每台2100元,乙种电脑每台2700元,请直接写出有几种购买电脑的方案.42.(2016某某省某某市)如图所示,在平面直角坐标系中,过点A(,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程的两个根.(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标;(4)在(3)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.【2015年题组】1.(2015宿迁)在平面直角坐标系中,若直线经过第一、三、四象限,则直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2015某某)如图,直线与y轴交于点(0,3)、与x轴交于点(a,0),当a满足时,k的取值X围是()A.B.C.D.3.(2015贺州)已知,则函数和的图象大致是()A.B.C.D.4.(2015某某)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个B.2个C.3个D.4个5.(2015某某)若函数的图象如图所示,则关于x的不等式的解集为()A.x<2 B.x>2 C.x<5 D.x>56.(2015某某)如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t (单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元7.(2015德阳)如图,在一次函数的图象上取一点P,作PA⊥x轴于点A,PB⊥y轴于点B,且矩形PBOA的面积为5,则在x轴的上方满足上述条件的点P的个数共有()A.1个B.2个C.3个D.4个8.(2015德阳)已知,,若规定,则y的最小值为()A.0 B.1 C.﹣1 D.29.(2015某某)某油箱容量为60 L的汽车,加满汽油后行驶了100 Km时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为xKm,中剩油量为yL,则y与x之间的函数解析式和自变量取值X围分别是()A.y=0.12x,x>0 B.y=60﹣0.12x,x>0 C.y=0.12x,0≤x≤500 D.y=60﹣0.12x,0≤x≤50010.(2015某某)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA 上运动时,使得⊙P成为整圆的点P个数是()A.6 B.8 C.10 D.1211.(2015某某)如图,把RI△ABC放在直角坐标系内,其中∠CAB=90°,B C=5.点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线上时,线段BC扫过的面积为()A.4 B.8 C.16 D.12.(2015某某)若关于x的一元二次方程有两个不相等的实数根,则一次函数的大致图象可能是()A.B.C.D.13.(2015某某)甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个14.(2015随州)甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A.4 B.3 C.2 D.115.(2015市)一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A 类5025B 类20020C 类40015例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡16.(2015某某)如图,直线经过A(2,1),B(﹣1,﹣2)两点,则不等式的解集为()A.x<2 B.x>﹣1 C.x<1或x>2 D.﹣1<x<217.(2015某某)直线沿y轴向下平移6个单位后与x轴的交点坐标是()A.(﹣4,0)B.(﹣1,0)C.(0,2)D.(2,0)18.(2015某某)如图,在平面直角坐标系中,点A 1,A2,A3…都在x轴上,点B1,B2,B3…都在直线上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是()A.(,)B.(,)C.(,)D.(,)19.(2015某某)如图,在平面直角坐标系中,点A(﹣1,m)在直线上,连结OA,将线段OA绕点O顺时针旋转90°,点A的对应点B恰好落在直线上,则b的值为()A.﹣2 B.1 C.D.220.(2015某某)小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:米)与他所用时间t(单位:分钟)之间的函数关系如图所示,已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:①小明从家出发5分钟时乘上公交车②公交车的速度为400米/分钟③小明下公交车后跑向学校的速度为100米/分钟④小明上课没有迟到其中正确的个数是()A.1个B.2个C.3个D.4个21.(2015某某)同一直角坐标系中,一次函数与正比例函数的图象如图所示,则满足的x取值X围是()A.B.C.D.22.(2015枣庄)已知直线,若,,那该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限23.(2015某某)如图,一次函数与一次函数的图象交于点P(1,3),则关于x的不等式的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<124.(2015某某)一次函数和的图象如图所示,其交点为P(﹣2,﹣5),则不等式的解集在数轴上表示正确的是()A.B.C.D.25.(2015某某)如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(,1)D.(,2)26.(2015某某)在平面直角坐标系中,过点(﹣2,3)的直线l经过一、二、三象限,若点(0,a),(﹣1,b),(c,﹣1)都在直线l上,则下列判断正确的是()A.a<b B.a<3 C.b<3 D.c<﹣227.(2015某某)如图,直线与两坐标轴分别交于A、B两点,将线段OA分成n等份,分点分别为P1,P2,P3,…,P n﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则当n=2015时,S1+S2+S3+…+S n﹣1=.。
函数及其图像第12课时一次函数教学目标【考试目标】1.了解一次函数(正比例函数)的意义,根据已知条件确定一次函数(正比例函数)的表达式,会用待定系数法求函数表达式.2.会画一次函数(正比例函数的图象),根据一次函数(正比例函数)的图象和解析表达式理解其性质.3.能根据一次函数的图象求二元一次方程组的近似解.【教学重点】1.了解正比例函数的定义、图象与性质.2.熟悉一次函数的定义、图象与性质.3.学会用待定系数法求一次函数的解析式.4.学会用函数的观点看方程(组)与不等式.教学过程一、体系图引入,引发思考二、引入真题,深化理解【例1】(2016年雅安)若式子()01k -有意义,则一次函数()11y k x k =-+-的图象可能是 (C )【解析】若式子()01k -有意义,则k >1,所以1-k <0,故该一次函数必过二、四象限,故可以排除A 、B 选项.k -1>0,故该一次函数图象与y 轴交点在原点上方,故选择C 选项.【考点】此题考查了一次函数的图象与性质,还考查了有关整式有意义的条件,此题的关键是判断k -1的正负.【例2】(2016年桂林)如图,直线y =ax +b 过点A (0,2)和点B (-3,0),则方程ax +b =0的解是 (D )A.x =2 B .x =0 C.x =-1 D.x =-3【解析】此题考查了函数图象与坐标轴交点的含义,由题可知选择D.【例3】(2016年济南)如图,若一次函数y =-2x +b 的图象交y 轴于点A(0,3),则不等式-2x +b >0的解集为 (A )A. B.x >3 C. D.x <3 【解析】此题考查了用函数观点看不等式.将A (0,3)可得b =3,∴点B 的坐标为 ,该不等式表示的是该函数图像 右上方的区域,故选择A 选项.【考点】本题考查了一次函数与不等式的关系.能找出不等式在直角左边系所表示的区域,此题不难解决.【例4】(2016年江西)如图,过点A(2,0)的两条直线l 1,l 2分别交轴y 于B ,C , 其中点B 在原点上方,点C 在原点下方,已知(1)求点B 的坐标;(2)若∆ABC 的面积为4,求l 2的解析式. 【解析】(1)在Rt ∆AOB 中, AB 2=OA 2+OB 2,即:. 解得OB=3,∵点B 在y 轴上,且在原点上方,∴B 点坐标为(0,3).(2)S ∆ABC = BC ·OA= ×2×BC=4. ∵B(0,3)∴C (0,-1) 设l 2:y =kx +b ,把点A(2,0),点C(0,-1)代入,得:∴ ∴l 2的解析式为:【考点】此题考查了一次函数的图象,以及用待定系数法求一次函数解析式的方法.三、师生互动,总结知识先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充. 32>x 302,⎛⎫ ⎪⎝⎭2222OB =+121 1.2y x =-1.21k b ⎧=⎪⎨⎪=-⎩20,1k b b +=⎧⎨=-⎩32<x 12课后作业布置作业:同步导练教学反思同学们对本节内容理解很好,但是用函数观点看方程(组)与不等式还有有些不熟练,有待提高.。
函数及其图像第12课时一次函数教学目标【考试目标】1.了解一次函数(正比例函数)的意义,根据已知条件确定一次函数(正比例函数)的表达式,会用待定系数法求函数表达式.2.会画一次函数(正比例函数的图象),根据一次函数(正比例函数)的图象和解析表达式理解其性质.3.能根据一次函数的图象求二元一次方程组的近似解.【教学重点】1.了解正比例函数的定义、图象与性质.2.熟悉一次函数的定义、图象与性质.3.学会用待定系数法求一次函数的解析式.4.学会用函数的观点看方程(组)与不等式.教学过程一、体系图引入,引发思考二、引入真题,深化理解【例1】(2016年雅安)若式子()01k -有意义,则一次函数()11y k x k =-+-的图象可能是 (C )【解析】若式子()01k -有意义,则k >1,所以1-k <0,故该一次函数必过二、四象限,故可以排除A 、B 选项.k -1>0,故该一次函数图象与y 轴交点在原点上方,故选择C 选项.【考点】此题考查了一次函数的图象与性质,还考查了有关整式有意义的条件,此题的关键是判断k -1的正负.【例2】(2016年桂林)如图,直线y =ax +b 过点A (0,2)和点B (-3,0),则方程ax +b =0的解是 (D )A.x =2 B .x =0 C.x =-1 D.x =-3【解析】此题考查了函数图象与坐标轴交点的含义,由题可知选择D.【例3】(2016年济南)如图,若一次函数y =-2x +b 的图象交y 轴于点A(0,3),则不等式-2x +b >0的解集为 (A ) 32>x 32<xA. B.x >3 C. D.x <3【解析】此题考查了用函数观点看不等式.将A (0,3)可得b =3,∴点B 的坐标为 ,该不等式表示的是该函数图像 右上方的区域,故选择A 选项.【考点】本题考查了一次函数与不等式的关系.能找出不等式在直角左边系所表示的区域,此题不难解决.【例4】(2016年江西)如图,过点A(2,0)的两条直线l 1,l 2分别交轴y 于B ,C , 其中点B 在原点上方,点C 在原点下方,已知(1)求点B 的坐标;(2)若∆ABC 的面积为4,求l 2的解析式. 【解析】(1)在Rt ∆AOB 中,AB 2=OA 2+OB 2,即: .解得OB=3,∵点B 在y 轴上,且在原点上方,∴B 点坐标为(0,3).(2)S ∆ABC = BC ·OA= ∵B(0,3)∴C (0,-1)设l 2:y =kx +b ,把点A(2,0),点C(0,-1)代入,得: ∴ ∴l 2的解析式为:【考点】此题考查了一次函数的图象,以及用待定系数法求一次函数解析式的方法. 三、师生互动,总结知识 先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充. 课后作业布置作业:同步导练教学反思同学们对本节内容理解很好,但是用函数观点看方程(组)与不等式还有有些不熟练,有待提高.302,⎛⎫ ⎪⎝⎭2222OB =+121 1.2y x =-1.21k b ⎧=⎪⎨⎪=-⎩20,1k b b +=⎧⎨=-⎩12。
吉安市中考数学一轮基础复习:专题十二一次函数及其应用姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分)下列函数是一次函数的是()A . y=﹣8xB . y=﹣C . y=﹣8x2+2D . y=﹣+22. (2分) (2017·滨江模拟) 某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套,现有42张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x张做盒身,则下面所列方程正确的是()A . 18(42﹣x)=12xB . 2×18(42﹣x)=12xC . 18(42﹣x)=2×12xD . 18(21﹣x)=12x3. (2分)已知k、b是一元二次方程(2x+1)(3x﹣1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分)关于函数y=3x+1,下列结论正确的是()A . 图象必经过点(-2,5)B . y随x的增大而减小C . 当x>-时,y>0D . 图象经过第一、二、三象限5. (2分) (2018八上·金东期末) 根据图可以得到如图的y与x之间关系,那么m,n的值是()A . ,3B . 3,C . 3,3D . ,6. (2分)已知直线y=mx-1上有一点B(1,n),它到原点的距离是,则此直线与两坐标轴围成的三角形的面积为()A .B . 或C . 或D . 或7. (2分) (2020八上·苏州期末) 如图,一次函数y= x+6的图像与x轴、y轴分别交于点A,B,过点B 的直线l平分△ABO的面积,则直线l相应的函数表达式为()A . y= x+6B . y= x+6C . y= x+6D . y= x+68. (2分)甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:(1)他们都骑行了20km;(2)乙在途中停留了0.5h;(3)甲、乙两人同时到达目的地;(4)相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有().A . 1个B . 2个C . 3个D . 4个9. (2分)(2020·扶沟模拟) 数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题可迎刃而解,且解法简洁.如图,直线y=3x和直线y=ax+b交于点(1,3),根据图象分析,方程3x=ax+b的解为()A . x=1B . x=﹣1C . x=3D . x=﹣310. (2分) (2020七下·温州月考) 一次函数y=kx+b不经过第一象限,则k,b的取值范围是()A . k<0,b>0B . k<0,b<0C . k<0,b≥0D . k<0,b≤011. (2分)(2016·岳阳) 下列长度的三根小木棒能构成三角形的是()A . 2cm,3cm,5cmB . 7cm,4cm,2cmC . 3cm,4cm,8cmD . 3cm,3cm,4cm12. (2分)已知一次函数y=kx+b的图象如图所示,则k、b的符号是()A . k>0,b>0B . k>0,b<0C . k<0,b>0D . k<0,b<013. (2分) (2019八上·榆林期末) 关于一次函数,下列结论正确的是A . 图象经过B . 图象经过第一、二、三象限C . y随x的增大而增大D . 图象与y轴交于点14. (2分)(2020·涪城模拟) 在同一平面直角坐标系中,函数y=ax+b与y=ax2-bx的图象可能是()A .B .C .D .15. (2分) (2019八上·深圳期末) 如图,直线与轴、轴分别交于点和点,点、分别为线段、的中点,点为上一动点,当最小时,点的坐标为A .B .C . ,D . ,二、填空题 (共6题;共6分)16. (1分)如图,将直线y=-x沿y轴向下平移后的直线恰好经过点A(2,-4),且与y轴交于点B,在x 轴上存在一点P使得PA+PB的值最小,则点P的坐标为________.17. (1分)直线y= x+a与直线y=bx﹣1相交于点(1,﹣2),则a=________,b=________.18. (1分) (2019八下·北京期中) 将函数y=2x+1的图象向上平移2个单位,所得的函数图象的解析式为________.19. (1分)(2019·黔东南) 如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图像经过点A(4,1),则不等式ax+b<1的解集为________.20. (1分) (2018七下·太原期中) 地表以下岩层的温度y(℃)随着所处深度x(km)的变化而变化,在某个地点y与x之间有如下关系:x/km1234Y/℃5590125160根据表格,估计地表以下岩层的温度为230℃时,岩层所处的深度为________km.21. (1分)(2017·临泽模拟) 如图,已知等腰Rt△ABC的直角边为1,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边.画第三个Rt△ADE,…,依此类推直到第五个等腰Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为________.三、综合题 (共4题;共44分)22. (11分)(2019·平阳模拟) 雾霾是对大气中各种悬浮颗粒物含量超标的笼统表述,雾霾的主要危害可归纳为两种:一是对人体产生危害,二是对交通产生危害.雾霾天气是一种大气污染状态,成都市区冬天雾霾天气比较严重,很多家庭兴起了为家里添置“空气清洁器”的热潮,为此,我市某商场根据民众健康要,代理销售某种进价为600元/台的家用“空气清洁器”.经过市场销售后发现:在一个月内,当售价是700元/台时,可售出350台,且售价每提高10元,就会少售出5台.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;(2)请计算当售价x(元台)定为多少时,该商场每月销售这种“空气清洁器”所获得的利润W(元)最大?最大利润是多少?(3)若政府计划遴选部分商场,将销售“空气清洁器”纳入民生工程项目,规定:每销售一台“空气淸洁器”,财政补贴商家200元,但销售利润不能高于进价的25%,请问:该商场想获取最大利润,是否参与竞标此民生工程项目?并说明理由.23. (12分)(2020·中山模拟) 如图,点是线段上一点,,以点为圆心,的长为半径作⊙ ,过点作的垂线交⊙ 于,两点,点在线段的延长线上,连接交⊙ 于点,以,为边作.(1)求证:是⊙ 的切线;(2)若,求四边形与⊙重叠部分的面积;(3)若,,连接,求和的长.24. (11分) (2017九下·睢宁期中) 甲乙两台智能机器人从同一地点P出发,沿着笔直的路线行走了450cm 到点Q.甲比乙先出发,乙出发一段时间后速度提高为原来的2倍.甲匀速走完全程.两机器人行走的路程y(cm)与时间x(s)之间的函数图象如图所示.根据图象所提供的信息解答下列问题:(1)乙比甲晚出发________秒,乙提速前的速度是每秒________cm,t=________;(2)当x为何值时,乙追上了甲?(3)若两台机器人到达终点Q后迅速折返,并保持折返前的速度继续匀速行走返回到点P,乙比甲早到多长时间?25. (10分)(2020·九江模拟) 图①为汽车沿直线运动的速度v(m/s)与时间t(s)(0≤t≤40)之间的函数图象.根据对此图象的分析、理解,在图②中画出描述在这段时间内汽车离开出发点的路程s(m)与时间t(s)之间的函数图象.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共6题;共6分)16-1、17-1、18-1、19-1、20-1、21-1、三、综合题 (共4题;共44分) 22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、25-1、。
广东省2017中考数学复习第1部分基础过关第三单元函数课时12 一次函数与反比例函数的综合练习(无答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省2017中考数学复习第1部分基础过关第三单元函数课时12 一次函数与反比例函数的综合练习(无答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省2017中考数学复习第1部分基础过关第三单元函数课时12 一次函数与反比例函数的综合练习(无答案)的全部内容。
课时12 一次函数与反比例函数的综合1。
(2016·乐山)如图9,反比例函数y=x k 与一次函数y=ax+b 的图象交于点A (2,2),B ⎪⎭⎫ ⎝⎛n ,21。
(1)求这两个函数解析式;(2)将一次函数y=ax+b 的图象沿y 轴向下平移m 个单位,使平移后的图象与反比例函数y=xk 的图象有且只有一个交点,求m 的值.2。
(2016·茂名)如图10,一次函数y=x+b 的图象与反比例函数y=xk (k 为常数,k ≠0)的图象交于点A(-1,4)和点B (a ,1)。
(1)求反比例函数的表达式和a 、b 的值;(2)若A,O 两点关于直线l 对称,请连接AO ,并求出直线l 与线段AO 的交点坐标。
3.(2016·南充)如图11,直线y=21x+2与双曲线相交于点A (m ,3),与x 轴交于点C. (1)求双曲线解析式;(2)点P 在x 轴上,如果△ACP 的面积为3,求点P 的坐标.1.(2013年)已知k 1<0<k 2,则函数y=k 1x-1和y=xk 2的图象大致是( )2.(2016年)如图12,在直角坐标系中,直线y=kx+1 (k ≠0)与双曲线y=x2 (x >0)相交于P (1,m ).(1)求k 的值;(2)若点Q 与点P 关于y=x 成轴对称,则点Q 的坐标为Q (___________).3。
一次函数 一.选择题(共8小题) 1.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据 图象可得不等式3x+b>ax﹣3的解集是( ) A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣2
2.在一次函数y=﹣x+3的图象上取一点P,作PA⊥x轴,垂足为A,作PB⊥y轴,垂足为B,且矩形OAPB的面积为,则这样的点P共有( ) A.4个 B.3个 C.2个 D.1个 3.一汽车在某一直线道路上行驶,该车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系如图所示(折线ABCDE),根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在行驶过程中的平均速度为千米/小时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减小.其中正确的说法共有( )
A.4个 B.3个 C.2个 D.1个 4.已知直线y=2x+b与坐标轴围成的三角形的面积是4,则b的值是( ) A.4 B.2 C.±4 D.±2 5.小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与2
北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是( ) A.小亮骑自行车的平均速度是12km/h B.妈妈比小亮提前0.5小时到达姥姥家 C.妈妈在距家12km处追上小亮 D.9:30妈妈追上小亮 6.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是( )
A.第24天的销售量为200件 B.第10天销售一件产品的利润是15元 C.第12天与第30天这两天的日销售利润相等 D.第30天的日销售利润是750元 7.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是( ) 3
精选中小学试题、试卷、教案资料
第12讲:一次函数的应用
一、夯实基础
1、下列函数(1)y=πx (2)y=2x-1 (3)y=1x (4)y=2-1-3x 中,是一次函数的有( )
(A)4个 (B)3个 (C)2个 (D)1个
2、下面哪个点不在函数的图像上( )
(A)(-5,13) (B)(0.5,2) (C)(3,0) (D)(1,1)
3、直线y=kx+b在坐标系中的位置如图,则( )
(A) (B) (C) (D)
4、下列一次函数中,随着增大而减小而的是 ( )
(A) (B) (C) (D)
5、已知一次函数y=kx+b的图象如图所示,则k,b的符号是( )
(A) k>0,b>0 (B) k>0,b<0 (C) k<0,b>0 (D) k<0,b<0
二、能力提升
6、函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m的取值范围是( )
(A) (B) (C) (D)
7、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h (厘米)与燃烧时间t (时)的函
数关系的图象是( )
精选中小学试题、试卷、教案资料
8、下图中表示一次函数y=mx+n与正比例函数y=m nx(m ,n是常数,且mn<0)图像的是( ).
三、课外拓展
9.已知2x-y=0,且x-5>y,则x的取值范围是________.
10.关于x的方程3x+3a=2的解是正数,则a________.
11.一次函数y=ax+1与y=bx-2的图象交于x轴上一点,那么a:b等于
A. B. C. D.以上答案都不对
12.某公司市场营业员销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所
示.由图中给出的信息可知,营销人员没有销售时的收入是
A.310 B.300 C.290 D.280
四、中考链接
13、已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= 12 x的图象相交于点(2,a),