直接空冷系统结构
- 格式:ppt
- 大小:11.67 MB
- 文档页数:38
直接空冷凝气系统流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 蒸汽进入:来自汽轮机的蒸汽通过管道进入直接空冷凝汽器。
2. 空气冷却:在直接空冷凝汽器中,蒸汽与空气进行热交换。
汽轮机直接空冷系统工艺流程汽轮机直接空冷系统是一种用于蒸汽动力发电的冷却系统,其工艺流程如下:1.蒸汽供应:汽轮机的蒸汽来自锅炉或其他蒸汽源。
蒸汽通过管道输送至汽轮机,推动汽轮机转动,从而驱动发电机发电。
2.蒸汽调节:进入汽轮机的蒸汽通过调节阀进行压力和流量的控制。
这些调节阀根据汽轮机的负荷需求和系统压力的变化进行调节。
3.汽轮机转子及叶片:蒸汽在汽轮机内部膨胀并推动转子转动,转子带动叶片旋转,从而将蒸汽的动能转化为转子的旋转动能。
4.冷凝器:从汽轮机排出的蒸汽进入冷凝器,与冷却水进行热交换,使蒸汽中的水蒸气冷凝为水。
这个过程释放出蒸汽的潜热,将蒸汽转化为液态水。
5.冷却水系统:冷却水系统由水泵、冷却塔和循环管道组成。
冷却水被水泵从储水池中抽出,通过循环管道输送到冷却塔进行喷淋,与空气进行热交换,将热量传递给空气,使冷却水温度降低。
6.直接空冷:从冷凝器出来的水蒸气和液态水混合物进入直接空冷系统。
直接空冷系统由一系列空冷散热器组成,液态水混合物在散热器表面蒸发,吸收热量,使散热器冷却。
7.凝结水收集:在直接空冷系统中,液态水混合物在散热器表面蒸发后形成凝结水,凝结水通过凝结水管道收集并输送到储水池。
8.循环利用:从储水池中回收的凝结水经过处理后可以再次用于锅炉供水,实现水资源的循环利用。
9.控制系统:汽轮机直接空冷系统配备了一套控制系统,用于监控系统的运行参数、调节蒸汽流量和压力以及控制凝结水的回收利用。
控制系统由传感器、执行器和控制器组成,可以实现自动化控制和远程监控。
10.维护管理:汽轮机直接空冷系统需要进行定期的维护和保养,确保系统的正常运行。
维护内容包括清洗冷凝器和散热器、检查阀门和管道的密封性、更换损坏的零件等。
总的来说,汽轮机直接空冷系统的工艺流程涉及蒸汽的供应、调节、转化、冷却、空冷散热、凝结水收集、循环利用以及控制系统和维护管理等多个环节。
这些环节相互关联、相互影响,共同保障了汽轮机直接空冷系统的正常运行和发电过程的顺利进行。
直接空冷支撑柱及基础结构计算及程序设计摘要:直接空冷系统广泛用于国内外火力发电厂中,直接空冷支撑结构设计也是结构设计的重要组成部分。
结构设计时,需要进行荷载组合分析及和直接空冷支撑管柱、管柱桩基、桩基承台的相关计算。
为解决工程中的实际需要,在深入分析和掌握相关理论、计算公式、工程设计实际需要的前提下,编写了可用于直接空冷支撑柱及基础结构计算的计算机可视化程序。
该程序可供实际工程施工图设计及前期投标阶段利用,并能有效提高设计效率和准确率。
关键词:直接空冷;支撑结构;管柱;桩基;承台中图分类号:TV314 文献标识码:A直接空冷系统具有节水,占地面积小,可以选择的地方多,空冷岛下很多地方可以再利用等优点,能有效解决富煤贫水地区的发电问题,在世界上获得了快速发展。
我国是一个水资源贫乏的国家,水资源时空分布不均,煤炭基地多半集中在缺水地区,特别是在“富煤缺水”的东北、华北、西北发展电力工业,采用直接空冷技术建设节水型电厂是非常有效的节水途径【1】。
高效、环保、节水是21世纪燃煤发电的三大课题,实现可持续发展战略,大型火电直接空冷技术是实施“节水最大化、排放最小化”的新技术。
直接空冷支撑柱及基础结构是直接空冷电厂的重要组成部分,直接空冷支撑柱及基础结构的设计也是电厂结构设计中的一个重要组成部分。
然而以往人工手动计算存在工程量巨大、过程繁琐、耗时耗力、容易出错等诸多弊端,采用VB进行可视化程序设计能实现上述计算过程,并能有效避免上述弊端,保证设计质量,提高设计速度。
同时,在Visual Basic 的集成开发环境中设计界面、编写代码、调试直至把应用程序编译成可在Windows系统中运行的可执行文件,开发后的程序可以经过打包处理生成脱离Visual Basic环境仍可安装运行的可执行文件,能为结构设计提供很大的方便【5】。
1计算方法1.1荷载组合分析计算空冷凝汽器支架体系主要由钢桁架平台和平台下部钢筋混凝土柱组成。
直接空冷凝汽器优化设计凝汽器,也可称做复水器,存在于汽轮机动力装置中,是将汽轮机排出的蒸汽冷凝成水的一种换热器,其主要作用一方面是将汽轮机的排汽冷凝成水以供重复利用,另一方面是维持冷端一定的真空值。
凝汽器有两大类:空冷凝汽器和水冷凝汽器,其中空冷凝汽器中又包含三种类型,间接空冷、直接空冷和混合式,文章将对直接空冷凝汽器优化设计做一介绍。
标签:凝汽器;直接空冷;设计技术;换热器前言在电力行业中高性能、高损耗的大型机组越来越多,每年所消耗的燃料能源和水资源数目庞大,众多公益广告中可看出,水资源短缺已是我们国家面临的严重问题,是制约我国大部分地区发展的一个重要因素,要改善当前这种局面,除了相关工业、农业要采取积极的措施节约用水外,电力行业建设采用大型空冷凝汽器替代水冷是十分经济、节能而有效的措施。
1 直接空冷凝汽器结构介绍下图1、图2分别为直接空冷系统的结构图和直接空冷凝汽器的冷却装置实物图。
在图1中,1所示为汽轮机;2为直接空冷凝汽器;3为凝结水泵;4为发电机。
由图1可看到,汽轮机的排汽通过大直径的管道进入到蒸汽分配管道之后被均匀分配到各个空冷凝汽器,用风机鼓冷空气流过空冷凝汽器,使蒸汽受冷凝结,冷凝水经过处理后回流到回热系统。
直接空冷凝汽器系统主要由翅片管束、排气管道、蒸汽分配管道、风机、凝结水系统构成。
对直接空冷凝汽器系统的冷凝效果起决定性作用的部件是冷却元件翅片管,因此它的性能参数需严格选取。
一般双排管束由钢管钢翅片所组成,单排管为钢管铝翅片组成。
冷却单元下端的集水箱,从翅片管束收集的凝结水自流至平台地面或以下的热井,通过凝结泵再将凝结水送往凝结水箱并送回热力系统。
2 直接空冷目前存在问题及优化办法2.1 机组背压由于采用空气直接冷却,凝汽器真空会随着周围空气温度的改变而改变,尤其在酷暑,空冷凝汽器真空值可能会降到40kPa以下,机组背压随着真空值的降低、酷暑温度的升高而不断升高,这将一方面减小了空冷系统运行的经济性,另一方面当气温升高超过设计气温时,背压升高到极限会导致跳闸,因此对机组的设计必须要能承受较大范围的背压,尤其是高背压。
空冷凝汽器电厂汽轮机排汽冷却有水冷与空冷两种。
水冷机组直接从流量较大的河流取水,到凝汽器冷却排汽后直接排到河流中。
电厂采用的空冷系统主要有三种方式,即直接空冷系统、表面式凝汽器间接空冷系统和混合式凝汽器间接空冷系统。
如图8-3-1所示,直接空冷系统亦称为ACC(Air Cooled Condencer)系统,它是指汽轮机的排汽引入室外空冷凝汽器内直接用空气来冷凝。
其工艺流程为汽轮机排汽通过大直径的排气管道引至室外的空冷凝汽器内,布置在空冷凝汽器下方的轴流冷却风机驱动空气流过冷却器外表面,将排汽冷凝为凝结水,凝结水再经泵送回汽轮机的回热系统。
之所以称直接空冷因为是将蒸汽直接送入散热管,而不象间接空冷送入冷却塔的是热水、因蒸汽体积比水大得多,所以送汽管特别粗,直径约为间接空冷的三倍多。
图8-3-1 直接空冷系统原理图国外在30年代末就开始研究电厂利用直接空冷技术,随着困扰直接直接空冷系统空冷系统的大直径排汽管和大容积真空系统等问题的解决,直接空冷系统在大容量机组上的应用也得到了迅速的发展,到80年代末,国外己投运多台300~600MW的直接空冷机组的电厂,如南非Matinmba电厂、美国的Wyodak电厂、伊朗的Touss电厂,这些电厂投产以来运行良好,尤其是美国的Wyodak电站的气温与我国北方寒冷地区的气温接近,为严寒季节的运行如防冻问题提供了经验基于防冻的要求,直接空冷系统设置顺流凝汽器和逆流凝汽器,大部分的蒸汽在顺流凝汽器中被冷凝,小部分蒸汽再通过逆流凝汽器被冷凝。
在逆流凝汽器中,由于蒸汽和凝结水的运动方向相反,凝结水不易冻结。
在逆流凝汽器的顶部设有抽真空系统,可将系统内的空气和不凝结气体抽出。
该系统冷却效率高(取消了二次换热所需要的中间冷却介质)、占地面积小、投资较省、系统调节灵活,冬季运行防冻性能好,可通过调整风机转速或风机数量来调节进风量,以适应热负荷及气温的变化,并防止空冷器内部结冰。