电压电流反馈系统
- 格式:pdf
- 大小:357.27 KB
- 文档页数:3
充电器的反馈电路工作原理充电器是我们日常生活中必不可少的电子设备之一,它能够为手机、平板电脑、笔记本电脑等设备充电。
而充电器的反馈电路则是决定充电器性能的关键部分之一。
本文将从充电器的反馈电路工作原理进行详细介绍。
反馈电路是充电器中的一个重要部分,主要用于控制充电过程中的电流和电压,保证充电器的稳定性和安全性。
充电器的反馈电路主要包括电流反馈和电压反馈两个方面。
我们来看电流反馈。
在充电器中,通过电流反馈可以实现对充电电流的控制。
充电器的输出电流与输入电流之间存在一个比例关系。
当充电器输出电流不足时,反馈电路会自动增大输出电流,以保证充电器能够提供足够的电流给充电设备。
当充电器输出电流过大时,反馈电路会自动减小输出电流,以避免充电器过载,从而保护充电设备的安全。
接下来,我们来看电压反馈。
在充电器中,通过电压反馈可以实现对充电电压的控制。
充电器的输出电压与输入电压之间也存在一个比例关系。
当充电器输出电压过高时,反馈电路会自动降低输出电压,以避免充电设备受到过高的电压而损坏。
当充电器输出电压过低时,反馈电路会自动增加输出电压,以保证充电设备能够正常充电。
充电器的反馈电路实际上是一个闭环控制系统,通过不断监测充电电流和电压的变化,对充电器进行调节,以实现稳定的充电效果。
充电器的反馈电路通常由一个控制芯片和一些外部元件组成。
控制芯片是充电器反馈电路的核心部分,它负责监测充电电流和电压,并根据设定的电流和电压值,控制充电器的输出。
控制芯片通常具有多种保护功能,如过流保护、过压保护、过温保护等,以确保充电器和充电设备的安全运行。
除了控制芯片,充电器的反馈电路还包括一些外部元件,如电阻、电容、二极管等。
这些外部元件与控制芯片配合工作,起到稳定和调节电流和电压的作用。
总结起来,充电器的反馈电路是控制充电器输出电流和电压的重要部分,通过对充电电流和电压进行反馈监测和调节,保证充电器的稳定性和安全性。
充电器的反馈电路由控制芯片和外部元件组成,控制芯片负责监测和控制充电电流和电压,而外部元件起到稳定和调节电流和电压的作用。
电压反馈放大器与电流反馈放大器的区别1.电压反馈放大器与电流反馈放大器的区别:1.带宽VS增益电压反馈型放大器的-3DB带宽由R1、Rf和跨导gm共同决定,这就是所谓的增益帯宽积的概念,增益增大,带宽成比例下降。
同时运放的稳定性有输入阻抗R1和反馈阻抗Rf共同决定。
而对于电流反馈型运放,它的增益和带宽是相互独立的,其-3DB带宽仅由Rf决定,可以通过设定Rf得到不同的带宽。
再设定R1得到不同的增益。
同时,其稳定性也仅受Rf影响。
2.反馈电阻的取值电流型运放的反馈电阻应根据数据手册在一个特定的范围内选取,而电压反馈型的反馈电阻的选取就相对而言宽松许多。
需要注意的是电容的阻抗随着频率的升高而降低,因而在电流反馈放大器的反馈回路中应谨慎使用纯电容性回路,一些在电压反馈型放大器中应用广泛的电路在电流反馈型放大器中可能导致振荡。
比如在电压反馈型放大器我们常会在反馈电阻Rf上并联一个电容Cf来限制运放的带宽从而减少运放的带宽噪声(Cf也常常可以帮助电压反馈型放大器稳定),这些如果运用到电流反馈放大器上,则十有八九会使你的电路振荡。
3.压摆率当信号较大时,压摆率常常比带宽更占据主导地位,比如同样用单位增益为280MHZ的放大器来缓冲10MHZ,5V的信号,电流反馈放大器能轻松完成,而电压反馈放大器的输出将呈现三角波,这是压摆率不足的典型表现。
通常来说,电压反馈放大器的压摆率在500V每us,而电流反馈放大器拥有数千V每us.4.如何选择两类芯片a,在低速精密信号处理中,基本看不到电流反馈放大器的身影,因为其直流精度远不如精密电压反馈放大器。
b.在高速信号处理中,应考虑设计中所需要的压摆率和增益帯宽积;一般而言,电压反馈放大器在10MHZ以下,低增益和小信号条件下会拥有更好的直流精度和失真性能;而电流反馈放大器在10MHZ以上,高增益和大信号调理中表现出更好的带宽和失真度。
当下面两种情况出现一种时,你就需要考虑一下选择电流反馈放大器:1,噪声增益大于4;2,信号频率大于10MHZ。
pwm电压环和电流环反馈的原理
PWM(脉宽调制)电压环和电流环反馈是控制电源转换器的重要
部分,用于确保输出电压和电流稳定。
首先,让我们从PWM电压环
反馈的原理开始。
PWM电压环反馈的原理是通过比较实际输出电压与期望输出电
压的差异,然后调整PWM信号的占空比来实现电压调节。
具体来说,当实际输出电压低于期望值时,控制回路会增加PWM信号的占空比,从而增加开关管的导通时间,提高输出电压;相反,当实际输出电
压高于期望值时,控制回路会减小PWM信号的占空比,降低开关管
的导通时间,降低输出电压。
这种反馈机制能够使输出电压稳定在
期望值附近。
接下来是电流环反馈的原理。
电流环反馈通常用于控制开关电
源转换器的输出电流。
它的原理是通过比较实际输出电流与期望输
出电流的差异,然后调整PWM信号的占空比来实现电流调节。
当实
际输出电流低于期望值时,控制回路会增加PWM信号的占空比,增
加开关管的导通时间,提高输出电流;当实际输出电流高于期望值时,控制回路会减小PWM信号的占空比,降低开关管的导通时间,
降低输出电流。
这种反馈机制能够使输出电流稳定在期望值附近。
总的来说,PWM电压环和电流环反馈的原理都是基于比较实际输出与期望值的差异,然后通过调整PWM信号的占空比来实现稳定的电压和电流输出。
这种反馈机制能够有效地提高电源转换器的稳定性和性能。
在电压负反馈电路中,反馈量取自输出电压,并与之成比例;在电流负反馈电路中,反馈量取自输出电流,并与之成比例。
判断方法:令负反馈放大电路的输出电压uO为零,若反馈量也随之为零,则说明引入了电压负反馈;若反馈量依然存在,则说明电路中引入了电流负反馈。
如下图(a)所示电路中引入了交流负反馈,输入电流iI与反馈电流iF如图中所标注。
令输出电压uO=0,即将集成运放的输出端接地,便得到图(b)所示电路。
此时,虽然反馈电阻Rf中仍有电流,但那是输入电流iI作用的结果,而因为输出uO为零,所以它在Rf中产生的电流(即反馈电流)也必然为零,故电路中引入的是电压反馈。
如下图所示电路中引入了交流负反馈,各支路电流如图中所标注。
令输出电压uO=0,即将负载电阻RL两端短路,得到如图(b)所示电路。
因为输出电流iO仅受集成运放输入信号的控制,即使RL短路,iO并不为零;又因为反馈电流iF与iO的关系不变为:
说明反馈量依然存在,故电路中引入的是电流反馈。
注意:在判断电压反馈与电流反馈时,反馈量仅仅决定于输出量,而由输入量直接作用所产生的电流(电压)不是反馈量。
电压、电流的反馈控制模式电压、电流的反馈控制模式现在的高频开关稳压电源主要有五种PWM反馈控制模式。
电源的输入电压、电流等信号在作为取样控制信号时,大多需经过处理。
针对不同的控制模式其处理方式也不同。
下面以由VDMOS开关器件构成的稳压正激型降压斩波器为例,叙述五种PWM反馈控制模式的进展过程、基本工作原理、电路原理暗示图、波形、特点及应用要`氪,以利于挑选应用及仿真建模讨论。
(1)电压反馈控制模式电压反馈控制模式是20世纪60年月后期高频开关稳压电源刚刚开头进展而采纳的一种控制办法。
该办法与一些须要的过电流庇护电路相结合,至今仍然在工业界被广泛应用。
如图1(a)所示为Buck 降压斩波器的电压模式控制原理图。
电压反馈控制模式惟独一个电压反馈闭环,且采纳的是脉冲宽度调制法,即将经电压误差放大器放大的慢变化的直流采样信号与恒定频率的三角波上斜坡信号相比较,经脉冲宽度调制得到一定宽度的脉冲控制信号,电路的各点波形如图1(a)所示。
逐个脉冲的限流庇护电路必需另外附加。
电压反馈控制模式的优点如下。
①PWM三角波幅值较大,脉冲宽度调整时具有较好的抗噪声裕量。
①占空比调整不受限制。
①对于多路输出电源而言,它们之间的交互调整特性较好。
①单一反馈电压闭环的设计、调试比较简单。
①对输出负载的变化有较好的响应调整。
电压反馈控制模式的缺点如下。
①对输入电压的变化动态响应较慢。
当输入电压骤然变小或负载阻抗骤然变小时,由于主电路中的输出电容C及电感L有较大的相移延时作用,输出电压的变小也延时滞后,而输出电压变小的信息还要经过电压误差放大器的补偿电路延时滞后,才干传至PWM比较器将脉宽展宽。
这两个延时滞后作用是动态响应慢的主要缘由。
①补偿网络设计原来就较为复杂,闭环增益随输入电压而变化的现象使其更为复杂。
①输出端的LC滤波器给控制环增强了双极点,在补偿设计误差放大器时,需要将主极点低频衰减,或者增强一个零点举行补偿。
①在控制磁芯饱和故障状态方面较为棘手和复杂。
电压电流双闭环原理
电压电流双闭环原理是指电源的输出电压和负载电流都有相关的反馈控制回路,使得输出电压和负载电流始终保持稳定的控制策略。
这种控制方法常用于高精度和精密的电源应用中。
电压电流双闭环控制系统通常包含两部分:电压回路和电流回路。
电压回路负责测量并控制电源输出电压的大小,以保持稳定的输出电压。
电流回路则负责测量电源输出电流大小,并根据流经负载的电流反馈回路来实现对输出电流的闭环控制。
电源的电压回路通常包括一个比较器和一个反馈环。
比较器将输出电压信号与参考电压信号进行比较,并输出一个正向或反向的控制信号。
反馈环将控制信号送回至电源的输出端口,对输出电压进行调整。
这样,当输出电压偏离参考电压时,反馈环会自动对电源进行调整,并将输出电压维持在参考电压附近。
电流闭环控制则通过测量和控制负载电流来实现。
电压电流双闭环控制可以大大提高电源的稳定性和可靠性。
它可以弥补传统单电压闭环或单电流闭环的不足,确保电源提供稳定可靠的输出电压和电流。
同时,电压电流双闭环原理可以提高系统的响应速度和抗干扰能力,使得电源可以在各种不同的负载要求下保持均衡和稳定。
总之,电压电流双闭环原理是一种高效且精密的电源控制方式,可以保证输出电
压和电流的稳定性和可靠性,适用于各种电源应用中。
电流型开关电源中电压反馈电路的设计与实现
在传统的电压型控制中,只有一个环路,动态性能差。
当输入电压有扰动时,通过电压环反馈引起占空比的改变速度比较慢。
因此,在要求输出电压的瞬态误差较小的场合,电压型控制模式是不理想的。
为了解决这个问题,可以采用电流型控制模式。
电流型控制既保留了电压型控制的输出电压反馈,又增加了电感电流反馈;而且这个电流反馈就作为PWM控制变换器的斜坡函数,从而不再需要锯齿波发生器,使系统的性能具有明显的优越性。
电流型控制方法的特点如下:
1、系统具有快速的输入、输出动态响应和高度的稳定性;
2、很高的输出电压精度;
3、具有内在对功率开关电流的控制能力;
4、良好的并联运行能力。
由于反馈电感电流的变化率didt直接跟随输入电压和输出电压的变化而变化。
电压反馈回路中,误差放大器的输出作为电流给定信号,与反馈的电感电流比较,直接控制功率开关通断的占空比,所以电压反馈是电流型电源设计中很重要的问题。
本文介绍使用电流型控制芯片uc3842时,电压反馈电路的设计。
uc3842简介
图1为UC3842PWM控制器的内部结构框图。
其内部基准电路产生+5V基准电压作为UC3842内部电源,经衰减得2.5V电压作为误差放大器基准,并可作为电路输出5V/50mA的电源。
振荡器产生方波振荡,振荡频率取决于外接定时元件,接在4脚与8脚之间的电阻R与接在4脚与地之间的电容C 共同决定了振荡器的振荡频率,f=1.8/RC。
反馈电压由2脚接误差放大器反相端。
1脚外接RC网络以改变误差放大器的闭环增益和频率特性,6脚输出驱。