51单片机延时函数
- 格式:docx
- 大小:17.60 KB
- 文档页数:7
单片机精确毫秒延时函数单片机精确毫秒延时函数实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。
今天主要介绍软件延时以及单片机精确毫秒延时函数。
单片机的周期介绍在电子技术中,脉冲信号是一个按一定电压幅度,一定时间间隔连续发出的脉冲信号。
脉冲信号之间的时间间隔称为周期;而将在单位时间(如1秒)内所产生的脉冲个数称为频率。
频率是描述周期性循环信号(包括脉冲信号)在单位时间内所出现的脉冲数量多少的计量名称;频率的标准计量单位是Hz(赫)。
电脑中的系统时钟就是一个典型的频率相当精确和稳定的脉冲信号发生器。
指令周期:CPU执行一条指令所需要的时间称为指令周期,它是以机器周期为单位的,指令不同,所需的机器周期也不同。
对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。
对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。
通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。
时钟周期:也称为振荡周期,一个时钟周期= 晶振的倒数。
对于单片机时钟周期,时钟周期是单片机的基本时间单位,两个振荡周期(时钟周期)组成一个状态周期。
机器周期:单片机的基本操作周期,在一个操作周期内,单片机完成一项基本操作,如取指令、存储器读/写等。
机器周期=6个状态周期=12个时钟周期。
51单片机的指令有单字节、双字节和三字节的,它们的指令周期不尽相同,一个单周期指令包含一个机器周期,即12个时钟周期,所以一条单周期指令被执行所占时间为12*(1/ 晶振频率)= x s。
常用单片机的晶振为11.0592MHz,12MHz,24MHz。
其中11.0592MHz 的晶振更容易产生各种标准的波特率,后两种的一个机器周期分别为1 s和2 s,便于精确延时。
51单片机C程序标准延时函数在此,我用的是12M晶振,一个时钟周期是1/12us,一个机器周期为12个时钟周期,则机器周期为1us,而51单片机执行一条语句,为1,2,4个机器周期不等,根据语句的长度来定,一般为1个机器周期。
而_nop_()为一条空语句,执行一次需要一个机器周期。
1us#include<intrins.h>_nop_();执行了一条_nop_();所以延时为1us;10usvoid delay10us(){_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();}执行了6条_nop_(),延时6us,主函数调用delay10us 时,先执行了LCALL指令2us,然后执行6条_nop_()语句6us,最后执行一条RET指令2us,所以总共延时10us。
100usvoid delay100us(){delay10us();delay10us();delay10us();delay10us();delay10us();delay10us();delay10us();delay10us();delay10us();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();}与上面的一样,主函数调用delay100us();先执行了LCALL语句2us,再调用9个delay10us()函数90us,然后执行了6条_nop_()语句6us,最后执行了一条RET语句2us,总共100us。
1msvoid delay1ms(){f=1;TH0=0xe1;TL0=0X13;TR0=1;while(f);}void T0_3() interrupt 1{TR0=0;f=0;}这里就直接用51单片机内部定时器延时了,如果用_nop_();如果要做到微妙不差,那程序就太长了。
这里我用的是定时器0的方式0,13位定时器,这里为了方便,我就没就EA=1;ET0=1;TM0D=0X00;写在延时函数里。
声明:*此文章是基于51单片机的微秒级延时函数,采用12MHz晶振。
*此文章共包含4个方面,分别是延时1us,5us,10us和任意微秒。
前三个方面是作者学习过程中从书本或网络上面总结的,并非本人所作。
但是延时任意微秒函数乃作者原创且亲测无误。
欢迎转载。
*此篇文章是作者为方便初学者使用而写的,水平有限,有误之处还望大家多多指正。
*作者:Qtel*2012.4.14*QQ:97642651----------------------------------------------------------------------------------------------------------------------序:对于某些对时间精度要求较高的程序,用c写延时显得有些力不从心,故需用到汇编程序。
本人通过测试,总结了51的精确延时函数(在c语言中嵌入汇编)分享给大家。
至于如何在c 中嵌入汇编大家可以去网上查查,这方面的资料很多,且很简单。
以12MHz晶振为例,12MHz 晶振的机器周期为1us,所以,执行一条单周期指令所用时间就是1us,如NOP指令。
下面具体阐述一下。
----------------------------------------------------------------------------------------------------------------------1.若要延时1us,则可以调用_nop_();函数,此函数是一个c函数,其相当于一个NOP指令,使用时必须包含头文件“intrins.h”。
例如:#include<intrins.h>#include<reg52.h>void main(void){P1=0x0;_nop_();//延时1usP1=0xff;}----------------------------------------------------------------------------------------------------------------------2.延时5us,则可以写一个delay_5us()函数:delay_5us(){#pragma asmnop#pragma endasm}这就是一个延时5us的函数,只需要在需要延时5us时调用此函数即可。
51 单片机定时器延时1s函数1.引言1.1 概述本文介绍了51单片机中的定时器功能以及如何通过定时器实现延时1秒的函数。
在单片机应用中,定时器是一种非常重要且常用的功能模块之一。
它能够精确计时,并可用于实现周期性的任务触发、计时、脉冲输出等功能。
本文首先将对51单片机进行简要介绍,包括其基本概念、结构和特点。
随后,重点讲解了定时器的基本原理和功能。
定时器通常由一个计数器和一组控制寄存器组成,通过预设计数器的初值和控制寄存器的配置来实现不同的计时功能。
接着,本文详细介绍了如何通过编程实现一个延时1秒的函数。
延时函数是单片机开发中常用的功能,通过定时器的计时功能可以实现精确的延时控制。
本文将以C语言为例,介绍延时函数的编写步骤和原理,并给出示例代码和详细的说明。
最后,本文对所述内容进行了总结,并展望了定时器在单片机应用中的广泛应用前景。
通过学习定时器的相关知识和掌握延时函数的编写方法,我们可以更好地应用定时器功能,提高单片机应用的效率和精确性。
综上所述,通过本文的学习,读者可全面了解51单片机中定时器的功能和应用,并能够掌握延时函数的编写方法,为单片机应用开发提供一定的参考和指导。
1.2 文章结构本文以51单片机定时器功能为主题,旨在介绍如何使用定时器进行延时操作。
文章分为引言、正文和结论三个主要部分。
在引言部分,首先会对文章的背景进行概述,介绍单片机的基本概念和应用领域。
然后,给出本文的整体结构,并阐述文章的目的和意义。
正文部分将分为两个小节。
在2.1节中,将对单片机进行详细介绍,包括其构造与工作原理。
这部分的内容将帮助读者全面了解单片机的基本知识,为后续的定时器功能介绍打下基础。
2.2节将重点介绍定时器的功能和特点。
这部分将涵盖定时器的基本原理、工作模式以及在实际应用中的使用方法。
同时,还将详细讲解如何使用定时器进行1秒钟的延时操作,包括具体的代码实现和注意事项。
结论部分将对全文进行总结,并强调定时器的重要性和应用前景。
单⽚机延时函数1.51单⽚机延时,晶振为11.0592MHz(1)粗略延时void delay_ms(uint x){uint i,j;for(i=x;i>0:i--)for(j=110;j>0;j--);}(2)定时器延时void delay_ms(uint i){TMOD=0x01; //设置定时器⼯作模式while(i != 0){TR0=1; //开启定时器TH0=(65535-1000)/256; //赋初值TL0=(65535-1000)%256;while(TF0 != 1); //溢出标志TF0=0;i--;}TR0=0; //关闭定时器}2.stm32l151C8T6延时,外部晶振8MHz(1)粗略延时void delay_us(uint32_t time) //us延时{uint32_t i=4\*time;while(i--);}void delay_us(uint32_t time) //ms延时{uint32_t i=4000\*time;while(i--);}(2)使⽤nop延时通过使⽤__NOP()函数进⾏延时,因为使⽤了8M晶振4倍频,所以是32MHz,所以⼀个nop约等于1/32us,所以使⽤32个nop函数为⼀个us,然后根据需要的定时时间进⾏计算。
void delay_us(uint32_t time) //us延时{uint32_t i=0;for(i=0;i(3)利⽤SysTick延时void delay_init() //初始化{SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8); //选择外部时钟fac_us=SystemCoreClock/8000000; //为系统时钟的1/8 4fac_ms=1000\*fac_us;}void delay_us(uint16_t nus) //延时us{uint32_t ui_tmp=0x00;SysTick->LOAD=nus\*fac_us;SysTick->VAL=0x00;SysTick->CTRL=0x01;do{ui_tmp=SysTick->CTRL;}while((ui_tmp&0x01) && (!(ui_tmp & (1<<16))));SysTick->CTRL=0x00;SysTick->VAL=0x00;}void delay_ms(uint16_t nms) //延时ms{uint32_t ui_tmp=0x00;SysTick->LOAD=nms\*fac_ms;SysTick->VAL=0x00;SysTick->CTRL=0x01;do{ui_tmp=SysTick->CTRL;}while((ui_tmp&0x01) && (!(ui_tmp&(1<<16))));SysTick->VAL=0x00;SysTick->CTRL=0x00;}void SysTick_Handler(void){flag=~flag;}(4)定时器延时void TIM3_Int_Init(uint16_t arr,uint16_t psc){TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;NVIC_InitTypeDef NVIC_InitStructure;RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE);//设置在下⼀个更新事件装⼊活动的⾃动重装载寄存器周期的值,计数10000为1s;TIM_TimeBaseStructure.TIM_Period = arr;//设置⽤来作为TIMx时钟频率除数的预分频值,10kHz的计数频率TIM_TimeBaseStructure.TIM_Prescaler = psc;//设置时钟分割:TDIS = Tck_timTIM_TimeBaseStructure.TIM_ClockDivision = 0;//设置TIM向上计数模式TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;//初始化TIMx的时间基数单位TIM_TimeBaseInit(TIM3,&TIM_TimeBaseStructure);//使能指定的TIM3中断,允许更新中断TIM_ITConfig(TIM3,TIM_IT_Update,ENABLE);//TIM3中断NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;//抢占优先级 0 级NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;//从优先级 3 级NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;//IRQ通道被使能NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;//初始化外设NVIC寄存器NVIC_Init(&NVIC_InitStructure);//使能TIMx外设TIM_Cmd(TIM3,ENABLE);}void TIM3_IRQHandler(void){if(TIM_GetITStatus(TIM3,TIM_IT_Update) != RESET) //检查指定的TIM中断发⽣与否 {TIM_ClearITPendingBit(TIM3,TIM_IT_Update); //清除TIMx的中断待处理位if(flag==0){flag=1;GPIO_ResetBits(GPIOB,GPIO_Pin_0) ;}else{flag=0;GPIO_SetBits(GPIOB,GPIO_Pin_0);}}}注意:定时时间的计算定时器时钟为:CK_CLK预分频数值:PSC⾃动装载寄存器数值:ARR进⼊中断的次数:timet=time\*(ARR+1)\*(PSC+1)/(CK_CLK)。
51单片机延时函数在嵌入式系统开发中,51单片机因其易于学习和使用、成本低廉等优点被广泛使用。
在51单片机的程序设计中,延时函数是一个常见的需求。
通过延时函数,我们可以控制程序的执行速度,实现定时器功能,或者在需要的时候进行延时操作。
本文将介绍51单片机中常见的延时函数及其实现方法。
一、使用for循环延时这种方法不精确,但是对于要求不高的场合,可以用来估算延时。
cvoid delay(unsigned int time){unsigned int i,j;for(i=0;i<time;i++)for(j=0;j<1275;j++);}这个延时函数的原理是:在第一个for循环中,我们循环了指定的时间次数(time次),然后在每一次循环中,我们又循环了1275次。
这样,整个函数的执行时间就是time乘以1275,大致上形成了一个延时效果。
但是需要注意的是,这种方法因为硬件和编译器的不同,延时时间会有很大差异,所以只适用于对延时时间要求不精确的场合。
二、使用while循环延时这种方法比使用for循环延时更精确一些,但是同样因为硬件和编译器的不同,延时时间会有差异。
cvoid delay(unsigned int time){unsigned int i;while(time--)for(i=0;i<1275;i++);}这个延时函数的原理是:我们先进入一个while循环,在这个循环中,我们循环指定的时间次数(time次)。
然后在每一次循环中,我们又循环了1275次。
这样,整个函数的执行时间就是time乘以1275,大致上形成了一个延时效果。
但是需要注意的是,这种方法因为硬件和编译器的不同,延时时间会有差异,所以只适用于对延时时间要求不精确的场合。
三、使用定时器0实现精确延时这种方法需要在单片机中开启定时器0,并设置定时器中断。
在中断服务程序中,我们进行相应的操作来实现精确的延时。
这种方法需要使用到单片机的定时器中断功能,相对复杂一些,但是可以实现精确的延时。
51单片机延时函数
151单片机延时函数
51单片机是一种常用的微控制器,它可以实现一系列功能,如定时器,定时器中断等。
随着科技的发展,许多人需要使用单片机来实现特定功能,而51单片机是最受欢迎的也是最知名的。
本文旨在介绍51单片机延时函数的实现方法。
1.1时钟
任何有效的51单片机使用的延时函数都受时钟的控制。
由于50单片机本身的频率有限,为了让计算机更有效地运行,我们需要精确设置时钟频率。
由于时钟频率的不同,51单片机的延时函数也有所不同。
1.2延时函数的实现
51单片机的延时函数是用来延迟任务的一种方法。
延时函数可以延迟任务的执行,并且可以按照用户设定的起点和终点执行任务。
51单片机使用指令延时来实现延时函数。
指令延时就是指通过控制51单片机内部时钟,来让程序暂停一段指定时间。
这样,我们就可以实现受时钟控制的延时函数。
1.3延时函数的实际应用
51单片机的延时函数可以用来实现许多不同的功能,如断电保护,延时启动,定时控制等。
由于这些函数可以精确控制任务的执
行,可以适应复杂的工作环境。
同时,51单片机还可以实现节能,使系统能够更加稳定可靠。
2结论
51单片机延时函数是51单片机应用中最基础的功能之一。
该函数可以满足不同用户的需求,帮助产品在实际应用中更好地发挥作用,同时还可以实现节能。
51单片机c语言延时51单片机(8051微控制器)是一种广泛使用的嵌入式系统芯片,其编程语言包括C语言和汇编语言等。
在C语言中,实现51单片机延时的方法有多种,下面介绍其中一种常用的方法。
首先,我们需要了解51单片机的指令周期和机器周期。
指令周期是指单片机执行一条指令所需的时间,而机器周期是指单片机执行一个操作所需的时间,通常以微秒为单位。
在C语言中,我们可以使用循环结构来实现延时。
#include <reg51.h> // 包含51单片机的寄存器定义void delay(unsigned int time) // 延时函数,参数为需要延时的微秒数{unsigned int i, j;for (i = 0; i < time; i++)for (j = 0; j < 1275; j++); // 1275个机器周期,约等于1ms}void main() // 主函数{while (1) // 无限循环{// 在这里添加需要延时的代码P1 = 0x00; // 例如将P1口清零delay(1000); // 延时1秒P1 = 0xFF; // 将P1口清零delay(1000); // 延时1秒}}在上面的代码中,我们定义了一个名为delay的函数,用于实现延时操作。
该函数接受一个无符号整数参数time,表示需要延时的微秒数。
在函数内部,我们使用两个嵌套的循环来计算延时时间,其中外层循环控制需要延时的次数,内层循环控制每个机器周期的时间(约为1微秒)。
具体来说,内层循环执行了约1275次操作(具体数值取决于编译器和单片机的型号),以实现约1毫秒的延时时间。
需要注意的是,由于单片机的指令周期和机器周期不同,因此我们需要根据具体的单片机型号和编译器进行调整。
在主函数中,我们使用一个无限循环来不断执行需要延时的操作。
例如,我们将P1口的所有引脚清零,然后调用delay函数进行1秒钟的延时,再将P1口清零并再次调用delay函数进行1秒钟的延时。
C程序中可使用不同类型的变量来进行延时设计。
经实验测试,使用unsigned char类型具有比unsigned int更优化的代码,在使用时应该使用unsigned char作为延时变量。
以某晶振为12MHz 的单片机为例,晶振为12MHz即一个机器周期为1us。
一. 500ms延时子程序
程序:
void delay500ms(void)
{
unsigned char i,j,k;
for(i=15;i>0;i--)
for(j=202;j>0;j--)
for(k=81;k>0;k--);
}
计算分析:
程序共有三层循环
一层循环n:R5*2 = 81*2 = 162us DJNZ 2us
二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ2us + R5赋值 1us = 3us
三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值1us = 3us
循环外: 5us子程序调用2us + 子程序返回 2us + R7赋值 1us = 5us
延时总时间= 三层循环+ 循环外= 499995+5 = 500000us =500ms
计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5
二. 200ms延时子程序
程序:
void delay200ms(void)
{
unsigned char i,j,k;
for(i=5;i>0;i--)
for(j=132;j>0; j--)
for(k=150;k>0; k--);
}
三. 10ms延时子程序
程序:
void delay10ms(void)
{
unsigned char i,j,k;
for(i=5;i>0;i--)
for(j=4;j>0;j--)
for(k=248;k>0; k--);
}
四. 1s延时子程序
程序:
void delay1s(void)
{
unsigned char h,i,j,k;
for(h=5;h>0;h--)
for(i=4;i>0;i--)
for(j=116;j>0; j--)
for(k=214;k>0; k--);
}
关于单片机C语言的精确延时,网上很多都是大约给出延时值没有准确那值是多少,也就没有达到精确高的要求,而本函数克服了以上缺点,能够精确计数出要延时值且精确达到1us,本举例所用CPU为STC12C5412系列12倍速的单片机,只要修改一下参数值其它系例单片机也通用,适用范围宽。
共有三条延时函数说明如下:
函数调用分两级:一级是小于10US的延时,二级是大于10US的延时
//====================小于10US的【用1US级延时】====================
//----------微秒级延时---------
for(i=X;i>X;i--) 延时时间=(3+5*X)/12提示(单位us, X不能大于255)
//================大于10US<小于21.9955Ms的可用【10US级延时函数】===========
void Delay10us(uchar Ms)
{
uchar data i;
for(;Ms>0;Ms--)
for(i=26;i>0;i--);
}。