浙教版2019-2020学年九年级数学上学期期中考试试题(含答案)
- 格式:doc
- 大小:260.50 KB
- 文档页数:7
浙教版九年级上册数学期中考试试题一、单选题1.下列事件为必然事件的是()A .购买二张彩票,一定中奖B .打开电视,正在播放极限挑战C .抛掷一枚硬币,正面向上D .一个盒子中只装有7个红球,从中摸出一个球是红球2.△ABC 的外心在三角形的内部,则△ABC 是()A .锐角三角形B .直角三角形C .钝角三角形D .无法判断3.若将函数22y x =的图象向右平行移动1个单位,再向上平移5个单位,可得到的抛物线是A .22(1)5y x =--B .22(1)5y x =-+C .22(1)5y x =+-D .22(1)5y x =++4.抛物线y =a (x +1)(x -3)(a≠0)的对称轴是直线()A .x =1B .x =-1C .x =-3D .x =35.如图:点A ,B ,C 都在⊙O 上,且点C 在弦AB 所对的优弧上,若∠AOB =72°,则∠ACB 的度数是()A .18°B .30°C .36°D .72°6.A (-2,y 1),B (1,y 2),C (2,y 3)是抛物线22(1)y x k =-++上三点,y 1,y 2,y 3的大小关系为()A .y 1>y 3>y 2B .y 3>y 1>y 2C .y 1>y 2>y 3D .y 3>y 2>y 17.如图,在⊙O 中,直径CD ⊥弦AB 于点E ,连接OB 、CB ,已知⊙O 的半径为2,AB=,则∠BCD 的大小为()A .30°B .45°C .60°D .15°8.下列命题正确的是()A.三点确定一个圆B.直径所对的圆周角为直角C.平分弦的直径必垂直于这条弦D.相等的弦所对的圆心角相等9.抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系内的图象大致为()A.B.C.D.10.如图,AB是⊙O的一条固定直径,它把⊙O分成上、下两个半圆,自上半圆上一点C 作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)移动时,点P()A.到CD的距离保持不变B.位置不变C.平分 BD D.随点C的移动而移动11.如图,AC、BD为圆O的两条互相垂直的直径,动点P从圆心O出发,沿O→C→D→O 的路线作匀速运动,设运动时间为t秒,∠APB的度数为y度,那么表示y与t之间函数关系的图象大致为()A.B.C.D.12.如图,抛物线y=ax2+bx+c的顶点为P(﹣2,2),且与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),此时抛物线与y轴交于点A′,则AA′的长度为()A.214B.334C.D.D3二、填空题13.从﹣1、0、0.3、π、13这六个数中任意抽取一个,抽取到无理数的概率为_____.14.若将二次函数y=x2﹣2x+3配方为y=(x﹣h)2+k的形式,则y=___________.15.如图,正五边形ABCDE内接于⊙O,则∠CAD=______度.16.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=AP=8,则⊙O的直径为_____.17.已知AB,CD是⊙O的两条平行弦,AB=8,CD=6,⊙O的半径为5,则弦AB与CD的距离为______.18.如图,平面直角坐标系中,以点C (22为半径的圆与x 轴交于A ,B 两点.若二次函数y =x 2+bx+c 的图象经过点A ,B ,试确定此二次函数的解析式为____________.19.已知:如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连接AD ,则①∠DAC =∠DBA ;②AD 2﹣BC 2=AC 2﹣BD 2;③AP =FP ;④DF =BF ,这些结论中正确的是______.(请写序号)20.如图,抛物线2144y x =-与x 轴交于A 、B 两点,P 是以点C (0,3)为圆心,2为半径的圆上的动点,Q 是线段PA 的中点,连接OQ .则线段OQ 的最大值是______.三、解答题21.从男女学生共36人的班级中,选一名班长,任何人都有同样的当选机会,如果选得男生的概率为23.(1)求该班级男女生数各多少?(2)若该班转入女生6人,那么选得女生为班长的概率?22.如图,在7×7的正方形网格(每个小正方形的边长为1)中,一条圆弧经过A ,B ,C 三点.(1)在正方形网格中直接标出这条圆弧所在圆的圆心O ;(2)求弧AC 的长.23.某运动员在推铅球时,铅球经过的路线是抛物线的一部分(如图),落地点B 的坐标是(10,0),已知抛物线的函数解析式为y =﹣212123x x ++c .(1)求c 的值;(2)计算铅球距离地面的最大高度.24.如图,AB 是O 的直径,弦CD AB ⊥于点,E G 是弧AC 上一点,连接AD AG GD 、、.(1)求证ADC AGD ∠=∠;(2)若2,6BE CD ==,求O 的半径.25.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y (袋)与销售单价x (元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.销售单价x(元) 3.5 5.5y(袋)280120销售量(1)请直接写出y与x之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?26.如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y =﹣x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.(1)求抛物线的解析式及点C的坐标;(2)若点P在第二象限内,过点P作PD⊥x轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?判断此时△ABP的形状,并证明你的结论.(3)在(2)的前提下,有一动点Q在抛物线上运动(线段AB的下方),当Q点运动到什么位置时,△ABQ的面积等于△ABP的面积.参考答案1.D【解析】【分析】由题意根据必然事件、随机事件,不可能事件的意义结合具体的问题情境进行判断即可.【详解】解:A.购买二张彩票,不一定中奖,是随机事件,因此选项A不符合题意;B.打开电视,可能播放极限挑战,也可能播放其它节目,是随机事件,因此选项B不符合题意;C.抛掷一枚硬币,可能正面向上,也可能反面向上,是随机事件,因此选项C不符合题意;D.一个盒子中只装有7个红球,没有其它颜色的球,从中摸出一个球一定是红球,是必然事件,因此选项D符合题意;故选:D.【点睛】本题考查随机事件,理解随机事件,必然事件,不可能事件的意义是正确判断的前提.2.A【解析】【详解】试题解析:△ABC的外接圆的圆心在△ABC的内部,则△ABC是锐角三角形.故选A.【点睛】本题考查了三角形的外接圆与外心:经过三角形的三个顶点的圆,叫做三角形的外接圆.三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.3.B【解析】【分析】根据图象右移减、左移加,上移加、下移减,可得答案.【详解】原抛物线的顶点为(0,0),向右平行移动1个单位,再向上平移5个单位,那么新抛物线的顶点为(1,5).可设新抛物线的解析式为y=2(x-h)2+k,代入可得:y=2(x-1)2+5.故选B.【点睛】本题考查了二次函数图象与几何变换,图象右移减、左移加,上移加、下移减是解题关键.4.A【解析】【分析】已知抛物线解析式为交点式,通过解析式可求抛物线与x轴的两交点坐标;两交点的横坐标的平均数就是对称轴.【详解】∵-1,3是方程a(x+1)(x-3)=0的两根,∴抛物线y=a(x+1)(x-3)与x轴交点横坐标是-1,3.∵这两个点关于对称轴对称,∴对称轴是13x12-+==.故选A.5.C【解析】【分析】根据同圆中同弧所对的圆周角等于圆心角的一半,即可求得结果.【详解】∵圆心角∠AOB与圆周角∠ACB均对着 AB∴11723622ACB AOB∠=∠=⨯︒=︒故选:C【点睛】本题考查了圆周角定理,掌握此定理是解题的关键.6.C【解析】【详解】试题解析:∵抛物线y=-2(x+1)2+k(k为常数)的开口向下,对称轴为直线x=-1,而A(-2,y1)离直线x=-1的距离最近,C(2,y3)点离直线x=-1最远,∴y1>y2>y3.故选C.7.A【详解】解:∵直径CD 垂直弦AB 于点E ,AB=EB=12O 的半径为2,∴sin ∠EOB=EB OBEOB=60°,∴∠BCD=30°.故选A .【点睛】本题考查了垂径定理及特殊角的三角函数值,解题的关键是利用垂径定理得到直角三角形.8.B 【解析】【分析】利用确定圆的条件、圆周角定理、垂径定理等知识分别判断后即可确定正确的选项.【详解】解:A.不在同一直线上的三点确定一个圆,故原命题错误,不符合题意;B.直径所对的圆周角是直角,正确,符合题意;C.平分弦(不是直径)的直径必垂直于这条弦,故原命题错误,不符合题意;D.同圆或等圆中,相等的弦所对的圆心角相等,故原命题错误,不符合题意,故选:B .【点睛】考查了命题与定理的知识,解题的关键是了解确定圆的条件、圆周角定理、垂径定理等知识,难度不大.9.B 【解析】【详解】由抛物线可知,a >0,b <0,c <0,∴一次函数y=ax+b 的图象经过第一、三、四象限,反比例函数y=cx的图象在第二、四象限,故选B .10.B【详解】连OP,如图,∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3,∴∠2=∠3,∴OP∥CD,又∵弦CD⊥AB,∴OP⊥AB,∴OP平分半圆APB,即点P是半圆的中点,即点P的位置不变,故选B.【点睛】本题主要考查了垂径定理,解答本题的关键是熟练掌握垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.11.C【解析】【详解】当P与O重合时,∠APB的度数为90度;P向C运动过程中,∠APB的度数逐渐减小;当P运动到C时,利用圆周角定理得到∠APB的度数为45度;当P在弧CD上运动时,∠APB的度数不变,都为45度;当P从D运动到O时,∠APB的度数逐渐增大,作出函数y与t的大致图象,如图所示:故选C.12.B【解析】【分析】先运用待定系数法求出原抛物线的解析式,再根据平移不改变二次项系数,得出平移后的抛物线解析式,求出A′的坐标,进而得出AA′的长度.【详解】∵抛物线y=ax2+bx+c的顶点为P(﹣2,2),∴y=a(x+2)2+2,∵与y轴交于点A(0,3),∴3=a(0+2)2+2,解得a=1 4∴原抛物线的解析式为:y=14(x+2)2+2,∵平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),∴平移后的抛物线为y=14(x﹣1)2﹣1,∴当x=0时,y=3 4-,∴A′的坐标为(0,34-),∴AA′的长度为:3﹣(34-)=334.故选:B.【点睛】本题考查了平移、二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解.13.1 3【解析】【详解】试题分析:由从﹣1、00.3、π、13这六个数中任意抽取一个,抽取到无理数的有2种情况,直接利用概率公式求解即可求得答案.解:∵从﹣1、00.3、π、13这六个数中任意抽取一个,抽取到无理数的有2种情况,即:、π;∴抽取到无理数的概率为:21 63=.故答案为1 3.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.2(1)2y x=-+【解析】【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【详解】y=x2﹣2x+3=(x2﹣2x+1)+2=(x﹣1)2+2故本题答案为:y=(x﹣1)2+2.【点睛】本题考查了把二次函数的一般式化为顶点式,关键是配方法的运用.15.36【解析】【详解】∵五边形ABCDE是正五边形,∴AB BC CD DE EA=====72°,∴∠ADB=12×72°=36°.故答案为36.考点:1.圆周角定理;2.正多边形和圆.16.10【分析】连接OC,根据垂径定理求出CP,根据勾股定理得出关于R的方程,求出方程的解即可.【详解】解:连接OC,∵AB⊥CD,AB过圆心O,CD=8,∴CP=DP=4,设⊙O的半径为R,∵AP=8,∴OP=8﹣R,在Rt△COP中,由勾股定理得:CP2+OP2=OC2,即(8﹣R)2+42=R2,解得:R=5,∴⊙O的直径为2×5=10,故答案为:10.17.1或7【解析】根据题意画出符合的两种图形,先根据垂径定理求出CE和AF长,再根据勾股定理求出OE 和OF长,再求出EF即可.【详解】解:有两种情况:①如图1,圆心O在弦AB和弦CD之间,过O作OE⊥CD于E,直线OE交AB于F,连接OC、OA,∥,∵AB CD∴OF⊥AB,∵OE ⊥CD ,OE 过圆心O ,CD =6,∴CE =DE =3,同理AF =BF =4,由勾股定理得:OE 4=,OF 3==,∴EF =OE+OF =4+3=7;②如图2所示,此时EF =OE ﹣OF =4﹣3=1,即弦AB 与CD 的距离是1或7,故答案为:1或7.18.y=x 2-4x+3【解析】过点C 作CH ⊥AB 于点H ,然后利用垂径定理求出CH 、AH 和BH 的长度,进而得到点A 和点B 的坐标,再将A 、B 的坐标代入函数解析式求得b 与c ,最后求得二次函数的解析式.【详解】解:过点C 作CH ⊥AB 于点H ,则AH=BH ,∵C (2),∴,∵半径为2,∴1,∵A(1,0),B(3,0),∴二次函数的解析式为y=(x﹣1)(x﹣3)=x2﹣4x+3,故答案为:y=x2-4x+3.【点睛】本题考查了圆的垂径定理、二次函数的解析式,解题的关键是过点C作CH⊥AB于点H,利用垂径定理求出点A和点B的坐标.19.①②③【解析】【分析】①正确.根据圆周角定理得出∠DAC=∠CBD,以及∠CBD=∠DBA得出答案即可;②正确.利用勾股定理证明即可;③正确.首先得出∠ADB=90°,再根据∠DFA+∠DAC=∠ADE+∠PDF=90°,且∠ADB =90°,得出∠PDF=∠PFD,从而得出PA=PF;④错误.用反例说明问题即可.【详解】解:∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA,故①正确,∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠DEB=90°,∴∠ADE+∠EDB=∠ABD+∠EDB=90°,∴∠ADE=∠ABD=∠DAP,∴PD=PA,∵∠DFA+∠DAC =∠ADE+∠PDF =90°,且∠ADB =90°,∴∠PDF =∠PFD ,∴PD =PF ,∴PA =PF ,故③正确,∵AB 是直径,∴∠ADB =∠ACB =90°,∴AD 2+BD 2=AC 2+BC 2=AB 2,∴AD 2﹣BC 2=AC 2﹣BD 2,故②正确,如图1中,当△ABC 是等腰直角三角形时,显然DF≠BF ,故④错误.故答案为:①②③.【点睛】本题考查了圆的综合,涉及了圆周角定理、勾股定理、等腰三角形的判定与性质,解答本题的关键是掌握同弧所对的圆周角相等,注意数形结合思想运用.20.3.5【解析】【分析】连接PB ,当B 、C 、P 三点共线,且点C 在PB 之间时,PB 最大,而OQ 是△ABP 的中位线,即可求解.【详解】令21404y x =-=,则x =±4,故点B (4,0),∴OB=4设圆的半径为r ,则r =2,连接PB ,如图,∵点Q、O分别为AP、AB的中点,∴OQ是△ABP的中位线,当B、C、P三点共线,且点C在PB之间时,PB最大,此时OQ最大,∵C(0,3)∴OC=3在Rt△OBC中,由勾股定理得:5BC===则111()(52) 3.5 222OQ BP BC r+⨯+====,故答案为3.5.【点睛】本题考查了抛物线与坐标轴的交点,三角形中位线定理,勾股定理,圆的基本性质等知识,连接PB并运用三角形中位线定理是本题的关键和难点.21.(1)该班级男女生数各有24人,12人;(2)选得女生为班长的概率为3 7【解析】【分析】(1)根据男生概率公式可求得男生人数,让学生总数减去男生人数即为女生人数;(2)根据概率公式即可得到答案.(1)设有男生x人,∵男生的概率为23,即2363x=,解得x=24(人);∴女生36﹣24=12(人),答:该班级男女生数各有24人,12人;(2)女生12+6=18(人),全班36+6=42(人),选得女生为班长的概率为183 427=.【点睛】本题考查了概率公式,熟练掌握概率公式是解题的关键.22.(1)见解析;(2) AC【解析】【分析】(1)线段AB、线段BC的垂直平分线的交点即为圆心O;(2)根据勾股定理的逆定理得到∠AOC=90°,然后根据弧长公式即可得到结论.(1)如图,连接AB,BC作线段AB、线段BC的垂直平分线,两线的交于点O,则点O即为所示;(2)连接AC,AO,OC,∵AC2=62+22=40,OA2=22+42=4+16=20,OC2=42+22=16+4=20,∴OA2+OC2=42+22+42+22=40,∴AC 2=OA 2+OC 2,∴∠AOC =90°,在Rt △AOC 中,∵OA =OC =∴ AC =,【点睛】本题考查尺规作图作圆弧的圆心,线段的垂直平分线,勾股定理与勾股定理逆定理,扇形弧长,掌握尺规作图作圆弧的圆心,线段的垂直平分线,勾股定理与勾股定理逆定理,扇形弧长是解题关键.23.(1)53c =;(2)铅球距离地面的最大高度为3m【解析】【分析】(1)把(10,0)代入函数解析式212123y x x c =-++中,即可求得c 的值;(2)直接利用对称轴的值,代入函数关系式进而得出答案.(1)把(10,0)代入函数解析式212123y x x c =-++中得:12100100123c -⨯+⨯+=解得:53c =(2)当x =﹣42b a =时,y 最大=12516431233-⨯+⨯+=所以铅球距离地面的最大高度为3m .【点睛】本题考查了二次函数的图象与性质,掌握二次函数的图象与性质是关键,属于基础题.24.(1)见解析;(2)O 的半径为134.【解析】【分析】(1)由题意易得 AC AD=,进而问题可证;(2)连接OC ,设OC r =,则有3,2CE OE r ==-,然后根据勾股定理可求解.【详解】(1)证明:AB CD ⊥ ,AC AD∴=,ADC AGD ∴∠=∠;(2)解:连接OC ,设OC r =,如图所示:2,6BE CD == ,3,2CE OE r ∴==-,在Rt OEC ∆中,()22232r r +-=,解得134r =,O ∴ 的半径为134.【点睛】本题主要考查垂径定理及弧、弦、圆心角、圆周角的关系,熟练掌握垂径定理及弧、弦、圆心角、圆周角的关系是解题的关键.25.(1)y 与x 之间的函数关系式为y=﹣80x+560;(2)如果每天获得160元的利润,销售单价为4元;(3)当销售单价定为5元时,每天的利润最大,最大利润是240元.【解析】【分析】(1)设y 与x 的函数关系式为y=kx+b ,将x=3.5,y=280;x=5.5,y=120分别代入求出k 、b 的值即可得;(2)根据利润=(售价-成本)×销售量-其他费用列出方程进行求解即可得;(3)根据利润=(售价-成本)×销售量-其他费用列出函数关系式,然后利用二次函数的性质进行解答即可得.【详解】解:(1)设y=kx+b ,将x=3.5,y=280;x=5.5,y=120代入,得3.52805.5120k b k b +=⎧⎨+=⎩,解得80560k b =-⎧⎨=⎩,则y 与x 之间的函数关系式为y=﹣80x+560;(2)由题意,得(x ﹣3)(﹣80x+560)﹣80=160,整理,得x 2﹣10x+24=0,解得x 1=4,x 2=6,∵3.5≤x≤5.5,∴x=4,答:如果每天获得160元的利润,销售单价为4元;(3)由题意得:w=(x ﹣3)(﹣80x+560)﹣80=﹣80x 2+800x ﹣1760=﹣80(x ﹣5)2+240,∵3.5≤x≤5.5,∴当x=5时,w 有最大值为240,故当销售单价定为5元时,每天的利润最大,最大利润是240元.【点睛】本题考查了一次函数的应用、二次函数的应用、一元二次方程的应用等,读懂题意,找准数量关系列出函数关系式、找准等量关系列出方程是解题的关键.26.(1)234y x x =--+,C (1,0);(2)△ABP的形状为直角三角形,见解析;(3)Q的坐标为(﹣2﹣,﹣2﹣)【解析】【分析】(1)先通过直线求得与坐标轴的交点,然后应用待定系数法即可求得抛物线的解析式,进而求得抛物线与x轴的交点.(2)设出D的坐标(t,0),根据已知表示点E、P的坐标,根据PD⊥x轴即可求得线段PE关于t的解析式,配方即可得最大值,再算出此时的△ABP的三边即可得知其形状.(3)过P作AB的平行线l,通过平移得到直线l关于线段AB对称的直线l',再求得l'与抛物线交点即可得Q的坐标.(1)解:如图1,∵直线y=x+4与x轴、y轴分别交于A、B两点,∴A(﹣4,0),B(0,4),∵抛物线y=﹣x2+bx+c经过A、B两点,∴16404b cc--+=⎧⎨=⎩,解得34bc=-⎧⎨=⎩,∴抛物线的解析式为:y=﹣x2﹣3x+4,令y=0,则﹣x2﹣3x+4=0,解得x=﹣4或x=1,∴C(1,0);(2)解:如图2,设D(t,0),∴E(t,t+4),P(t,﹣t2﹣3t+4),∴PE=﹣t2﹣3t+4﹣t﹣4=﹣(t+2)2+4,∴当t=﹣2时,线段PE有最大值是4,此时P(﹣2,6);△ABP的形状为直角三角形,证明:∵AP2=(﹣2+4)2+(6﹣0)2=40,BA2=(﹣4﹣0)2+(0﹣4)2=32,BP2=(﹣2﹣0)2+(6﹣4)2=8,∴BA2+BP2=AP2,∴△ABP的形状为直角三角形;(3)解:如图,过P作AB的平行线l,设直线l的解析式为:y=x+m,代入(﹣2,6),得:6=﹣2+m,解得:m=8,即直线l:y=x+8,∵直线AB:y=x+4,直线l:y=x+8,∴将直线l向下平移8个单位即可得到直线l关于线段AB对称的直线l',∴直线l':y=x,令y=x=﹣x2﹣3x+4,解得:x=﹣或﹣2﹣,∴Q的坐标为(﹣)或(﹣2﹣2﹣.【点睛】此题是一次函数与二次函数的综合题,考查了求一次函数与坐标轴的交点,待定系数法求函数解析式,二次函数与坐标轴的交点,勾股定理的逆定理,二次函数的最值,一次函数的平移规律,一次函数与二次函数交点坐标,此题综合性比较强,较基础,综合掌握各知识点并应用是解题的关键.。
浙教版2019-2020年小升初数学考试试题A卷 (含答案)班级:_________ 姓名:_________ 学号:_________考试须知:1、本场考试时间为120分钟,本卷满分为100分。
2、考生不得提前交卷,若对题有异议请举手示意。
3、请用黑色或蓝色钢笔、圆珠笔作答,不得在试卷上乱涂乱画。
一、填空题(将正确答案填入空中,每题2分,共计16分)1、1/8的倒数是();1的倒数是();0.35的倒数是()。
2、 0.4:0.25化简比是(),比值是()。
3、6045809090读作(),“四舍五入”到万位的近似数计作()万。
4、有一张长48厘米,宽36厘米的长方形纸,如果要裁成若干同样大小的正方形而无剩余,裁成的小正方形的边长最大是( )厘米。
5、2008年8月8日,第29届奥运是在中国北京举行的。
从2007年8月8日到奥运会开幕,一共有()天。
6、等底等高的圆柱体和圆锥体的体积之差是72cm³,这个圆锥的体积是()cm³。
7、小明和爸爸从家走到学校,小明用了10分钟,爸爸用了8分钟,小明和爸爸的速度比是()。
8、一种手机原价是1600元,现在打九折出售,现价是()元。
二、选择题(只有一个正确答案,每题2分,共计12分)1、下列图形中,对称轴条数最多的是()。
2、一个圆柱的侧面展开图是正方形,这个圆柱的底面半径和高的比是()。
A、1:πB、1:2πC、π:1D、2π:13、一种商品现价90元,比原价降低了10元,降低了()。
A.1/9 B.10% C.9%4、一个圆和一个正方形的周长相等,他们的面积比较()A、正方形的面积大B、圆的面积大C、一样大5、要考查一个学生一年级到六年级的学习成绩进步情况,采用()比较合适。
A、条形统计图B、扇形统计图C、折线统计图6、现在的成本比原来降低了15%,现在的成本是原来的( )。
A、15%B、85%C、115%三、判断题(对的打√,错的打×,每题2分,共计12分)1、()实德与申花的比分是3:0,所以比的后项可以为零。
2019-2020学年九年级数学上学期期中试题 浙教版(V)(时间:120分钟 总分:150分)一、选择题(每小题3分,共21分)1.与2是同类二次根式的是( )A .3B .2C . 23D . 2.一元二次方程042=-x 的根是( )A .2=xB .2±=xC .4=xD .4±=x3.已知32=b a ,则bb a +的值为( ) A .35 B .53 C .34 D .25 4.下列计算正确的是( )A .553223=+B .2918=C .3327=÷D .222±=5.用配方法解方程0142=+-x x ,下列配方结果正确的是( )A .()122=+xB .()122-=-xC .()322=+xD . ()322=-x 6.如图所示,每个小正方形的边长均为1,则下列A 、B 、C 、D 四个图中的三角形(阴影部分)与△EFG 相似的是 ( )7、某钢铁厂一月份生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为 ) A .()185015602=+x B .()185015605602=++x C .()()1850156015602=+++x x D .()()1850156015605602=++++x x 二、填空题(每小题4分,共40分)8.计算:=⨯821_________. 9.若二次根式2-x 有意义,则x 的取值范围是__________.10.计算:()=-233____ _____.11.已知2-=x 是方程012=-+mx x 的一个实数根,则m 的值是__________. (第12题)12.如图所示,DE 是△ABC 的中位线,DE=3,则BC=__________.13.地图上两点间的距离为2厘米,比例尺是1:10000000,那么两地的实际距离是__ 千米.14.若两个三角形的相似比为1:3,则这两个三角形面积的比为___ _______.15.已知b a ,是方程0522=-+x x 的两个根,则=+b a _______;ab =________.E F G (第6题) A B CD16.把一个矩形剪去一个正方形,所余的矩形与原矩形相似,那么原矩形的长与宽的比是_______.17.如图,△ABC 是一张直角三角形彩色纸,∠ACB=90°,AC=30cm ,BC=40cm,CD ⊥AB 于点D.①、CD= ;②、将斜边上的高CD 进行五等分,然后裁出4张宽度相等的长方形纸条.则这4张纸条的面积和是 cm 2.三、解答题(共89分)18.计算:(12分)(1)()221227-+-;(2)()()223223+-.(第17题) 19.解方程:(12分) (1)022=-x x(2)01322=-+x x20.(8分)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,若DE ∥BC ,AD=4,BD=2,求BCDE 的值.21.(8分)如图,△ABC 在坐标平面内三顶点的坐标分别为A(1,2)、B(3,3)、C(3,1).(1)、根据题意,请你在图中画出△ABC ;(2)、以B 为位似中心,画出与△ABC 相似且相似比是3:1的△BA’C’并分别写出顶点A ’和C’的坐标.22、(8分)已知:如图,△ABC 中,∠ABC=2∠C,BD 平分∠ABC.(1)、求证:BD=CD(2)、试说明AB•BC=AC•CD.23.(8分)已知关于x 的方程()()01222=-++-m x m x .(1)、求证:方程恒有两个不相等的实数根;(2)、若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.24.(8分)端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m (0<m <1)元.(1)、零售单价下降0.2元后,该店平均每天可卖出 只粽子,利润为 元.(2)、在不考虑其他因素的条件下,当m 定为多少时,才能使该店每天获取的利润是420元并且卖出的粽子更多?25.(12分)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图1是其中的一种方法:定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值;(3)如图3,△ABC中,AC=3,BC=4,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.26、(13分)将边长为8cm的正方形纸片ABCD沿EG折叠(折痕EG分别与AB、DC交于点E、G),使点B 落在AD边上的点 F处,FN与DC交于点M,连接BF与EG交于点P.(1)当点F与AD的中点重合时(如图1):①、△AEF的边AE= cm,EF= cm,线段EG与BF的大小关系是EG BF;(填“>”、“=”或“<”)②、求△FDM的周长.(2)当点F在AD边上除点A、D外的任意位置时(如图2):①、试问第(1)题中线段EG与BF的大小关系是否发生变化?请证明你的结论;②、当点F在何位置时,四边形AEGD的面积S最大?最大值是多少?2015年秋季期中考试初三年级数学学科参考答案一、选择题(每小题3分,共21分)1、C2、B3、A4、C5、D6、B7、 D二、填空题(每小题4分,共40分)8、 2 9、2≥x 10、63- 11、23=m 12、 6 13、200 14、1︰9 15、 -2 、 -5 16、251+ 17(1)、24 (2)、480 三、解答题(共89分) 18、(1)23+ (6分) (2)-5 (6分)19、(1)2,021==x x (6分) (2)4173,417321--=+-=x x (6分) 20、解:∵DE∥BC,∴ △ADE∽△ABC, …………………………………………3分∴ =, …………………………………………5分∵ AD=4,DB=2,∴ ===.∴ 的值为. …………………………………………8分21、(1)正确画出图形得3分(2)正确画出图形得3分,A ′(-3, 0)和C ′(3,-3)各1分22、(1)(3分)证明: ∵∠ABC=2∠C,BD 平分∠AB C ,∴∠ABD=∠DBC=∠C, ………………………………………2分∴BD=CD, …………………………………………3分(2)(5分)解:在△ABD 和△ACB 中,, …………………………………………4分∴△ABD∽△ACB, …………………………………………5分 ∴=,即AB•BC=AC•BD, ……………………………………7分∴AB•BC=AC•CD. ………………………………………8分23、(1)(3分)证明:∵△=()()()42124222+-=--+m m m ………………3分 ∴在实数范围内,m 无论取何值,()422+-m >0,即△>0, ∴关于x 的方程()()01222=-++-m x m x 恒有 两个不相等的实数根; ………………3分(2)(5分)解:根据题意,得()()0122112=-++⨯-m m ,解得,2=m ………………4分 则方程的另一根为:31212=+=-+m ………………5分 当该直角三角形的两直角边是1、3时, 由勾股定理得斜边的长度为:;该直角三角形的周长为1+3+=4+; ………………7分 当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2;则该直角三角形的周长为1+3+2=4+2. ………………8分24、解:(1)500, 400. …………………………………4分(2)令()4201.01003001=⎪⎭⎫ ⎝⎛⋅+-m m ………………………………6分 解得4.0=m 或3.0=m .可得,当4.0=m 时卖出的粽子更多.答:略 ……………………………………8分25、解:(1)如图2作图,……………………………………4分(2)如图3 ①、②作△ABC .………6分①当AD=AE 时,∵0030302+=+x x ,∴020=x . ……………………………………7分 ②当AD=DE 时,∵00018023030=+++x x ,∴040=x . ……………………………………8分(3)如图4,CD 、AE 就是所求的三分线. ………………9分设∠B=a ,则∠DCB=∠DCA=∠EAC=a ,∠ADE=∠AED=a 2,此时△AEC ∽△BDC ,△ACD ∽△ABC ,设AE=AD=x ,BD=CD=y ,∵△AEC ∽△BDC , ∴34x y =, ……………………………………10分 ∵△ACD ∽△ABC , ∴33x y x +=, ……………………………………11分 所以联立得方程组3433x y x yx⎧=⎪⎪⎨+⎪=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩,……………………………………12分26、解:①AE=3cm,EF=5cm ;EG=BF , ……………………………………3分 ②解:如图1,∵∠MFE=90°,∴∠DFM+∠AFE=90°,又∵∠A=∠D=90°,∠AFE=∠DMF,∴△AEF∽△DFM, ………………………………5分 ∴,又∵AE=3,AF=DF=4,EF=5, ∴,,,, ∴△FMD 的周长=4++=16; ……………………………………6分(2)①EG=BF 不会发生变化, ……………………………………7分 理由:证明:如图2,∵B、F 关于GE 对称,∴BF⊥EG 于P ,过G 作GK⊥AB 于K ,∴∠FBE=∠KGE,在正方形ABCD 中,GK=BC=AB ,∠A=∠EKG=90°,∴△AFB≌△KEG(AAS ),∴EG=BF, ……………………………9分②如图2,设AF=x ,EF=8﹣AE ,()2228AE AE x -=+,∴21614x AE -=, …………………………10分 ∵△AFB≌△KEG, ∴AF=EK=x,AK=AE+EK=AF+AE=x x +-21614, ……………………11分S=×8=0.5×8(AE+AK )=,32421161416144222++-=⎪⎭⎫ ⎝⎛+-+-x x x x x ()404212+--=x S , (0<x <8) 当x=4,即F 与AD 的中点重合时,S 最大=40.……………………13分。
2019-2020学年浙江省湖州市吴兴区九年级(上)期中数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)下列函数是二次函数的是()A.y=3x﹣4B.y=ax2+bx+c C.y=(x+1)2﹣5D.y=2.(3分)下列成语或词组所描述的事件,不可能事件的是()A.守株待兔B.水中捞月C.瓮中捉鳖D.十拿九稳3.(3分)在同一平面内,⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆内B.点A在圆上C.点A在圆外D.无法确定4.(3分)对于函数y=(x﹣2)2+5,下列结论错误的是()A.图象顶点是(2,5)B.图象开口向上C.图象关于直线x=2对称D.函数最大值为55.(3分)如图,已知∠AOB是⊙O的圆心角,∠AOB=60°,则圆周角∠ACB的度数是()A.50°B.25°C.100°D.30°6.(3分)在一个不透明的布袋中装有红色,白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有()A.4个B.6个C.34个D.36个7.(3分)如图,AB为⊙O的弦,过点O作AB的垂线,交AB于点C,交⊙O于点D,已知⊙O的直径为10,CD=2,则AB的长为()A.4B.6C.8D.108.(3分)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点于点C重合,则该抛物线的函数表达式变为()A.y=x2﹣8x+14B.y=x2+8x+14C.y=x2+4x+3D.y=x2﹣4x+3 9.(3分)在平面直角坐标系,某二次函数图象的顶点为(﹣2,1),此函数图象与x轴交于P、Q两点,且PQ=6.若此函致图象经过(﹣3,a),(﹣1,b),(3,c),(1,d)四点,则实数a,b,c,d中为负数的是()A.a B.b C.c D.d10.(3分)如图,AB是⊙O的直径,点D,C在⊙O上,∠DOC=90°,AC=2,BD=2,则⊙O的半径为()A.B.C.D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是.12.(4分)抛物线y=﹣(x+1)2+3与y轴交点坐标为.13.(4分)如图,三角形ABC绕点A逆时针旋转90°到三角形AB'C'的位置,已知∠BAC =36°,则∠B'AC=度.14.(4分)图1是一款优雅且稳定的抛物线型落地灯.防滑螺母C为抛物线支架的最高点,灯罩D距离地面1.86米,灯柱AB及支架的相关数据如图2所示.若茶几摆放在灯罩的正下方,则茶几到灯柱的距离AE为米.15.(4分)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(2,q)两点,则不等式ax2+mx+c>n的解集是.16.(4分)如图,AB是⊙O的直径,C、D是⊙O上的两个动点(点C、D不与A、B重合),在运动过程中弦CD始终保持不变,F是弦CD的中点,过点C作CE⊥AB于点E.若CD=5,AB=6,当EF取得最大值时,CE的长度为.三、解答题(本题有8小题,共66分)17.(6分)已知二次函数y=ax2+2x的图象过点(﹣2,﹣1).(1)求这个二次函数的解析式;(2)判断点(﹣1,﹣)是否在抛物线上.18.(6分)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.19.(6分)如图是由边长为1个单位长度的小正方形组成的网格,线段AB的端点在格点上.(1)将线段BA绕点B逆时针旋转90°得线段BC;建立适当的平面直角坐标系xOy,使得B的坐标为(﹣1,2),在此坐标系下,C点的坐标为.(2)第(1)题的坐标系下,二次函数y=ax2+bx+c的图象过O、B、C三点,试求出抛物线解析式.20.(8分)如图,AE是⊙O的直径,半径OC⊥弦AB,点D为垂足,连BE、BC.(1)若∠BEC=26°,求∠AOC的度数;(2)若∠CEA=∠A,EC=6,求⊙O的半径.21.(8分)对于一个函数给出如下定义:对于函数y,当a≤x≤b,函数值y满足c≤y≤d,且满足k(b﹣a)=d﹣c,则称此函数为“k属函数”.例如:正比例函数y=﹣3x,当1≤x≤3,﹣9≤y≤﹣3,则k(3﹣1)=﹣3﹣(﹣9),求得:k=3,所以函数y=﹣3x为“3属函数”.(1)反比例函数y=(1≤x≤5)为“k属函数”,求k的值;(2)若一次函数y=ax﹣1(1≤x≤5)为“2属函数”,求a的值.22.(10分)浙北商场一专柜销售某种品牌的玩具,每件进价为20元.销售过程中发现,每月销售y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)每月销售260件,则每件利润是多少?(2)如果该专柜想要每月获2160元的利润,且成本要低,那么销售单价应定为多少元?(3)设专柜每月获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润多少元?23.(10分)一节数学课后,老师布置了一道课后练习题:如图1,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,CE=CB,BE交CD、AC于点F、G.求证:CF=FG.(1)初步尝试:本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)类比探究若点C和点E在AB的两侧,BE、CA的延长线交于点G,CD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由;(3)延伸拓展在(2)的条件下,若BG=26,BD﹣DF=7,求BC的长.24.(12分)如图1,矩形OABC的顶点A、C的坐标分别为(2,0),(0,3),抛物线M1:y=﹣x2+bx+c经过B,C两点.抛物线的顶点为D.(1)求抛物线M1的表达式和点D的坐标;(2)点P是抛物线M1对称轴上一动点,当△CP A为等腰三角形时,求所有符合条件的点P的坐标;(3)如图2,现将抛物线M1进行平移,保持顶点在直线CD上,若平移后的抛物线与射线BD只有一个公共点,设平移后抛物线的顶点横坐标为m,求m的值或取值范围.2019-2020学年浙江省湖州市吴兴区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)下列函数是二次函数的是()A.y=3x﹣4B.y=ax2+bx+c C.y=(x+1)2﹣5D.y=【分析】根据二次函数定义的条件判定则可.【解答】解:A、y=3x﹣4,是一次函数,错误;B、y=ax2+bx+c,当a=0时,不是二次函数,错误;C、y=(x+1)2﹣5,是二次函数,正确,D、y=,不是二次函数,错误.故选:C.【点评】本题考查二次函数的定义,熟记二次函数的定义是解题的关键.2.(3分)下列成语或词组所描述的事件,不可能事件的是()A.守株待兔B.水中捞月C.瓮中捉鳖D.十拿九稳【分析】“守株待兔”是随机事件,“瓮中捉鳖、十拿九稳”是必然事件,只有“水中捞月”是不可能事件.【解答】解:“守株待兔”可能发生,也可能不发生,但发生的可能性非常小,“水中捞月”根本捞不到月亮,是不可能事件,“瓮中捉鳖”是必然事件,“十拿九稳”是必然事件故选:B.【点评】考查随机事件、必然事件、不可能事件的意义,根据发生的可能性的大小可将事件分为不可能事件、随机事件、必然事件.3.(3分)在同一平面内,⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆内B.点A在圆上C.点A在圆外D.无法确定【分析】根据点与圆的位置关系的判定方法进行判断.【解答】解:∵⊙O的半径为5cm,点A到圆心O的距离为3cm,即点A到圆心O的距离小于圆的半径,∴点A在⊙O内.故选:A.【点评】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.4.(3分)对于函数y=(x﹣2)2+5,下列结论错误的是()A.图象顶点是(2,5)B.图象开口向上C.图象关于直线x=2对称D.函数最大值为5【分析】根据函数解析式和二次函数的性质可以判断各个选项中的说法是否正确,本题得以解决.【解答】解:∵函数y=(x﹣2)2+5=x2+4x﹣5,∴该函数图象的顶点坐标是(2,5),故选项A正确;a=1>0,该函数图象开口向上,故选项B正确;该函数图象关于直线x=2对称,故选项C正确;当x=2时,该函数取得最小值y=5,故选项D错误;故选:D.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.5.(3分)如图,已知∠AOB是⊙O的圆心角,∠AOB=60°,则圆周角∠ACB的度数是()A.50°B.25°C.100°D.30°【分析】直接利用圆周角定理得出答案.【解答】解:∵∠AOB是⊙O的圆心角,∠AOB=60°,∴圆周角∠ACB的度数是:30°.故选:D.【点评】此题主要考查了圆周角定理,正确掌握相关性质是解题关键.6.(3分)在一个不透明的布袋中装有红色,白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有()A.4个B.6个C.34个D.36个【分析】由频数=数据总数×频率计算即可.【解答】解:∵摸到红色球的频率稳定在15%左右,∴口袋中红色球的频率为15%,故红球的个数为40×15%=6个.故选:B.【点评】大量反复试验下频率稳定值即概率.7.(3分)如图,AB为⊙O的弦,过点O作AB的垂线,交AB于点C,交⊙O于点D,已知⊙O的直径为10,CD=2,则AB的长为()A.4B.6C.8D.10【分析】连接OA,根据垂径定理和勾股定理即可得到结论.【解答】解:连接OA,∵OD⊥AB,∴AC=AB,∵⊙O的直径为10,∴OA=OD=5,∵CD=2,∴OC=OD﹣CD=5﹣2=3,∵AO2=OC2+AC2,∴52=32+AC2,∴AC=4,∴AB=2AC=2×4=8.故选:C.【点评】本题考查了垂径定理,勾股定理,正确的作出辅助线是解题的关键.8.(3分)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点于点C重合,则该抛物线的函数表达式变为()A.y=x2﹣8x+14B.y=x2+8x+14C.y=x2+4x+3D.y=x2﹣4x+3【分析】先由对称计算出C点的坐标,再根据平移规律求出新抛物线的解析式即可解题.【解答】解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴透明纸由A点平移至C点,抛物线向左平移了4个单位,向下平移了2个单位;∵透明纸经过A点时,函数表达式为y=x2,∴透明纸经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14故选:B.【点评】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式.9.(3分)在平面直角坐标系,某二次函数图象的顶点为(﹣2,1),此函数图象与x轴交于P、Q两点,且PQ=6.若此函致图象经过(﹣3,a),(﹣1,b),(3,c),(1,d)四点,则实数a,b,c,d中为负数的是()A.a B.b C.c D.d【分析】图象与x轴交于P、Q两点,且PQ=6,则点P、Q的坐标分别为:(﹣5,0)、(1,0),即可求解.【解答】解:抛物线的表达式为:y=a(x+2)2+1,图象与x轴交于P、Q两点,且PQ=6,则点P、Q的坐标分别为:(﹣5,0)、(1,0),将点Q的坐标代入抛物线表达式并解得:a=﹣,抛物线的表达式为:y=﹣(x+2)2+1,将x=﹣3,﹣1,1,3代入上式逐次验证,当x=3时,y<0,即c<0,故选:C.【点评】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.10.(3分)如图,AB是⊙O的直径,点D,C在⊙O上,∠DOC=90°,AC=2,BD=2,则⊙O的半径为()A.B.C.D.【分析】作半径OE⊥AB,连接DE,作BF⊥DE于F,如图,利用等角的余角相等得到∠DOE=∠AOC,则DE=AC=2,利用三角形内角和可计算出∠BDE=135°,所以∠BDF=45°,从而可计算出DF=BF=2,利用勾股定理计算出BE=2,然后根据△BOE为等腰直角三角形可得到OB的长.【解答】解:作半径OE⊥AB,连接DE,作BF⊥DE于F,如图,∵∠DOC=90°,∠BOE=90°,∴∠DOE=∠AOC,∴DE=AC=2,∵∠BDE=180°﹣×90°=135°,∴∠BDF=45°,∴DF=BF=BD=×2=2,在Rt△BEF,BE==2,∵△BOE为等腰直角三角形,∴OB=×2=.故选:D.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:根据题意可得:一个不透明的布袋中装有8个白球和4个红球,共12个,从中随机摸出一个,则摸到红球的概率=.故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.(4分)抛物线y=﹣(x+1)2+3与y轴交点坐标为(0,2).【分析】令x=0,代入求出y的值即可.【解答】解:把x=0代入y=﹣(x+1)2+3得,y=﹣1+3=2,因此与y轴的交点坐标为(0,2),故答案为:(0,2)【点评】考查二次函数图象上点的坐标特征,抛物线与y轴的交点坐标,令x=0代入求出y即可,求抛物线与x轴的交点坐标,令y=0代入求出x的值即可.13.(4分)如图,三角形ABC绕点A逆时针旋转90°到三角形AB'C'的位置,已知∠BAC=36°,则∠B'AC=54度.【分析】由旋转的性质可得∠BAB'=90°,即可求解.【解答】解:∵三角形ABC绕点A逆时针旋转90°到三角形AB'C'的位置,∴∠BAB'=90°,∴∠B'AC=∠BAB'﹣∠BAC=54°,故答案为:54.【点评】本题考查了旋转的性质,熟练掌握旋转的性质是本题的关键.14.(4分)图1是一款优雅且稳定的抛物线型落地灯.防滑螺母C为抛物线支架的最高点,灯罩D距离地面1.86米,灯柱AB及支架的相关数据如图2所示.若茶几摆放在灯罩的正下方,则茶几到灯柱的距离AE为 2.7米.【分析】由题意构造直角坐标系,设点A为坐标原点,由题意可知:防滑螺母C为抛物线支架的最高点,由图象中的数据,就可得到顶点A的坐标及点B的坐标,再利用待定系数法求出函数解析式,再根据灯罩D距离地面1.86米,茶几摆放在灯罩的正下方,将y=1.86代入函数解析式求出x的值,就可得到茶几到灯柱的距离AE.【解答】解:设点A为坐标原点,由题意可知:防滑螺母C为抛物线支架的最高点∴顶点C的坐标为:(1.5,2.5),B点坐标为(0,1.5),设抛物线的解析式为y=a(x﹣1.5)2+2.5,将点B的坐标代入得:a(x﹣1.5)2+2.5=1.5,解之:a=﹣,∴y=﹣(x﹣1.5)2+2.5,∵灯罩D距离地面1.86米,茶几摆放在灯罩的正下方,当y=1.86时,﹣(x﹣1.5)2+2.5=1.86解之:x1=0.3,x2=2.7,∵茶几在对称轴的右侧∴x=2.7,∴茶几到灯柱的距离AE为2.7m故答案为:2.7.【点评】本题考查了将二次函数的实际应用转化为二次函数图象的抽象能力以及用待定系数法求函数解析式与点的坐标的能力.15.(4分)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(2,q)两点,则不等式ax2+mx+c>n的解集是﹣2<x<1.【分析】作直线y=mx+n关于y轴的对称直线CD:y=﹣mx+n,点C、D是两个函数的交点,根据点的的对称性,点C(1,p),D(﹣2,q),即可求解.【解答】解:作直线y=mx+n关于y轴的对称直线CD:y=﹣mx+n,点C、D是两个函数的交点,根据点的的对称性,点C(1,p),D(﹣2,q),由图象可以看出,ax2+c>n﹣mx的解集为:﹣2<x<1,故答案为:﹣2<x<1.【点评】本题考查的是抛物线与x轴的交点,要求学生非常熟悉函数与坐标轴的交点、顶点等点所代表的意义、图象上点的坐标特征等.16.(4分)如图,AB是⊙O的直径,C、D是⊙O上的两个动点(点C、D不与A、B重合),在运动过程中弦CD始终保持不变,F是弦CD的中点,过点C作CE⊥AB于点E.若CD=5,AB=6,当EF取得最大值时,CE的长度为.【分析】如图,延长CE交⊙O于H,连接DH.由三角形的中位线定理可知DH=2EF,推出DH是直径时,EF的值最大.【解答】解:如图,延长CE交⊙O于H,连接DH.∵AB⊥CH,∴EC=EH,∵CF=FD,∴EF=DH,∴当DH在直径时,EF的值最大,此时∠DCH=90°,∴CH===,∴CE=,∴EF最大时,EC的长为,故答案为.【点评】本题考查圆周角定理,三角形的中位线定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.三、解答题(本题有8小题,共66分)17.(6分)已知二次函数y=ax2+2x的图象过点(﹣2,﹣1).(1)求这个二次函数的解析式;(2)判断点(﹣1,﹣)是否在抛物线上.【分析】(1)把点(﹣2,﹣1)代入二次函数y=ax2+2x,求出a的值,即可确定函数的关系式,(2)代入验证即可,当点的坐标满足关系式时,此点在函数的图象上,否则就不在函数的图象上.【解答】解:(1)把点(﹣2,﹣1)代入二次函数y=ax2+2x得,﹣1=4a﹣4,解得,a=,∴二次函数的关系式为y=x2+2x;(2)当x=﹣1时,y=×1+2×(﹣1)=﹣≠﹣,∴点(﹣1,﹣)不在抛物线上.【点评】考查二次函数图象上点的坐标特征以及待定系数法求函数的关系式,把点的坐标代入是常用的方法.18.(6分)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.【分析】(1)设红球的个数为x,根据白球的概率可得关于x的方程,解方程即可;(2)画出树形图,即可求出两次摸到的球都是白球的概率.【解答】解:(1)设红球的个数为x,由题意可得:,解得:x=1,经检验x=1是方程的根,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白)==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)如图是由边长为1个单位长度的小正方形组成的网格,线段AB的端点在格点上.(1)将线段BA绕点B逆时针旋转90°得线段BC;建立适当的平面直角坐标系xOy,使得B的坐标为(﹣1,2),在此坐标系下,C点的坐标为(2,0).(2)第(1)题的坐标系下,二次函数y=ax2+bx+c的图象过O、B、C三点,试求出抛物线解析式.【分析】(1)画出相等BC,从图上可以看出C点的坐标为(2,0);(2)将O、B、C三点指标代入二次函数表达式即可求解.【解答】解:(1)画出线段BC如图所示,C点的坐标为(2,0),故答案为:(2,0);(2)∵C点的坐标为(2,0),O(0,0),B(﹣1,2)∴,解得∴所求二次函数解析式为y=x2﹣.【点评】本题考查的是待定系数法求二次函数的解析式,坐标与图象变化﹣旋转,正确建立坐标系,求得C的坐标是解题的关键.20.(8分)如图,AE是⊙O的直径,半径OC⊥弦AB,点D为垂足,连BE、BC.(1)若∠BEC=26°,求∠AOC的度数;(2)若∠CEA=∠A,EC=6,求⊙O的半径.【分析】(1)根据垂径定理得到=,根据圆周角定理解答;(2)根据圆周角定理得到∠C=90°,根据等腰三角形的性质得到∠A=∠AEC=30°,根据余弦的定义求出AE即可.【解答】解:(1)∵OC⊥AB,∴=,∴∠CEB=∠AEC=26°,由圆周角定理得,∠AOC=2∠AEC=52°;(2)连接AC∵AE是⊙O的直径,∴∠ABE=∠ACE=90°,∴∠AEB+∠A=90°,∵∠CEA=∠A,∠CEB=∠AEC,∴∠A=∠AEC=30°,∴AE==4,∴⊙O的半径为2.【点评】本题考查圆周角定理,垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(8分)对于一个函数给出如下定义:对于函数y,当a≤x≤b,函数值y满足c≤y≤d,且满足k(b﹣a)=d﹣c,则称此函数为“k属函数”.例如:正比例函数y=﹣3x,当1≤x≤3,﹣9≤y≤﹣3,则k(3﹣1)=﹣3﹣(﹣9),求得:k=3,所以函数y=﹣3x为“3属函数”.(1)反比例函数y=(1≤x≤5)为“k属函数”,求k的值;(2)若一次函数y=ax﹣1(1≤x≤5)为“2属函数”,求a的值.【分析】(1)直接利用“k属和合函数”的定义即可得出结论;(2)分两种情况:利用“k属和合函数”的定义即可得出结论.【解答】解:(1)∵反比例函数y=中,k=5>0,∴y随x的增大而减小,当1≤x≤5时,1≤y≤5,∴k(5﹣1)=5﹣1,∴k=1;(2)①a>0时,对于一次函数y=ax﹣1,y随x增大而增大,当1≤x≤5时,a﹣1≤y≤5a﹣1,∴k(5﹣1)=4a,∵k=2,∴a=2;②当a<0时,y随x增大而减小,当1≤x≤5时,a﹣1≤y≤5a﹣1,∴k(5﹣1)=﹣4a,∵k=2,∴a=﹣2.【点评】此题主要考查了反比例函数的性质,一次函数的性质,分类讨论的思想解决问题是解本题的关键.22.(10分)浙北商场一专柜销售某种品牌的玩具,每件进价为20元.销售过程中发现,每月销售y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)每月销售260件,则每件利润是多少?(2)如果该专柜想要每月获2160元的利润,且成本要低,那么销售单价应定为多少元?(3)设专柜每月获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润多少元?【分析】(1)由题意得,y=260,进而得出x的值,即可得出答案;(2)利用利润=销量×每件利润=2160,进而解方程得出答案;(3)首先得出二次函数解析式,进而根据二次函数最值求法得出答案.【解答】解:(1)令y=260,则260=﹣10x+500,解得:x=24,所以每件利润是24﹣20=4(元);(2)由题意可得:(﹣10x+500)(x﹣20)=2160,﹣10x2+700x﹣10000=2160,解得:x1=32,x2=38,当x1=32时,y=﹣10×32+500=180,成本为:180×20=3600(元),当x2=38时,y=﹣10×38+500=120,成本为:120×20=2400(元),∴专柜想要每月获2160元的利润,且成本要低,那么销售单价应定为38元;(3)由题意可得:w=(x﹣20)•y=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250,∵a=﹣10<0,∴当x=35时,w最大=2250(元),∴当销售单价定为35元时,每月可获得最大利润为2250元.【点评】此题考查了二次函数的性质及其应用、一元二次方程的应用,将实际问题转化为求函数最值问题是解题关键.23.(10分)一节数学课后,老师布置了一道课后练习题:如图1,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,CE=CB,BE交CD、AC于点F、G.求证:CF=FG.(1)初步尝试:本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)类比探究若点C和点E在AB的两侧,BE、CA的延长线交于点G,CD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由;(3)延伸拓展在(2)的条件下,若BG=26,BD﹣DF=7,求BC的长.【分析】(1)如图1中,延长CD交⊙O于H.想办法证明∠3=∠4即可解决问题.(2)成立,证明方法类似(1).(3)构建方程组求出BD,DF即可解决问题.【解答】(1)证明:如图1中,延长CD交⊙O于H.∵AB是直径,CD⊥AB,∴=,∵CE=CB,∴=,∴=,∴∠1=∠2,∵∠ACB=90°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4,∴FC=FG.(2)解:成立.理由如下:∵AB是直径,CD⊥AB,∴=,∵CE=CB,∴=,∴=,∴∠1=∠2,∵∠ACB=90°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4,∴FC=FG.(3)解:由(2)可知:FG=BF=CF,∵BG=26,∴FB=13,∴,解得BD=12,DF=5,∴CD=8,BC===4【点评】本题考查圆周角定理,垂径定理,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(12分)如图1,矩形OABC的顶点A、C的坐标分别为(2,0),(0,3),抛物线M1:y=﹣x2+bx+c经过B,C两点.抛物线的顶点为D.(1)求抛物线M1的表达式和点D的坐标;(2)点P是抛物线M1对称轴上一动点,当△CP A为等腰三角形时,求所有符合条件的点P的坐标;(3)如图2,现将抛物线M1进行平移,保持顶点在直线CD上,若平移后的抛物线与射线BD只有一个公共点,设平移后抛物线的顶点横坐标为m,求m的值或取值范围.【分析】(1)由题意可知B,C两点的坐标,利用待定系数法即可解决问题;(2)分三种不同的情况:①当AC=AP时,②当AC=CP时,③当AP=CP时,设P (1,t),根据两点间的距离公式,求出AC2=9+4=13,AP2=1+t2,CP2=1+(t﹣3)2,分别列出方程即可解决;(3)先求得直线CD的解析式,利用直线与抛物线的交点、抛物线的平移变换规律来求m的取值范围即可.【解答】解:(1)∵抛物线抛y=﹣x2+bx+c经过B、C两点经过C(0,3),B(2,3),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3,(2)设P(1,t),∵A(2,0),C(0,3),∴AC2=9+4=13,AP2=1+t2,CP2=1+(t﹣3)2,①当AC=AP时,13=1+t2,解得t=,∴P(1,2)或P(1,﹣2).②当AC=CP时,13=1+(t﹣3)2,解得t=3,∴P(1,3+2)或P(1,3﹣2);③当AP=CP时,1+t2=1+(t﹣3)2,解得t=1.5,∴P(1,1.5)此时A,C,P共线,故舍去.综合以上可得所有符合条件的点P的坐标为(1,2)或(1,﹣2)或(1,3+2)或(1,3﹣2);(3)∵C(0,3),D(1,4),设直线CD的解析式为y=kx+b,∴,解得,∴直线CD的解析式为:y=x+3,移动中抛物线的顶点为(m,m+3),则抛物线的解析式为y=﹣(x﹣m)2+m+3,又∵B(2,3),D(1,4),将B(2,3)代入,m2﹣5m+4=0,解得m1=1,m2=4,∴1<m≤4,又∵,∴x2+(﹣2m﹣1)x+m2﹣m+2=0,∵△=(﹣2m﹣1)2﹣4(m2﹣m+2)=0,解得m=,∴抛物线的顶点横坐标m的值或取值范围为1<m≤4或m=.【点评】本题是二次函数综合题,考查了矩形的性质,待定系数法求函数解析式,等腰三角形的判定与性质,二次函数的平移变换等知识点,解题的关键是灵活运用所学知识,学会用方程思想及分类讨论的思想思考解决问题.。
浙教版九年级上册数学期中考试试题一、单选题1.下列各式中y 是x 的二次函数的是()A .2y ax bx c=++B .2(1)y x x =++C .22(2)y x x =-+D .22y x =2.下列命题中,正确的是()A .圆心角相等,所对的弦相等B .三点确定一个圆C .长度相等的弧是等弧D .弦的垂直平分线必经过圆心3.在一个不透明的布袋中装有45个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.4左右,则布袋中黑球的个数可能有()A .18B .27C .36D .304.如图,O 是ABC 的外接圆,已知40ABO ∠=︒,则ACB ∠等于()A .30°B .45︒C .50︒D .60︒5.用配方法将二次函数y=x 2﹣8x ﹣9化为y=a (x ﹣h )2+k 的形式为()A .y=(x ﹣4)2+7B .y=(x+4)2+7C .y=(x ﹣4)2﹣25D .y=(x+4)2﹣256.如图,在ABC 中,90ACB ∠=︒,30ABC ∠=︒,2AB =.将ABC 绕直角顶点C 逆时针旋转60︒得A B C ''V ,则点B 转过的路径长为()A .3πB .3C .23πD .π7.已知二次函数22y x mx =-+,以下点可能成为函数顶点的是()A .()3,9-B .()2,3C .()1,1--D .()2,4--8.如图,在半径为6的⊙O 中,点A ,B ,C 都在⊙O 上,四边形OABC 是平行四边形,则图中阴影部分的面积为()A .6πB .C .D .2π9.如图所示,在⊙O 中,半径OD ⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连接EC ,若AB =8,CD =2,则EC 的长度为()A .B .8C .D .10.已知二次函数图象的对称轴为1x =,且过点()3,0A 与30,2B ⎛⎫⎪⎝⎭,则下列说法中正确的是()①当01x ≤≤时,函数有最大值2;②当01x ≤≤时,函数有最小值2-;③点P 是第一象限内抛物线上的一个动点,则PAB △面积的最大值为32;④对于非零实数m ,当11x m>+时,y 都随着x 的增大而减小.A .④B .①②C .③④D .①②③二、填空题11.一个布袋里装有2个只有颜色不同的球,其中1个红球,1个白球,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球恰好颜色不同的概率是______.12.已知点A(11,x y )、B(22,x y )在二次函数2(1)1y x =-+的图象上,若121x x >>,则y 1______y 2.13.如图,在△ABC 中,∠C =90°,∠A =25°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E ,则 BD的度数为____________.14.如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,120AOB ∠=︒,从A 到B 只有路弧AB ,一部分市民走“捷径”,踩坏了花草,走出了一条小路AB ,通过计算可知,这些市民其实仅仅少走了_______步(假设1步为0.5米,结果保留整数).(参考1.7≈,π取3)15.已知实数m ,n 满足21m n -=,则代数式22242m n m ++-的最小值等于___________.16.在O 中,弦AB 和弦AC 构成的48BAC ∠=︒,M ,N 分别是AB 和AC 的中点,则MON ∠的度数为_______.三、解答题17.将抛物线245y x x =--向右平移1个单位,再向上平移3个单位,求得到的新抛物线解析式.18.操作题:如图,⊙O 是 ABC 的外接圆,AB=AC ,P 是⊙O 上一点.(1)请你只用无刻度的直尺,分别画出图①和图②中∠P 的平分线;(2)结合图①,说明你这样画的理由.19.如图某野生动物园分A 、B 两个园区.如图是该动物园的通路示意图,小明进入入口后,任选一条通道.(1)他进A 园区或B 园区的可能性哪个大?请说明理由(利用树状图或列表来求解);(2)求小明从中间通道进入A 园区的概率.20.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设AB =xm ,花园的面积为S .(1)求S 与x 之间的函数表达式;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15m 和6m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积的最大值.21.如图,点C ,D 是半圆O 上的三等分点,直径8AB =,连接AD ,AC ,作DE AB ⊥,垂足为E ,DE 交AC 于点F .(1)求证:AF DF =.(2)求阴影部分的面积(结果保留π和根号)22.在平面直角坐标系中,二次函数图象的表达式()21y ax a x =++,其中0a ≠.(1)若此函数图象过点()1,3-,求这个二次函数的表达式;(2)函数()21(0)y ax a x a =++≠,若()1122(),,,x y x y 为此二次函数图象上的两个不同点,①若124x x +=,则12y y =,试求a 的值;②当123x x >≥-,对任意的1x ,2x 都有12y y >,试求a 的取值范围.23.已知P 是O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A 、B (不与P ,Q 重合),连接AP 、BP .若APQ BPQ ∠=∠.(1)如图1,当45APQ ∠=︒,1AP =,22BP =时,求C 的半径;(2)在(1)的条件下,求四边形APBQ 的面积(3)如图2,连接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若290NOP OPN ∠+∠=︒,探究直线AB 与ON 的位置关系,并说明理由.参考答案1.B 【解析】【分析】若函数解析式化简后是关于自变量的二次多项式,则称此函数为二次函数,其一般形式为2(0)y ax bx c a =++≠,且a 、b 、c 是常数,根据二次函数的定义即可作出判断.【详解】A 、当a≠0时是二次函数,否则不是二次函数;B 、化简后为22y x x =++,是二次函数;C 、224(2)4y x x x =-=+--,是一次函数,不是二次函数;D 、函数解析式不是整式,不是二次函数;故选:B 【点睛】本题考查了二次函数的概念,理解二次函数的概念是关键.2.D 【解析】【分析】根据圆的有关性质对每一项进行判断即可得出答案.【详解】解:A.在同圆或等圆中,相等的圆心角所对的弦相等,故本选项错误;B.不在同一直线上的三点确定一个圆,故本选项错误;C.在同圆或等圆中,能够互相重合的弧叫做等弧,长度相等的弧不一定能够重合,故本选项错误;D.弦的垂直平分线必经过圆心,故本选项正确.故选:D .【点睛】本题考查了命题与定理,关键是熟练掌握有关性质和定理,能对命题的真假进行判断.3.D 【解析】【分析】设黑球的个数为x 个,根据频率可列出方程,解方程即可求得x ,从而得到答案.【详解】设黑球的个数为x 个,由题意得:0.445xx=+解得:x=30经检验x=30是原方程的解则袋中黑球的个数为30个故选:D 【点睛】本题考查了用频率估计概率,解方程,根据概率列出方程是关键.4.C 【解析】【分析】由,40,OA OB ABO =∠=︒证明40,BAO ABO ∠=∠=︒再利用三角形的内角和定理求解,AOB ∠再利用圆周角定理可得答案.【详解】解:,40,OA OB ABO =∠=︒ 40,BAO ABO ∴∠=∠=︒180240100,AOB ∴∠=︒-⨯︒=︒150,2ACB AOB ∴∠=∠=︒故选C 【点睛】本题考查的是三角形的内角和定理的应用,等腰三角形的性质,圆周角定理的应用,掌握“在同圆或等圆中,同弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.5.C 【解析】【分析】直接利用配方法进而将原式变形得出答案.【详解】y=x 2-8x-9=x 2-8x+16-25=(x-4)2-25.故选C .【点睛】此题主要考查了二次函数的三种形式,正确配方是解题关键.6.B 【解析】【分析】先在ABC ∆中利用ABC ∠的余弦计算出2cos30BC =︒=,再根据旋转的性质得60BCB ∠'=︒,然后根据弧长公式计算点B 转过的路径长.【详解】解:在ABC ∆中,90ACB ∠=︒ ,30ABC ∠=︒,cos BCABC AB∴∠=,2cos 302BC ∴=︒=,ABC ∆ 绕直角顶点C 逆时针旋转60︒得△A B C ''',60BCB ∴∠'=︒,∴弧BB '的长.故选:B .【点睛】本题考查了旋转的性质,弧长公式等知识点,熟悉相关性质是解题的关键.7.A 【解析】【分析】配方后,根据顶点坐标的特点即可判断.【详解】∵2222()y x mx x m m =-+=--+∴顶点坐标为2()m m ,即顶点的纵坐标是顶点横坐标的平方,且纵坐标非负所以满足上述特点的只有A选项故选:A【点睛】本题考查了二次函数的顶点式,根据顶点式确定顶点坐标,关键得到顶点坐标后,抓住两个坐标的特点.8.A【解析】【分析】连接OB,根据平行四边形的性质得到AB=OC,推出△AOB是等边三角形,得到∠AOB=60°,根据扇形的面积公式即可得到结论.【详解】解:连接OB,∵四边形OABC是平行四边形,∴AB=OC,∴AB=OA=OB,∴△AOB是等边三角形,∴∠AOB=60°,∵OC∥AB,∴S△AOB=S△ABC,∴图中阴影部分的面积=S扇形AOB =60366360ππ⋅⨯=故选A.【点睛】本题考查的是扇形面积的计算,平行四边形的性质,掌握扇形的面积公式是解题的关键.9.D【解析】【分析】首先连接BE,由⊙O的半径OD⊥弦AB于点C,AB=8,CD=1,根据垂径定理可求得AC=BC=4,然后设OA=x,利用勾股定理可得方程:42+(x-2)2=x2,则可求得半径的长,继而利用三角形中位线的性质,求得BE的长,又由AE是直径,可得∠B=90°,继而求得答案.【详解】连接BE∵⊙O的半径OD⊥弦AB于点C,AB=8∴AC=BC=4设OA=x∵CD=2∴OC=x-2在Rt△AOC中,AC2+OC2=OA2∴42+(x-2)2=x2解得:x=5∴OA=OE=5,OC=3∴BE=2OC=6∵AE是直径∴∠B=90°∴CE=故选:D.【点睛】本题考查了勾股定理、垂径定理、三角形中位线、圆、一元一次方程的知识;解题的关键是熟练掌握勾股定理、垂径定理、三角形中位线、圆周角、一元一次方程的性质,从而完成求解.10.B【解析】【分析】设二次函数解析式为y =a (x−1)2+b ,然后将点A 、B 的坐标代入求出a 、b ,从而得到抛物线解析式,再根据二次函数的性质求出最大值和最小值,判断出①②正确;利用待定系数法求出直线AB 的解析式,过点P 作PQ ∥y 轴交AB 于Q ,设出P 点坐标,表示出PQ ,再利用三角形的面积公式列式整理,然后根据二次函数的最值问题求解;根据二次函数的增减性分m 是正数和负数两种情况讨论求解.【详解】解:∵二次函数图象的对称轴为x =1,设二次函数的解析式为y =a (x−1)2+b ,∴把点A (3,0)与30,2B ⎛⎫ ⎪⎝⎭,代入y =a (x−1)2+b ,得:4032a b a b +=⎧⎪⎨+=⎪⎩,解得:122a b ⎧=-⎪⎨⎪=⎩,∴二次函数的解析式为y =12-(x−1)2+2,∴在01x ≤≤的范围内,当x =1时,函数有最大值2,故①正确;当x=1时,函数有最小值,最小值=12-(1−1)2+2=−2,故②正确;如图,设直线AB 的解析式为y =kx+b (k≠0),把点A (3,0)与30,2B ⎛⎫ ⎪⎝⎭,代入得:3032k b b +=⎧⎪⎨=⎪⎩,解得:1232k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB 的解析式为y =12-x +32,过点P 作PQ ∥y 轴交AB 于Q ,设P (x ,12-(x−1)2+2),则Q (x ,12-x +32),∴PQ =12-(x−1)2+2−(12-x +32)=21322x x -+,∴△PAB 的面积=22113332732224216x x x 骣骣琪琪´-+´=--+琪琪桫桫,∴当x =32时,△PAB 的面积有最大值2716,故③错误;当m <0时,11m +<1,在11x m+<<1的范围内,y 随x 的增大而增大;当m >0时,11m +>1,在11xm>+的范围内,y随x的增大而减小,故④错误,综上所述,说法正确的是①②.故选:B.【点睛】本题考查了二次函数的性质及应用,待定系数法求二次函数解析式,待定系数法求一次函数解析式以及二次函数的最值问题等,难点在于③表示出△PAB的面积.11.1 2【解析】【分析】画树状图,共有4种等可能的结果,两次摸到的球是一白一红的结果有2种,再由概率公式求解即可.【详解】解:画树状图如下:共有4种等可能的结果,两次摸到的球是一白一红的结果有2种,∴两次摸到的球是一白一红的概率为21 42 =,故答案为:1 2.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.【解析】【详解】由二次函数2(1)1y x =-+的图象知,抛物线开口向上,对称轴为x=1∵121x x >>∴y 随x 的增大而增大∴1y >2y 13.50°【解析】【分析】连接CD ,如图,先根据三角形内角和计算出∠B =65°,再根据等腰三角形的性质由CB =CD 得到∠B =∠BDC =65°,然后再利用三角形内角和计算出∠BCD =50°,最后根据圆心角的度数等于它所对的弧的度数求解.【详解】解:连接CD ,如图,∵∠C =90°,∠A =25°,∴∠B =90°−25°=65°,∵CB =CD ,∴∠B =∠BDC =65°,∴∠BCD =180°−65°−65°=50°,∴ BD的度数为50°.【点睛】本题考查了圆心角、弧、弦的关系:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等;圆心角的度数等于它所对的弧的度数.【解析】【分析】取AB 的中点C ,连接OC ,则有OC ⊥AB ,由三角函数知识可求得AC 从而求得AB 的长,由弧长公式可求得弧AB 的长,比较即可得结果.【详解】取AB 的中点C ,连接OC ,如图∵OA=OB∴OC ⊥AB ,∠OAC=1(180)302AOB ︒-∠=︒∴cos3020AC OA =⨯︒=⨯∴234AB AC ==≈(米)∵ 1202040401803AB l ππ⨯==≈(米)∵40346-=(米),60.512÷=(步)故答案为:12【点睛】本题考查了求弧长及解三角形,作辅助线把非直角三角形转化为直角三角形是关键.15.-13【解析】【分析】由21m n -=可得21,n m =-再代入22242m n m ++-,再利用配方法配方,从而可得答案.【详解】解: 21m n -=,21,n m \=-()222242=2142m n m m m m ∴++-+-+-264m m =+-()231313,m =+-≥-所以22242m n m ++-的最小值是13-故答案为:-13【点睛】本题考查的是代数式的最值,配方法的应用,熟练的运用配方法求解代数式的最值是解本题的关键.16.132︒或48︒##48°或132°【解析】【分析】连接OM ,ON ,利用垂径定理得OM ⊥AB ,ON ⊥AC ,再分类讨论,当AB ,AC 在圆心异侧时(如图1),利用四边形内角和得结果;当AB ,AC 在圆心同侧时(如图2),利用三角形的内角和定理可得结果.【详解】解:连接OM ,ON ,∵M 、N 分别是AB 和AC 的中点,∴OM ⊥AB ,ON ⊥AC ,当AB ,AC 在圆心异侧时(如图1),∵∠BAC=48°,在四边形AMON 中,∴∠MON=360°-90°-90°-48°=132°;当AB ,AC 在圆心同侧时(如图2),∵∠ADM=∠ODN ,∠AMD=∠OND ,∴∠MON=∠BAC=48°.故答案为:132°或48°.【点睛】本题主要考查了四边形的内角和定理,三角形的内角和定理,垂径定理的应用,分类讨论,数形结合是解答本题的关键.17.263y x x =-+【解析】【分析】把245y x x =--化为顶点式,得()229,y x =--再按照抛物线的平移规律:左加右减,上加下减,从而可得答案.【详解】解: ()224529,y x x x =--=--∴把()229y x =--向右平移1个单位,再向上平移3个单位可得:()22193,y x =---+即抛物线为:()2236=6 3.y x x x =---+【点睛】本题考查的是抛物线的平移,掌握抛物线的平移规律是解本题的关键.18.(1)见解析;(2)见解析【解析】【分析】(1)利用圆心角、弧、弦的关系,得出作法即可;(2)由AB=AC 得到 AB AC =,再利用圆周角定理可得.【详解】解:(1)如图①,连接AP ,即为所求角平分线;如图②,连接AO 并延长,与⊙O 交于点D ,连接PD ,即为所求角平分线.(2)∵AB=AC ,∴ AB AC ,∴∠APB=∠APC .【点睛】此题主要考查了基本作图以及圆心角、弧、弦的关系,圆周角定理等知识,熟练利用圆心角、弧、弦的关系得出是解题关键.19.(1)见解析;(2)16.【解析】【分析】(1)此题可以采用树状图法求解.一共有6种情况,其中进入A 园区的有2种可能,进入B 园区的有4种可能,所以进入B 园区的可能性较大;(2)根据(1)中的树形图即可求出小明从中间通道进入A 园区的概率.【详解】解:(1)画出树状图得:∴由表可知,小明进入园区后一共有6种不同的可能路线,因为小明是任选一条道路,所以走各种路线的可能性认为是相等的,而其中进入A 园区的有2种可能,进入B 园区的有4种可能,所以进入B 园区的可能性较大;(2)由(1)可知小明进入A 园区的通道分别是中入口和右入口,因此从中间通道进入A 园区的概率为.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.20.(1)S =﹣x 2+28x (0<x <28);(2)195m 2.【解析】【分析】(1)根据长方形的面积公式可得S 关于x 的函数解析式;(2)由树与墙CD ,AD 的距离分别是15m 和6m 求出x 的取值范围,再结合二次函数的性质可得答案.【详解】解:(1)∵AB =xm ,∴BC =(28﹣x )m .则S =AB•BC =x (28﹣x )=﹣x 2+28x .即S =﹣x 2+28x (0<x <28).(2)由题意可知,62815x x ≥⎧⎨-≥⎩,解得6≤x≤13.由(1)知,S =﹣x 2+28x =﹣(x ﹣14)2+196.∵当6≤x≤13时,S 随x 的增大而增大,∴当x =13时,S 最大值=195,即花园面积的最大值为195m 2.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出S 与x 的函数关系式是解题关键.21.(1)见解析;(2)83π-【解析】【分析】(1)连接OD ,OC ,根据已知条件得到∠AOD=∠DOC=∠COB=60°,根据圆周角定理得到∠CAD=∠ADE=30°,于是得到结论;(2)由(1)知,∠AOD=60°,推出△AOD 是等边三角形,OA=4,得到DE=扇形和三角形的面积公式即可得到结论.【详解】(1)证明:连接OD ,OC ,∵C 、D 是半圆O 上的三等分点,∴ AD CD BC ==,度数都是60°,∴∠AOD=∠DOC=∠COB=60°,∴∠DAC=30°,∠CAB=30°,∵DE ⊥AB ,∴∠AEF=90°,∴∠ADE=180°-90°-30°-30°=30°,∴∠DAC=∠ADE=30°,∴AF=DF ;(2)解:由(1)知,∠AOD=60°,∵OA=OD ,AB=8,∴△AOD 是等边三角形,OA=4,∵DE ⊥AO ,OA=4,∠ADE=30°,∴AE=2,=∴S 阴影=S 扇形AOD-S △AOD=260418436023ππ⋅⨯-⨯⨯-.【点睛】本题考查了扇形的面积,等边三角形的判定和性质,正确的作出辅助线是解题的关键.22.(1)y =﹣2x 2﹣x ;(2)①15a =-;②0<a≤15【解析】【分析】(1)直接将点(1,﹣3)代入即可;(2)①利用题意,121222x x a a ++-==,求解a ;②由已知当x 1>x 2≥﹣3,对任意的x 1,x 2都有y 1>y 2,则在x 1>x 2≥﹣3时,二次函数是递增的,再分两种情况结合图象即可求解.【详解】解:(1)∵函数图象过点(1,﹣3),∴将点代入y =ax 2+(a+1)x ,13,a a ∴++=-解得a =﹣2,∴二次函数的解析式为y =﹣2x 2﹣x ;(2)①函数y =ax 2+(a+1)x 的对称轴是直线12a x a+=-,∵(x 1,y 1),(x 2,y 2)为此二次函数图象上的两个不同点,且x 1+x 2=4,则y 1=y 2,∴1212,22x x a a ++-==∴15a =-;②函数y =ax 2+(a+1)x 的对称轴是直线12a x a +=-,∵123x x >≥-,对任意的x 1,x 2都有y 1>y 2,当a >0,132a a +-≤-时,符合题意,解得:0<a≤15;∴0<a≤15;当a <0时,不符合题意舍去;∴0<a≤15.【点睛】本题考查待定系数法求二次函数解析式;二次函数图象上点的特征.能够结合函数图象进行求解是解决本题的关键.23.(1)32;(294;(3)//AB ON ;见解析【解析】【分析】(1)连接AB ,由已知得到∠APB=∠APQ+∠BPQ=90°,根据圆周角定理证得AB 是⊙O 的直径,然后根据勾股定理求得直径,即可求得半径;(2)证明ABQ △是等腰直角三角形,得出2AQ BQ ==,根据ABP ABQ APBQ S S S ∆∆=+四边形可得结论;(3)连接OA 、OB 、OQ ,由∠APQ=∠BPQ 证得»»AQ BQ =,即可证得OQ ⊥AB ,然后根据三角形内角和定理证得∠NOQ=90°,即NO ⊥OQ ,即可证得AB ∥ON .【详解】(1)连接AB ,如图1,∵45APQ BPQ ∠=∠=︒,∴90APB APQ BPQ ∠=∠+∠=︒,∴AB 是O 的直径,∴3AB ===,∴O 的半径为32;(2)连接AQ ,BQ ,如图2,∵90APB ∠=︒∴18090AQB APB ∠=︒-∠=︒∵45APQ BPQ ∠=∠=︒∴45ABQ BAQ ∠=∠=︒∴ABQ △是等腰直角三角形∵3AB =,∴3222AQ BQ AB ===⨯=∴119122224ABP ABQ APBQ S S S ∆∆=+=⨯⨯⨯⨯四边形(3)//AB ON ,理由如下:连接OQ ,如图3,∵APQ BPQ ∠=∠,∴»»AQ BQ =,∴OQ AB⊥∵OP OQ =,∴OPN OQP ∠=∠,∵180OPN OQP PON NOQ ∠+∠+∠+∠=︒,∴2180OPN PON NOQ ∠+∠+∠=︒,∵290NOP OPN ∠+∠=︒,∴90NOQ ∠=︒,∴NO OQ⊥∴//AB ON【点睛】本题考查了圆周角定理,垂径定理,熟练掌握性质定理是解题的关键.。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
2019-2020学年浙江省衢州市Q21教学联盟九年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列函数是y关于x的二次函数的是()A.y=﹣x B.y=2x+3C.y=x2﹣3D.y=2.(3分)下列说法正确的是()A.抛一枚硬币,正面一定朝上B.掷一颗骰子,点数一定不大于6C.为了解一种灯泡的使用寿命,宜采用普查的方法D.“明天的降水概率为80%”,表示明天会有80%的地方下雨3.(3分)已知线段a=4,b=8,则线段a,b的比例中项为()A.±32B.32C.D.4.(3分)圆心角为120°,弧长为12π的扇形的半径为()A.6B.9C.18D.365.(3分)将二次函数y=x2﹣4x+3化为y=a(x﹣m)2+k的形式,下列结果正确的是()A.y=(x+2)2+1B.y=(x﹣2)2+1C.y=(x+2)2﹣1D.y=(x﹣2)2﹣1 6.(3分)如图,AB为⊙O的直径,点C、D、E均在⊙O上,且∠BED=30°,那么∠ACD 的度数是()A.60°B.50°C.40°D.30°7.(3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>08.(3分)一个点到圆的最小距离为4cm,最大距离为9cm,则该圆的半径是()A.2.5cm或6.5cm B.2.5cmC.6.5cm D.5cm或13cm9.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④a+b>m(am+b),(m≠1);⑤2c<3b.其中正确的结论有()A.2个B.3个C.4个D.5个10.(3分)如图,半径为4的⊙O中,CD为直径,弦AB⊥CD且过半径OD的中点,点E 为⊙O上一动点,CF⊥AE于点F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为.12.(4分)已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则y1、y2、y3的大小关系为.13.(4分)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为mm.14.(4分)一般认为,如果一个人的肚脐以上的高度与肚脐以下的高度符合黄金分割,则这个人好看.如图,是一个参加空姐选拔的选手的身高情况,那么她应穿cm的鞋子才能好看?(精确到0.01cm).15.(4分)如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C,若OA=2,则阴影部分的面积为.16.(4分)在直角坐标系中,抛物线y=ax2﹣4ax+2(a>0)交y轴于点A,点B是点A关于对称轴的对称点,点C是抛物线的顶点,则:(1)抛物线的对称轴为直线x=;(2)若△ABC的外接圆经过原点O,则a的值为.三、解答题(本大题共8小题,第17~19小题每小题6分,第20~21小题每小题6分,第22~23小题每小题6分,第24小题12分,共66分.)17.(6分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C;(2)求在旋转过程中,CA所扫过的面积.18.(6分)新定义:如果二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,0),那么称此二次函数图象为“定点抛物线”.(1)试判断二次函数y=2x2﹣5x﹣7的图象是否为“定点抛物线”;(2)若“定点抛物线”y=x2﹣mx+2﹣k与x轴只有一个公共点,求k的值.19.(6分)如图,AB是⊙O的直径,C是的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=6,AC=8,求⊙O的半径及CE的长.20.(8分)为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.21.(8分)如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)求此抛物线顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=1,求点B的坐标.22.(10分)如图,校园空地上有一面墙,长度为4米.为了创建“美丽校园”,学校决定借用这面墙和20米的围栏围成一个矩形花园ABCD.设AD长为x米,矩形花园ABCD 的面积为s平方米.(1)如图1,若所围成的矩形花园AD边的长不得超出这面墙,求s关于x的函数关系式,并写出自变量x的取值范围;(2)在(1)的条件下,当AD为何值时,矩形花园ABCD的面积最大,最大值是多少?(3)如图2,若围成的矩形花园ABCD的AD边的长可超出这面墙,求围成的矩形ABCD 的最大面积.23.(10分)如图1,抛物线y=ax2﹣x+c与x轴相交于点A(﹣2,0)、B(4,0),与y 轴相交于点C,连接AC,BC,以线段BC为直径作⊙M,过点C作直线CE∥AB,与抛物线和⊙M分别交于点D,E(1)求该抛物线所对应的函数关系式;(2)求线段DE的长;(3)在BC下方的抛物线上有一点P,P点的横坐标是m,△PBC的面积为S,求出S 与m之间的函数关系式,并求出当m为何值时,S有最大值,最大值为多少?24.(12分)已知抛物线y=a(x﹣1)(x﹣3)(a<0)的顶点为A,交y轴交于点C,过C 作CB∥x轴交抛物线于点B,过点B作直线l⊥x轴,连结OA并延长,交l于点D,连结OB.(1)当a=﹣2时,求线段OB的长.(2)是否存在特定的a值,使得△OBD为等腰三角形?若存在,请写出a值的计算过程;若不存在,请说明理由.(3)设△OBD的外心M的坐标为(m,n),求m与n的数量关系式.2019-2020学年浙江省衢州市Q21教学联盟九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列函数是y关于x的二次函数的是()A.y=﹣x B.y=2x+3C.y=x2﹣3D.y=【分析】根据形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数进行分析即可.【解答】解:A、y=﹣x不是二次函数,故此选项错误;B、y=2x+3不是二次函数,故此选项错误;C、y=x2﹣3是二次函数,故此选项正确;D、y=不是二次函数,故此选项错误;故选:C.【点评】此题主要考查了二次函数,关键是掌握判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.2.(3分)下列说法正确的是()A.抛一枚硬币,正面一定朝上B.掷一颗骰子,点数一定不大于6C.为了解一种灯泡的使用寿命,宜采用普查的方法D.“明天的降水概率为80%”,表示明天会有80%的地方下雨【分析】分别根据随机事件、必然事件、抽样调查的概念进行逐一分析即可.【解答】解:A、抛一枚硬币,正面一定朝上的概率是50%,是随机事件,故A错误;B、掷一颗骰子,点数一定不大于6是必然事件,故B正确;C、为了解一种灯泡的使用寿命,应采用抽样调查的方法,故C错误;D、“明天的降水概率为80%”,表示明天下雨的机会是80%,故D错误.故选:B.【点评】本题考查的是可能性大小的判断,解决这类题目要注意具体情况具体对待.一般地必然事件的可能性大小为1,不可能事件发生的可能性大小为0,随机事件发生的可能性大小在0至1之间;破坏性较强的调查应采用抽样调查的方式.3.(3分)已知线段a=4,b=8,则线段a,b的比例中项为()A.±32B.32C.D.【分析】设线段x是线段a,b的比例中项,根据比例中项的定义列出等式,利用两内项之积等于两外项之积即可得出答案.【解答】解:设线段a、b的比例中项为x,则x2=ab,即x2=4×8,解得x=4或x=﹣4<0(舍去),故选:D.【点评】本题主要考查比例线段,掌握比例中项的性质是解题的关键.4.(3分)圆心角为120°,弧长为12π的扇形的半径为()A.6B.9C.18D.36【分析】根据弧长的公式l=进行计算.【解答】解:设该扇形的半径是r.根据弧长的公式l=,得到:12π=,解得r=18,故选:C.【点评】本题考查了弧长的计算.熟记公式是解题的关键.5.(3分)将二次函数y=x2﹣4x+3化为y=a(x﹣m)2+k的形式,下列结果正确的是()A.y=(x+2)2+1B.y=(x﹣2)2+1C.y=(x+2)2﹣1D.y=(x﹣2)2﹣1【分析】利用配方法整理即可得解.【解答】解:y=x2﹣4x+3=(x2﹣4x+4)+3﹣4,=(x﹣2)2﹣1,即y=(x﹣2)2﹣1.故选:D.【点评】本题考查了二次函数的三种形式的转化,熟练掌握和运用配方法是解题的关键.6.(3分)如图,AB为⊙O的直径,点C、D、E均在⊙O上,且∠BED=30°,那么∠ACD 的度数是()A.60°B.50°C.40°D.30°【分析】连接BD,DA,由AB是圆的直径,则∠BDA=90°,由圆周角定理知,∠DAB =∠BED=30°,即可求∠ABD=90°﹣∠DAB=60°,从而得出∠ACD的度数.【解答】解:连接BD,DA,∵AB是圆的直径,∴∠ADB=90°,∵∠DAB=∠BED=30°,∴∠ABD=90°﹣∠DAB=60°,∴∠ACD=60°.故选:A.【点评】本题考查了直径对的圆周角定理是直角和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.(3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0【分析】根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.【解答】解:A、由抛物线的开口向上,可知a>0,函数有最小值,正确,故A选项不符合题意;B、由图象可知,对称轴为x=,正确,故B选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故C选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故D选项符合题意.故选:D.【点评】本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.8.(3分)一个点到圆的最小距离为4cm,最大距离为9cm,则该圆的半径是()A.2.5cm或6.5cm B.2.5cmC.6.5cm D.5cm或13cm【分析】设此点为P点,圆为⊙O,最大距离为PB,最小距离为P A,有两种情况:①当此点在圆内;②当此点在圆外;分别求出半径值即可.【解答】解:设此点为P点,圆为⊙O,最大距离为PB,最小距离为P A,则:∵此点与圆心的连线所在的直线与圆的交点即为此点到圆心的最大、最小距离∴有两种情况:当此点在圆内时,如图所示,半径OB=(P A+PB)÷2=6.5cm;当此点在圆外时,如图所示,半径OB=(PB﹣P A)÷2=2.5cm;故圆的半径为2.5cm或6.5cm故选:A.【点评】注意到分两种情况进行讨论是解决本题的关键.9.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④a+b>m(am+b),(m≠1);⑤2c<3b.其中正确的结论有()A.2个B.3个C.4个D.5个【分析】①函数对称轴在y轴右侧,则ab<0,c>0,即可求解;②当x=﹣1时,y<0,即a﹣b+c<0,故b>a+c,即可求解;③x=2时,y=4a+2b+c>0,即可求解;④a+b+c>m(am+b)+c,即可求解;⑤函数的对称轴为:x=1,故b=﹣2a,而由②知:b>a+c,故2c<3b即可求解.【解答】解:①函数对称轴在y轴右侧,则ab<0,c>0,故①错误,不符合题意;②当x=﹣1时,y<0,即a﹣b+c<0,故b>a+c,故②错误,不符合题意;③x=2时,y=4a+2b+c>0,故正确,符合题意;④a+b+c>m(am+b)+c,故正确,符合题意;⑤函数的对称轴为:x=1,故b=﹣2a,而由②知:b>a+c,故2c<3b正确,符合题意;故选:B.【点评】本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.10.(3分)如图,半径为4的⊙O中,CD为直径,弦AB⊥CD且过半径OD的中点,点E 为⊙O上一动点,CF⊥AE于点F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为()A.B.C.D.【分析】连接AC,AO,由AB⊥CD,利用垂径定理得到G为AB的中点,由中点的定义确定出OG的长,在直角三角形AOG中,由AO与OG的长,利用勾股定理求出AG的长,进而确定出AB的长,由CO+GO求出CG的长,在直角三角形AGC中,利用勾股定理求出AC的长,由CF垂直于AE,得到三角形ACF始终为直角三角形,点F的运动轨迹为以AC为直径的半径,如图中红线所示,当E位于点B时,CG⊥AE,此时F与G 重合;当E位于D时,CA⊥AE,此时F与A重合,可得出当点E从点B出发顺时针运动到点D时,点F所经过的路径长,在直角三角形ACG中,利用锐角三角函数定义求出∠ACG的度数,进而确定出所对圆心角的度数,再由AC的长求出半径,利用弧长公式即可求出的长,即可求出点F所经过的路径长.【解答】解:连接AC,AO,∵AB⊥CD,∴G为AB的中点,即AG=BG=AB,∵⊙O的半径为4,弦AB⊥CD且过半径OD的中点,∴OG=2,∴在Rt△AOG中,根据勾股定理得:AG==2,∴AB=2AG=4,又∵CG=CO+GO=4+2=6,∴在Rt△AGC中,根据勾股定理得:AC==4,∵CF⊥AE,∴△ACF始终是直角三角形,点F的运动轨迹为以AC为直径的半圆,当E位于点B时,CG⊥AE,此时F与G重合;当E位于D时,CA⊥AE,此时F与A 重合,∴当点E从点B出发顺时针运动到点D时,点F所经过的路径长,在Rt△ACG中,tan∠ACG==,∴∠ACG=30°,∴所对圆心角的度数为60°,∵直径AC=4,∴的长为=π,则当点E从点B出发顺时针运动到点D时,点F所经过的路径长为π.故选:C.【点评】此题考查了圆的综合题,涉及的知识有:坐标与图形性质,勾股定理,锐角三角函数定义,弧长公式,以及圆周角定理,其中根据题意得到点E从点B出发顺时针运动到点D时,点F所经过的路径长,是解本题的关键.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为.【分析】用白球的个数除以球的总个数即可求得摸到白球的概率.【解答】解:∵在一个不透明的口袋中装有5个红球和3个白球,∴任意从口袋中摸出一个球来,摸到白球的概率为=;故答案为:.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.12.(4分)已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则y1、y2、y3的大小关系为y3<y1<y2.【分析】求出抛物线的对称轴为直线x=﹣2,然后根据二次函数的增减性和对称性解答即可.【解答】解:抛物线的对称轴为直线x=﹣=﹣2,∵a=﹣2<0,∴x=﹣2时,函数值最大,又∵﹣1到﹣2的距离比﹣4到﹣2的距离小,∴y3<y1<y2.故答案为y3<y1<y2.【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性和对称性,求出对称轴是解题的关键.13.(4分)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为8mm.【分析】先求出钢珠的半径及OD的长,连接OA,过点O作OD⊥AB于点D,则AB=2AD,在Rt△AOD中利用勾股定理即可求出AD的长,进而得出AB的长.【解答】解:连接OA,过点O作OD⊥AB于点D,则AB=2AD,∵钢珠的直径是10mm,∴钢珠的半径是5mm,∵钢珠顶端离零件表面的距离为8mm,∴OD=3mm,在Rt△AOD中,∵AD===4mm,∴AB=2AD=2×4=8mm.故答案为:8.【点评】本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.14.(4分)一般认为,如果一个人的肚脐以上的高度与肚脐以下的高度符合黄金分割,则这个人好看.如图,是一个参加空姐选拔的选手的身高情况,那么她应穿10.18cm的鞋子才能好看?(精确到0.01cm).【分析】根据黄金分割的定义即可求解.【解答】解:设她应穿xcm的鞋子,根据题意,得0.618(95+x)=65解得x≈10.18答:她应穿10.18cm的鞋子才能好看.故答案为10.18.【点评】本题考查了黄金分割,解决本题的关键是掌握黄金分割定义.15.(4分)如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C,若OA=2,则阴影部分的面积为﹣.【分析】连接OC、AC,根据题意得到△AOC为等边三角形,∠BOC=30°,分别求出扇形COB的面积、△AOC的面积、扇形AOC的面积,计算即可.【解答】解:连接OC、AC,由题意得,OA=OC=AC=2,∴△AOC为等边三角形,∠BOC=30°,∴扇形COB的面积为:=,△AOC的面积为:×2×=,扇形AOC的面积为:=,则阴影部分的面积为:+﹣=﹣,故答案为:﹣.【点评】本题考查的是扇形面积计算,掌握等边三角形的性质、扇形的面积公式S=是解题的关键.16.(4分)在直角坐标系中,抛物线y=ax2﹣4ax+2(a>0)交y轴于点A,点B是点A关于对称轴的对称点,点C是抛物线的顶点,则:(1)抛物线的对称轴为直线x=2;(2)若△ABC的外接圆经过原点O,则a的值为.【分析】(1)根据对称轴方程x=﹣解答;(2)先求得顶点坐标,然后利用待定系数法确定函数关系式,即求得a的值.【解答】解:(1)抛物线y=ax2﹣4ax+2的对称轴为直线x=﹣=2,即x=2.(2)连接OB交对称轴于点O′.∵抛物线的对称轴x=2,A(0,2),A,B关于对称轴对称,∴B(4,2),∵△ABC的外接圆经过原点O,∴外接圆的圆心是线段OB的中点O′,∴O′(2,1),∴OB==2,∴O′C=,∴点C坐标为(2,1﹣),∴1﹣=4a﹣8a+2,∴a=.故答案是:2;.【点评】本题考查了二次函数综合题,需要掌握三角形的外接圆与外心,二次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本大题共8小题,第17~19小题每小题6分,第20~21小题每小题6分,第22~23小题每小题6分,第24小题12分,共66分.)17.(6分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C;(2)求在旋转过程中,CA所扫过的面积.【分析】(1)根据要求画出图形即可.(2)利用扇形的面积公式计算即可.【解答】解:(1)则△A1B1C为所求作的图形.(2)∵AC=,∠ACA1=90°,∴在旋转过程中,CA所扫过的面积为:S扇形CAA1=.【点评】本题考查旋转变换,扇形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.(6分)新定义:如果二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,0),那么称此二次函数图象为“定点抛物线”.(1)试判断二次函数y=2x2﹣5x﹣7的图象是否为“定点抛物线”;(2)若“定点抛物线”y=x2﹣mx+2﹣k与x轴只有一个公共点,求k的值.【分析】(1)把x=﹣1代入抛物线解析式,判断y的值是否为0,即可解决问题.(2)因为y=x2﹣mx+2﹣k与x轴只有一个公共点,所以(﹣1,0)是抛物线顶点,所以抛物线解析式为y=(x+1)2,由此即可解决问题.【解答】解:(1)当x=﹣1时,y=2+5﹣7=0,∴抛物线y=2x2﹣5x﹣7经过点(1,0),∴二次函数图象为“定点抛物线”.(2)∵y=x2﹣mx+2﹣k与x轴只有一个公共点,∴(﹣1,0)是抛物线顶点,∴抛物线解析式为y=(x+1)2=x2+2x+1,∴2﹣k=1,∴k=1.【点评】本题考查抛物线与x轴的交点,理解题意是解题的关键,学会灵活运用顶点式确定二次函数的解析式,属于中考常考题型.19.(6分)如图,AB是⊙O的直径,C是的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=6,AC=8,求⊙O的半径及CE的长.【分析】(1)要证明CF=BF,可以证明∠ECB=∠DBC;AB是⊙O的直径,则∠ACB =90°,又知CE⊥AB,则∠CEB=90°,则∠DBC=90°﹣∠ACE=∠A,∠ECB=∠A,则∠ECB=∠DBC;(2)在直角三角形ACB中,AB2=AC2+BC2,又知,BC=CD,所以可以求得AB的长,即可求得圆的半径;再根据三角形相似可以求得CE的长.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠A=90°﹣∠ABC.∵CE⊥AB,∴∠CEB=90°,∴∠ECB=90°﹣∠ABC,∴∠ECB=∠A.(2分)又∵C是的中点,∴=,∴∠DBC=∠A,∴∠ECB=∠DBC,∴CF=BF;(2)解:∵=,∴BC=CD=6,∵∠ACB=90°,∴AB===10,∴⊙O的半径为5,∵S△ABC=AB•CE=BC•AC,∴CE===.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质、圆周角定理、等腰三角形的性质以及角平分线的性质等知识.此题综合性很强,难度适中,注意数形结合思想与方程思想的应用,注意辅助线的作法.20.(8分)为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.【分析】(1)由满意的有20人,占40%,即可求得此次调查中接受调查的人数.(2)由(1),即可求得此次调查中结果为非常满意的人数.(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选择的市民均来自甲区的情况,再利用概率公式即可求得答案.【解答】解:(1)∵满意的有20人,占40%,∴此次调查中接受调查的人数:20÷40%=50(人);(2)此次调查中结果为非常满意的人数为:50﹣4﹣8﹣20=18(人);(3)画树状图得:∵共有12种等可能的结果,选择的市民均来自甲区的有2种情况,∴选择的市民均来自甲区的概率为:=.【点评】此题考查了列表法或树状图法求概率以及条形与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)求此抛物线顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=1,求点B的坐标.【分析】(1)利用交点式求抛物线解析式;(2)把(1)中解析式配成顶点式即可得到抛物线顶点坐标及对称轴;(3)设B(t,t2﹣2t),根据三角形面积公式得到×2×|t2﹣2t|=1,则t2﹣2t=1或t2﹣2t=﹣1,然后分别解两个方程求出t,从而可得到B点坐标.【解答】解:(1)抛物线解析式为y=x(x﹣2),即y=x2﹣2x;(2)因为y=x2﹣2x=(x﹣1)2﹣1,所以抛物线的顶点坐标为(1,﹣1),对称轴为直线x=1;(3)设B(t,t2﹣2t),因为S△OAB=1,所以×2×|t2﹣2t|=1,所以t2﹣2t=1或t2﹣2t=﹣1,解方程t2﹣2t=1得t1=1+,t2=1﹣,则B点坐标为(1+,1)或(1﹣,1);解方程t2﹣2t=﹣1得t1=t2=1,则B点坐标为(1,﹣1),所以B点坐标为(1+,1)或(1﹣,1)或(1,﹣1).【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.22.(10分)如图,校园空地上有一面墙,长度为4米.为了创建“美丽校园”,学校决定借用这面墙和20米的围栏围成一个矩形花园ABCD.设AD长为x米,矩形花园ABCD 的面积为s平方米.(1)如图1,若所围成的矩形花园AD边的长不得超出这面墙,求s关于x的函数关系式,并写出自变量x的取值范围;(2)在(1)的条件下,当AD为何值时,矩形花园ABCD的面积最大,最大值是多少?(3)如图2,若围成的矩形花园ABCD的AD边的长可超出这面墙,求围成的矩形ABCD 的最大面积.【分析】(1)根据矩形的面积公式计算即可.(2)利用二次函数的性质解决问题即可.(3)构建二次函数,利用二次函数的性质解决问题即可.【解答】解:(1)由题得:BC=x,AB=(20﹣x)=10﹣x,则s=AB•BC=﹣x2+10x.x的取值范围为0<x≤4.(2)∵s=﹣x2+10x=﹣(x﹣10)2+50,又0<x≤4,∴当0<x≤4时,s随着x的增大而增大.∴当x=4时,s的值最大,且最大s=32.答:当BC为4时,矩形花园ABCD的面积最大,最大值为32.(3)由题得:BC=x,DE=x﹣4,AB=[20﹣x﹣(x﹣4)]=12﹣x,则s=AB•BC=﹣x2+12x=﹣(x﹣6)2+36(4≤4<12)当x=6时,s的值最大,且最大s=36.答:矩形花园ABCD的面积最大,面积为36.【点评】本题考查四边形综合题,二次函数的应用等知识,解题的关键是理解题意,学会利用参数,构建二次函数解决问题,属于中考压轴题.23.(10分)如图1,抛物线y=ax2﹣x+c与x轴相交于点A(﹣2,0)、B(4,0),与y 轴相交于点C,连接AC,BC,以线段BC为直径作⊙M,过点C作直线CE∥AB,与抛物线和⊙M分别交于点D,E(1)求该抛物线所对应的函数关系式;(2)求线段DE的长;(3)在BC下方的抛物线上有一点P,P点的横坐标是m,△PBC的面积为S,求出S 与m之间的函数关系式,并求出当m为何值时,S有最大值,最大值为多少?【分析】(1)根据点A、B的坐标,利用待定系数法即可求出抛物线所对应的函数关系式;(2)连接BE,则四边形OCEB为矩形,根据矩形的性质可知CE的长度,由抛物线与x 轴交于点A、B可找出抛物线的对称轴,结合点C在y轴上即可求出CD的长度,再利用DE=CE﹣CD即可求出结论;(3)过点P作PH⊥x轴于点H,由点P的横坐标可得出点P、H的坐标,进而可得出OH、PH、BH的长度,由抛物线所对应的函数关系式利用二次函数图象上点的坐标特征可求出点C的坐标,进而可得出OC的长度,由S=S梯形OCPH+S△BPH﹣S△BOC可找出S 与m之间的函数关系式,再利用配方法即可解决最值问题.【解答】解:(1)将A(﹣2,0)、B(4,0)代入y=ax2﹣x+c,得:,解得:,∴该抛物线所对应的函数关系式为y=x2﹣x﹣3.(2)连接BE,如图1所示.∵线段BC为⊙M的直径,∴∠BEC=90°.又∵CE∥AB,∠BOC=∠OCE=90°,∴四边形OCEB为矩形,∴CE=OB=4.∵抛物线y=x2﹣x﹣3与x轴相交于点A(﹣2,0)、B(4,0),∴抛物线的对称轴为直线x=1,又∵点C在y轴上,∴CD=1×2=2,∴DE=CE﹣CD=2.(3)过点P作PH⊥x轴于点H,如图2所示.∵P点的横坐标是m,点在BC下方的抛物线上,∴点P的坐标为(m,m2﹣m﹣3)(0<m<4),点H的坐标为(m,0),∴OH=m,BH=4﹣m,PH=﹣m2+m+3.∵抛物线y=x2﹣x﹣3与y轴相交于点C,∴点C的坐标为(0,﹣3),∴OC=3,∴S=S梯形OCPH+S△BPH﹣S△BOC,=(OC+PH)•OH+BH•PH﹣OB•OC,=×(3﹣m2+m+3)×m+×(4﹣m)×(﹣m2+m+3)﹣×4×3,=﹣m2+3m=﹣(m﹣2)2+3,∵﹣<0,∴当m=2时,S有最大值,最大值为3.综上所述:S与m之间的函数关系式为S=﹣m2+3m(0<m<4),当m=2时,S有最大值,最大值为3.【点评】本题考查了待定系数法求二次函数解析式、矩形的性质、二次函数的性质、三角形的面积、梯形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数关系式;(2)利用矩形的性质结合二次函数的性质求出CE、CD的长度;(3)通过分割图形,找出S关于m的函数关系式.24.(12分)已知抛物线y=a(x﹣1)(x﹣3)(a<0)的顶点为A,交y轴交于点C,过C 作CB∥x轴交抛物线于点B,过点B作直线l⊥x轴,连结OA并延长,交l于点D,连结OB.(1)当a=﹣2时,求线段OB的长.(2)是否存在特定的a值,使得△OBD为等腰三角形?若存在,请写出a值的计算过程;若不存在,请说明理由.(3)设△OBD的外心M的坐标为(m,n),求m与n的数量关系式.【分析】(1)把a=﹣2代入y=﹣2(x﹣1)(x﹣3)=﹣2x2+8x﹣6,解方程得到点C(0,﹣6),根据勾股定理即可得到结论;(2)解方程得到C(0,3a),B(4,3a),过A作AE⊥x轴于点E,AE延长线与CB交于点F,根据三角形的中位线的性质得到DG=2AE=﹣2a,求得BD=DG+BG=﹣5a,当△OBD为等腰三角形时,①当OB=BD=﹣5a,②当OD=BD=﹣5a时,③当OD =OB时,DG=BG,解方程即可得到结果;(3)根据已知条件得到点M在BD的垂直平分线上,OM=MD,求得n=a,根据勾股定理列方程即可得到结论.【解答】解:(1)当a=﹣2时,y=﹣2(x﹣1)(x﹣3)=﹣2x2+8x﹣6,当x=0时,得y=﹣6,∴点C(0,﹣6),当y=﹣6时,即﹣6=﹣2x2+8x﹣6,解得:x1=0,x2=4,∴点B(4,﹣6),∴BC=4,OC=6,∴OB═=2;(2)在y=a(x﹣1)(x﹣3)中,令x=0,得y=3a,∴C(0,3a),B(4,3a),∵点A是抛物线的顶点,∴A(2,﹣a),过A作AE⊥x轴于点E,AE延长线与CB交于点F,将BD与x轴的交点记为点G,则E为OG的中点,。
浙教版2019-2020学年初中数学九年级上学期期末复习专题8正多边形姓名:班级:成绩:一、单选题(共10题;共30分)1. (3 分)(2018 •广东模拟)正六边形ABCDEF 内接于©O .正六边形的周长是12,则©O 的半径是(A .B .2C .站2. (3 分)(2018 •莱芜模拟)如图.BC 是(DA 的内接正十边形的一边.BD 平分匕ABC 交AC 于点D,则下列结论不成立的是(A ・ BC=BD=ADB . BC2二DC・ACD . BC 二ACC ・的三边之长为1: 1:3.(3分)如图,为。
0的内接三角形,此L 匕C 二30° ,则。
的内接正方形的面积为()A .2B . 4C . 8D .164. (3 分)如图.正六边形ABCDEF 内接于。
0,若直线PA 与。
相切于点A.则ZPAB-( )A .30°B .35c. 45°・60°5. (3 分)(2016九上•罗平开学考)如图.AD. BE, CF 是正六边形ABCDEF 的对角线,图中平行四边形的个C D 数有(B CB . 4个C .6个D . 8个6.(3分)(2012•柳州)如图,小红做了一个实验,将正六边形ABCDEF绕点F顺时针旋转后到达A'B'C‘D f E‘F'的位置,所转过的度数是()A .60°B .72°C ・108°D .120°7.(3分)如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点0重合,点A在xk)・=—轴上,点B在反比例函数-'位于第一象限的图象上,则k的值为()A .MB .9/D .M8.(3分)正六边形的外接圆的半径与内切圆的半径之比为()A .1:"B .反2C .2:正D .反19.(3分)(2017•贵港模拟)若一个正多边形的中心角为10°.则这个名边形的边数是(A .9B .8C .7D .610.(3分)以下说法正确的是()A .每个内角都是120。
2019--2020学年浙江省九年级上册数学(浙教版)《圆的基本性质》试题分类——解答题1.(2019秋•拱墅区校级期末)如图,AB为⊙O直径,点D为AB下方⊙O上一点,点C为弧ABD中点,连接CD,CA.(1)若∠ABD=α,求∠BDC(用α表示);(2)过点C作CE⊥AB于H,交AD于E,∠CAD=β,求∠ACE(用β表示);(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长.2.(2019秋•柯桥区期末)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E 是BA延长线上一点,∠DAE=105°.(1)求∠CAD的度数;(2)若⊙O的半径为4,求弧BC的长.3.(2019秋•江干区期末)如图,在⊙O中,过半径OD的中点C作AB⊥OD交⊙O于A、B两点,且AB=2√3.(1)求OD的长;(2)计算阴影部分的面积.4.(2019秋•丽水期末)如图,半圆O的直径AB=10,将半圆O绕点B顺时针旋转45°得到半圆O′,与AB交于点P,求AP的长.5.(2019秋•奉化区期末)如图,在一座圆弧形拱桥,它的跨度AB为60m,拱高PM为18m,当洪水泛滥到跨度只有30m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m,即PN=4m时,试通过计算说明是否需要采取紧急措施.6.(2019秋•义乌市期末)如图,已知AB为半圆O的直径,AC,AD为弦,且AD平分∠BAC.(1)若∠ABC=28°,求∠CBD的度数;(2)若AB=6,AC=2,求AD的长.7.(2019秋•义乌市期末)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形)(1)画出△ABC关于原点对称的△A′B′C′;(2)将△A′B′C′绕A′顺时针旅转90°画出旅转后得到的△A″B″C″并直接写出此过程中线段A′C′扫过图形的面积(结果保留π).8.(2019秋•鄞州区期末)已知:如图,在半圆O中,直径AB的长为6,点C是半圆上一点,过圆心O作AB的垂线交线段AC的延长线于点D,交弦BC于点E.(1)求证:∠D=∠ABC;(2)记OE=x,OD=y,求y关于x的函数表达式;(3)若OE=CE,求图中阴影部分的面积.9.(2019秋•西湖区期末)如图,在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=8cm,求图中劣弧BC的长.10.(2019秋•下城区期末)如图,MB ,MD 是⊙O 的两条弦,点A ,C 分别在MM ̂,MM ̂上,且AB =CD ,M 是MM̂的中点. (1)求证:MB =MD ;(2)过O 作OE ⊥MB 于点E ,当OE =1,MD =4时,求⊙O 的半径.11.(2019秋•温州期末)如图,点A 、B 、C 、D 、E 都在⊙O 上,AC 平分∠BAD ,且AB ∥CE ,求证:MM̂=MM ̂.12.(2019秋•温州期末)如图,已知△ABO 中A (﹣1,3),B (﹣4,0).(1)画出△ABO 绕着原点O 按顺时针方向旋转90°后的图形,记为△A 1B 1O ;(2)求第(1)问中线段AO 旋转时扫过的面积.13.(2019秋•吴兴区期末)如图,已知在矩形ABCD 中,AB =2,BC =2√3.点P ,Q 分别是BC ,AD 边上的一个动点,连结BQ ,以P 为圆心,PB 长为半径的⊙P 交线段BQ 于点E ,连结PD .(1)若DQ =√3且四边形BPDQ 是平行四边形时,求出⊙P 的弦BE 的长;(2)在点P ,Q 运动的过程中,当四边形BPDQ 是菱形时,求出⊙P 的弦BE 的长,并计算此时菱形与园重叠部分的面积.14.(2019秋•瑞安市期末)如图,Rt △ABC 中,∠C =90°,在BC 上取一点D 使AD =BD ,连结AD ,作△ACD 的外接圆⊙O ,交AB 于点E .(1)求证:AE =BE ;(2)若CD =3,AB =4√5,求AC 的长.15.(2019秋•温州期末)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与边BC ,AC 分别交于D ,E两点,过点D 作DH ⊥AC 于点H .(1)求证:BD =CD ;(2)连结OD 若四边形AODE 为菱形,BC =8,求DH 的长.16.(2019春•余姚市期末)如图,4×6的正方形网格中,每个小正方形的顶点称为格点,A ,B ,C 均为格点.在下列各图中画出四边形ABCD ,使点D 也为格点,且四边形ABCD 分别符合下列条件:(1)是中心对称图形(画在图1中).(2)是轴对称图形(画在图2中).(3)既是轴对称图形,又是中心对称图形(画在图3中).17.(2019秋•萧山区期末)如图,在⊙O 中,AB =AC .(1)求证:OA 平分∠BAC .(2)若MM ̂:MM ̂=3:2,试求∠BAC 的度数.18.(2020春•西湖区期末)将一副三角板中的两块直角三角尺的直角顶点C 按照如图①的方式叠放在一起(∠A =30°,∠ABC =60°,∠E =∠EDC =45°),且三角板ACB 的位置保持不动.(1)将三角板DCE 绕点C 按顺时针方向旋转至图②,若∠ACE =60°,求∠DCB 的度数.(2)将三角板DCE 绕点C 按顺时针方向旋转,当旋转到ED ∥AB 时,求∠BCE 的度数(请先在备用图上补全相应的图形).(3)当0°<∠BCE <180°且点E 在直线BC 的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠BCE 所有可能的值;若不存在,请说明理由.19.(2019秋•吴兴区期末)如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连结BC .(1)求证:AE =ED ;(2)若AB =8,∠CBD =30°,求图中阴影部分的面积.20.(2019秋•瑞安市期末)如图,Rt △OAB 中,∠OAB =90°,以OA 为半径的⊙O 交BO 于点C ,交BO 延长线于点D .在⊙O 上取一点E ,且MM̂=MM ̂,延长DE 与BA 交于点F . (1)求证:△BDF 是直角三角形;(2)连接AC ,AC =2√10,OC =2BC ,求AF 的长.2019--2020学年浙江省九年级上册数学(浙教版)《圆的基本性质》试题分类——解答题参考答案与试题解析一.解答题(共20小题)1.【答案】见试题解答内容【解答】解:(1)连接AD ,如图1所示:设∠BDC =γ,∠CAD =β,则∠CAB =∠BDC =γ,∵点C 为弧ABD 中点,∴MM̂=MM ̂, ∴∠ADC =∠CAD =β,∴∠DAB =β﹣γ,∵AB 为⊙O 直径,∴∠ADB =90°,∴γ+β=90°,∴β=90°﹣γ,∴∠ABD =90°﹣∠DAB =90°﹣(β﹣γ)=90°﹣90°+γ+γ=2γ,∴∠ABD =2∠BDC ,∴∠BDC =12∠ABD =12α; (2)连接BC ,如图2所示:∵AB 为⊙O 直径,∴∠ACB =90°,即∠BAC +∠ABC =90°,∵CE ⊥AB ,∴∠ACE +∠BAC =90°,∴∠ACE =∠ABC ,∵点C 为弧ABD 中点,∴MM̂=MM ̂, ∴∠ADC =∠CAD =∠ABC =β,∴∠ACE =β;(3)连接OC ,如图3所示:∴∠COB =2∠CAB ,∵∠ABD =2∠BDC ,∠BDC =∠CAB ,∴∠COB =∠ABD ,∵∠OHC =∠ADB =90°,∴△OCH ∽△ABD ,∴MM MM =MM MM =12, ∴BD =2OH =10,∴AB =√MM 2+MM 2=√242+102=26,∴AO =13,∴AH =AO +OH =13+5=18,∵∠EAH =∠BAD ,∠AHE =∠ADB =90°,∴△AHE ∽△ADB ,∴MM MM =MM MM ,即1824=MM 26, ∴AE =392, ∴DE =AD ﹣AE =24−392=92.2.【答案】见试题解答内容【解答】解:(1)∵AB =AC ,∴MM̂=MM ̂, ∴∠ABC =∠ACB ,∵D 为MM̂的中点, ∴MM̂=MM ̂, ∴∠CAD =∠ACD ,∴MM̂=2MM ̂, ∴∠ACB =2∠ACD ,又∵∠DAE =105°,∴∠BCD =105°,∴∠ACD =13×105°=35°,∴∠CAD =35°;(2)∵∠DAE =105°,∠CAD =35°,∴∠BAC =40°,连接OB ,OC ,∴∠BOC =80°,∴弧BC 的长=80M ×4180=16M 5.3.【答案】见试题解答内容【解答】解:(1)∵AB⊥OD,∴∠OCB=90°,AC=BC=12AB=√3,∵点C为OD的中点,∴OC=12OB,∵cos∠COB=MMMM=12,∴∠COB=60°,∴OC=√33BC=√33×√3=1,∴OB=2OC=2,∴OD=OB=2;(2)阴影部分的面积=S扇形BOD﹣S△COB=60×M×22360−12×√3×1=2 3π−√32.4.【答案】见试题解答内容【解答】解:∵∠OBA′=45°,O′P=O′B,∴△O′PB是等腰直角三角形,∴PB=√2BO′=5√2,∴AP=AB﹣BP=10﹣5√2.5.【答案】见试题解答内容【解答】解:设圆弧所在圆的圆心为O,连接OA、OA′,设半径为x米,则OA=OA′=OP,由垂径定理可知AM=BM,A′N=B′N,∵AB=60米,∴AM=30米,且OM=OP﹣PM=(x﹣18)米,在Rt△AOM中,由勾股定理可得AO2=OM2+AM2,即x2=(x﹣18)2+302,解得x=34,∴ON=OP﹣PN=34﹣4=30(米),在Rt△A′ON中,由勾股定理可得A′N=√MM′2−MM2=√342−302=16(米),∴A′B′=32米>30米,∴不需要采取紧急措施.6.【答案】见试题解答内容【解答】解:(1)∵AB 是⊙O 的直径, ∴∠C =∠ADB =90°,∴∠CAB =90°﹣28°=62°,∵AD 平分∠BAC ,∴∠CAD =12∠CAB =31°, ∴∠CBD =∠CAD =31°;(2)连接OD 交BC 于E ,如图,在Rt △ACB 中,BC =√62−22=4√2, ∵AD 平分∠BAC ,∴∠CAD =∠BAD ,∴MM̂=MM ̂, ∴OD ⊥BC ,∴BE =CE =12BC =2√2,∴OE =12AC =12×2=1, ∴DE =OD ﹣OE =3﹣1=2,在Rt △BDE 中,BD =√22+(2√2)2=2√3, 在Rt △ABD 中,AD =√62−(2√3)2=2√6.7.【答案】见试题解答内容【解答】解:(1)如图,△A ′B ′C ′为所作;(2)如图,△A ″B ″C ″为所作,线段A ′C ′扫过图形的面积=90⋅M ⋅42360=4π,.8.【答案】见试题解答内容【解答】解:(1)∵AB 是直径, ∴∠ACB =90°∴∠A +∠ABC =90°∵DO ⊥AB ,∴∠A +∠D =90°∴∠D =∠ABC .(2)∵OB =OC ,∴∠B =∠OCE ,∴∠OCE =∠D .而∠COE =∠COD ,∴△OCE ∽△ODC ,∴MM MM =MM MM ,即M 3=3M∴y =9M (0<x <3).(3)设∠B =a ,则∠BCO =a ,∵OE =CE ,∴∠EOC =∠BCO =a在△BCO 中,a +a +90°+a =180°, ∴a =30°∴S =3×3√32−30M ⋅32360−√34×32=9√34−34π. 9.【答案】见试题解答内容【解答】解:(1)连接OB ,∵OA ⊥BC ,∴MM̂=MM ̂, ∴∠AOC =∠AOB ,由圆周角定理得,∠AOB =2∠ADB =60°, ∴∠AOC =∠AOB =60°;(2)∵OA ⊥BC ,∴BE =12BC =4,在Rt △BOE 中,∠AOB =60°,∴OB =MM MMM60°=8√33, ∴劣弧BC 的长=120M ×8√33180=16√39π(cm ). 10.【答案】见试题解答内容【解答】(1)证明:∵AB =CD , ∴MM̂=MM ̂, ∵M 是MM̂的中点, ∴MM̂=MM ̂, ∴MM̂=MM ̂, ∴BM =DM .(2)解:如图,连接OM .∵DM =BM =4,OE ⊥BM ,∴EM =BE =2,∵OE =1,∠OEM =90°,∴OM =√MM 2+MM 2=√12+22=√5,∴⊙O 的半径为√5.11.【答案】见试题解答内容【解答】证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC ,∵AB ∥CE ,∴∠BAC =∠ACE ,∴∠DAC =∠ACE ,∴MM̂=MM ̂. 12.【答案】见试题解答内容【解答】解:(1)如图所示,△A 1B 1O 即为所求;(2)线段AO 旋转时扫过的面积为:90×M ×(√10)2360=52M . 13.【答案】(1)6√77; (2)83√3.【解答】解:如图:过点P 作PT ⊥BQ 于点T ,∵AB =2,AD =BC =2√3,DQ =√3,∴AQ =√3,在Rt △ABQ 中,根据勾股定理可得:BQ =√7.又∵四边形BPDQ 是平行四边形,∴BP =DQ =√3∵∠AQB =∠TBP ,∠A =∠BTP ,∴△AQB ∽△TPB ,∴MM MM =MM MM , 即√3=√3√7, ∴BT =3√77,∴BE =2BT =6√77. (2)设菱形BPDQ 的边长为x , 则AQ =2√3−x ,在Rt △ABQ 中,根据勾股定理,得AB 2+AQ 2=BQ 2, 即4+(2√3−x )2=x 2,解得x =43√3 由(1)可知: MM M =2√3−MM, ∴BT =2√3−x =2√3−4√33=2√33, ∴BE =43√3,∴点E 、Q 重合, ∴圆P 经过点B 、Q 、D , ∴S 菱形=83√3. 14.【答案】见试题解答内容【解答】解:(1)证明:连结DE ,∵∠C =90°,∴AD 为直径,∴DE ⊥AB ,∵AD =BD ,∴AE =BE ;(2)设BD =x ,∵∠B =∠B ,∠C =∠DEB =90°∴△ABC ~△DBE ,∴MM MM =MM MM , ∴4√5=2√5M +3, ∴x =5.∴AD =BD =5,∴AC =√52−32=4.15.【答案】见试题解答内容【解答】(1)证明:如图,连接AD.∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD.(2)解:如图,连接OE.∵四边形AODE是菱形,∴OA=OE=AE,∴△AOE是等边三角形,∴∠A=60°,∵AB=AC,∴△ABC是等边三角形,∵OA=OB=BD=CD∴AE=EC,∴CD=CE,∵∠C=60°,∴△EDC是等边三角形,∵DH⊥EC,CD=4,∴DH=CD•sin60°=2√3.16.【答案】见试题解答内容【解答】解:(1)如图1,四边形ABCD为所作;(2)如图2,四边形ABCD为所作;(2)如图3,四边形ABCD为所作.17.【答案】见试题解答内容【解答】(1)证明:延长半径AO 交⊙O 于D ,∴MMM̂=MMM ̂ ∵AB =AC ,∴MM̂=MM ̂, ∴MM̂=MM ̂, ∴∠BAD =∠CAD ,∴OA 平分∠BAC ;(2)解:∵MM̂:MM ̂=3:2,MM ̂=MM ̂ ∴MM̂=28×360°=90° ∴∠BAC =45°;18.【答案】见试题解答内容【解答】解:(1)如图2中,∵∠ACB =∠ECD =90°,∴∠ECB =∠ACD ,∵∠ACE =60°,∴∠BCE =∠ACD =30°,∴∠BCD =∠BCE +∠ECD =30°+90°=120°;(2)如图2中,当DE ∥AB 时,延长BC 交DE 于M ,∴∠B =∠DMC =60°,∵∠DMC =∠E +∠MCE ,∴∠ECM =15°,∴∠BCE=165°,当D′E′∥AB时,∠E′CB=∠ECM=15°,∴当ED∥AB时,∠BCE的度数为165°或15°;(3)存在.如图,①CD∥AB时,∠BCE=30°,②DE∥BC时,∠BCE=45°,③CE∥AB时,∠BCE=120°,④DE∥AB时,∠BCE=165°,⑤当AC∥DE时,∠BCE=135°综上所述,当∠BCE<180°且点E在直线BC的上方时,这两块三角尺存在一组边互相平行,∠BCE的值为30°或45°或120°或165°或135°.19.【答案】见试题解答内容【解答】证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)连接CD,OD,∵OC∥BD,∴∠OCB=∠CBD=30°,∵OC=OB,∴∠OCB=∠OBC=30°,∴∠AOC=∠OCB+∠OBC=60°,∵∠COD=2∠CBD=60°,∴∠AOD=120°,∴S阴=S扇形OAD﹣S△ADO=120⋅M⋅42360−12•4√3×2=16M3−4√320.【答案】见试题解答内容【解答】(1)证明:如图连接EC交OA于H.∵MM̂=MM ̂, ∴OA ⊥EC ,∵CD 是⊙O 的直径,∴∠DEC =90°,∴DF ⊥EC ,∴OA ∥DF ,∵BF 是⊙O 的切线,∴OA ⊥BF ,∴DF ⊥BF ,∴∠F =90°,∴△DFB 是直角三角形.(2)解:∵∠DEC =∠F =90°,∴EC ∥FB ,∴MM MM =MM MM =2,∴OH =2AH ,设AH =m ,则OH =2m ,OC =3m , ∵CH 2=OC 2﹣OH 2=AC 2﹣AH 2,∴9m 2﹣4m 2=40﹣m 2,∴m =2√153(负根已经舍弃), ∴CH =10√33, ∵OA ⊥EC ,∴EH =HC =10√33, ∵∠F =∠F AH =∠AHE =90°,∴四边形AFEH 是矩形,∴AF =EH =10√33.。
三门县2019学年九年级(上)期末统考数学参考答案一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)1~5:BCCAD;6~10:ADDBC二、填空题(本题有6小题,每小题5分,共30分)11.如-1,(是负数即可);12.-5 13.0.8814.3 cm 15.722516.116三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.解方程:(1)x2-2x=0;解;x1=0 , x2=2 ……………4分(2)2x(x+1)=3.解;x1, x2……………8分18.(1)13;……………2分(2)49(过程略). ……………8分19.(1)y=-2x;……………4分(2)-2<x<0或x>1. ……………8分20.(1)40-x,20+2x;……………2分(2)(40-x)(20+2x)=1200,……………5分x=10或20,……………7分因为了扩大销售,增加盈利,尽快减少库存,故取x=20,答:每件衬衫应降价20元. …………8分21.(1)∵FG是⊙O的切线∴∠1+∠2=90°. ……………1分∵AB⊥CD∴∠DEH+∠3=90°. ……………2分∵OF=OD∴∠2=∠3.∴∠DEH=∠1 ……………3分∵FG∥BD,∴∠1=∠BDF. ……………4分∴∠DEH=∠BDF∴BE=BD……………6分(2)∵CD是⊙O的直径,弦AB⊥CD,垂足为H∴AH=BH=12AB=4……………7分∵DH=3∴BD=5……………8分∵BE=BD∴BE=5……………9分∴EH=BE-BH=1……………10分22.(1)135°; ……………2分(2)解法1:根据两个图形的面积相等关系列得方程GH (GH +a +b )=12(GH +a )(GH +b ),5分 化简得GH 2+(a +b )GH -ab =0,所以GH 的长是关于x 的方程x 2+(a +b )x -ab =0的一个根. …7分解法2:在图2直角三角形中,由勾股定理列得方程(GH +a )2+(GH +b )2=(a +b )2,解法3:根据图2直角三角形中的面积关系列得方程12GH (a +b )+12GH (GH +a )+12GH (GH +b )=12(GH +a )(GH +b ). (3)因为GH =2,GJ =k ,所以a +b =k -2 ,22+2(k -2)-ab =0,即 ab =2k ,……………9分所以22a b k ab k +-=……………10分 化简得11112a b k +=-,所以11112a b k ++=. ……………12分23.(1)①设解析式为2()y a x h k =-+,将(2,1),(5,7),h =3代入,得221(23)7(53)a k a k ⎧=-+⎪⎨=-+⎪⎩,……………2分 解得a =2,k =-1. ……………3分所以,解析式为22(3)1y x =--,即221217y x x =-+. ……………4分②t=1或t=4. ……………7分(2)设解析式为2()y a x h k =-+,由2(0)y ax bx c a =++≠知图象过(0,c ), 所以2c ah k =+. ……………8分因为点P 在函数2-3y x x c =+的图象上,所以2-3k h h c =+. ……………9分 所以2230h h ah -+=,……………10分因为h ≠0,所以31h a =+. ……………11分因为12≤a ≤2,h 随a 的增大而减小,所以,当12a =时,h 的值最大,h 的最大值为2. ……………12分24.(1)∵AB 是⊙O 的直径, ∴∠AMB =90°. ……………1分 ∵AN BN = ∴∠AMN =∠BMN =45°. ……………2分 ∵OM =OB∴∠OMB =∠OBM =30°. ……………3分 ∴∠CMO =45°-30°=15° ……………4分(2)连接OA ,OB ,ON . ∵AN BN =∴∠AON =∠BON 又∵OA =OB∴ON ⊥AB ,……………5分∵OD ∥AB∴∠DON =90°……………6分 ∵OM =ON∴∠OMN =∠ONM ……………7分∵∠OMN +∠ONM +∠MOD +∠DON =180° ∴∠MOD +2∠DMO =90°. ……………8分(3)延长MB 至点M ',使BM '=AM ,连接NM ',作NE ⊥MM '于点E.. 设AM =a ,BM =b .∵四边形AMBN 是圆内接四边形 ∴∠A +∠MBN =180°……………9分 ∵∠NBM '+∠MBN =180°∴∠A =∠NBM '……………10分∵AN BN = ∴AN =BN∴△AMN ≌△BM 'N (SAS)∴MN = N M ',BM '= AM =a ,……………11分 ∵NE ⊥MM '于点E.. ∴ME = EM '=12 MM '=1()2a b +,BE =b -1()2a b +=1()2b a - ……………12分∵ME 2+(BN 2-BE 2) =MN 2∴22211[()][()]1622a b BN b a ++--=,……………13分化简得216ab NB +=,∴16AM MB AN NB ⋅+⋅=. ……………14分。
2019-2020学年九年级数学上册期中考试试卷
一、选择题(本题有10小题,每小题3分,共30分请选出各题中一个符合题意的正确选
项,不选、多选、错选,均不给分)
1.抛物线y=﹣(x+2)2﹣3的顶点坐标是( )
A.(2,﹣3) B.(﹣2,3) C.(2,3) D.(﹣2,﹣3)
2.下列事件是必然事件的是( )
A.明天会下雨 B.抛一枚硬币,正面朝上
C.若a是实数,则|a|≥0 D.打开电视,正在播放新闻
3. 已知的⨀O直径为3cm, 点P到圆心O的距离OP=2cm, 则点P( ) .
A. 在⨀O外 B. 在圆⨀O 上 C. 在圆⨀O 内 D. 无法确定
4.如图,把△ABC绕点C顺时针旋转35°得到△A′B′C,A′B′交AC于
点D, 若∠A′DC=90°,则∠A的度数为( )
A. 45° B. 55° C. 65° D. 75°
5.五张完全相同的卡片上,分别画有圆、平行四边形、等腰三角形、正方形、矩形,现从
中随机抽取一张,恰好抽到轴对称图形的概率是( )
A. 15 B. 53 C. 52 D. 54
6.如图是某石圆弧形(劣弧)拱桥,其中跨度AB=24米,拱高CD=8
米,则
该圆弧的半径r=( )
A.8 米 B.12 米 C.13米 D.15 米
7.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+3上的三点,则y
1
,
y2,y3的大小关系为( )
A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y2
8. 若二次函数)(02acbxaxy中x与y的对应值如下表:
则当x=1时,y的值为( )
A. 4 B. 6 C. 7 D. 12
9
.已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的
点有( )
A.4个 B.3个 C.2个 D.1个
x -3 -2 -1 0
y 6 3 2 3
(第4题)
A1
B1
2
10.如图,C、D是以AB为直径的圆O上的两个动点(点C、D不与A、B
重合),在运
动过程中弦CD始终保持不变,M是弦CD的中点,过点C作CP⊥AB于点P.若CD=3,
AB=5,PM=x,则x的最大值是( )
A.3 B. C.2.5 D.2
二、填空题(本题有10小题,每题3分,共30分)
11.若函数y =(m﹣1)x|m|+1是二次函数,则m的值为 .
12.将抛物线y =﹣x 2先向右平移1个单位,再向上平移5个单位,得到的抛物线的解析
式是 .
13.从标有1,2,3,4,5的五张卡片中任取一张,卡片上的数字是奇数的概率是 .
14. 抛物线 y = 221x的开口方向 ,顶点坐标是
15.一个不透明的口袋里有10个黑球和若干个黄球,它们除颜色外其余都相同,从口袋中
随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共实验200次,其
中有120次摸到黄球,由此估计袋中的黄球有 个.
16. 将y = x2﹣4x+3变为y = a(x﹣m)2+ n的形式,则为
17.如图,在⊙O中,AB︵=2AC︵,则线段AB 2AC(填“>”“<”或“=”).
18.一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是
.则他将铅球推出的成绩是 m.
19.抛物线y=cbxx2的部分图像如图所示,当y>0,则x的取值范围是
(第19题)
20.
对于二次函数2yx2mx3,有下列说法:
①它的图象与x轴有两个公共点;
②如果当x≤1时y随x的增大而减小,则m1;
③如果将它的图象向左平移3个单位后过原点,则m1;
④如果当x4时的函数值与x2008时的函数值相等,则当x2012时的函数值
为3.
其中正确的说法是 .(把你认为正确说法的序号都填上)
三、简答题(本题有6小题,第21~24题,每题6分,第25、26每题 8分共40分)
21.已知抛物线y=x2-4x+c,经过点(0,9).
(1)求c的值;
(2)若点A(3,1y )、B(4,2y)在该抛物线上,试比较1y、2y的大小.
22.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同.
从中任意摸出1个球,是白球的概率为21.
(1)布袋里红球有多少个?
(2)先从布袋中摸出1个球后不放回...,再摸出1个球,请用列表或画树状图等方法求出两次
摸到的球都是白球的概率.
23.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).
(1)求证:AC=BD;
(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线
AB的距离为6,求AC的长.
4
24.如图,⊙O的两条弦AB,CD交于点E,OE平分∠BED.
(1)求证:AB=CD.
(2)若∠BED=60°,EO=2,求BE-AE的值.
25.(本题11分)如图,直线3yx与x轴,y轴分别交于B,C两点,抛物线2yxbxc
经过B,C两点,点A是抛物线与x轴的另一个交点.
(1)求出点B和点C的坐标.
(2)求此抛物线的函数解析式.
(3)在抛物线x轴上方存在一点P(不与点C重合),使CAB=SPABS△△,
请求出点P的坐标.
26.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25
元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.
(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系
式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
x
y
C
A B O
(3)商场的营销部结合上述情况,提出了A、B两种营销方案:
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元.
请比较哪种方案的最大利润更高,并说明理由.
参考答案
一.选择题(本题有10小题,每小题3分,共30分请选出各题中一个符合题意的正确选
项,不选、多选、错选,均不给分)
题号
1 2 3 4 5 6 7 8 9 10
选项
D C A B D C A B B C
二.填空题(本题有10小题,每小题3分,共30分)
11. −1 12. y= − (x-1)2+5 13. 53 14 . 向上 ; (0,0)
15. 15 16. 122xy 17. ˂ 18. 10
19. -3 ˂ x ˂ 1 20.
①④
三、简答题(本题有6小题,第21~24题,每题6分,第25、26每题 8分共40分)
21.(1) c=9 (3分)
(2) 21yy (3分)
22.
(1) 1个 (2分)
(2) (3分)
任意摸出 2个球刚好都是白球的概率是61 (1分)
23.
26.
(1)由题意得,销售量=250﹣10(x﹣25)=﹣10x+500,……(1分)
则w=(x﹣20)(﹣10x+500)
=﹣10x2+700x﹣10000;……( 3分)
(2)w=﹣10x2+700x﹣10000
∴当x=35时,w有最大值2250,
即销售单价为35元时,该文具每天的销售利润最大;……(5分)
(3)方案A:由题可得20<x≤30,
∵a=﹣10<0,对称轴为x=35,在对称轴左侧,w随x的增大而增大,
∴当x=30时,w取最大值为2000元, ……(6分)
方案B:由题意得,解得:45≤x≤49,
在对称轴右侧,w随x的增大而减小,
∴当x=45时,w取最大值为1250元, ……(7分)
∵2000元>1250元,
∴选择方案A.……(8分)