统计学(07)第7章 参数估计
- 格式:ppt
- 大小:1.64 MB
- 文档页数:80
第7章参数估计7.1 考点归纳【知识框架】【考点提示】(1)置信区间的含义理解(选择题、简答题考点);(2)估计量的三个评价标准(判断题、填空题、简答题考点);(3)区间估计的步骤(简答题考点)、总体参数的区间估计选择恰当的统计量(计算题考点);(4)必要样本容量的影响因素、计算(简答题、计算题考点)。
【核心考点】考点一:参数估计的基本原理1.置信区间(1)置信水平为95%的置信区间的含义:用某种方法构造的所有区间中有95%的区间包含总体参数的真值。
(2)置信度愈高(即估计的可靠性愈高),则置信区间相应也愈宽(即估计准确性愈低)。
(3)置信区间的特点:置信区间受样本影响,具有随机性,总体参数的真值是固定的。
一个特定的置信区间“总是包含”或“绝对不包含”参数的真值,不存在“以多大的概率包含总体参数”的问题。
2.评价估计量的标准(1)无偏性:估计量抽样分布的期望值等于被估计的总体参数,即E(θ∧)=θ。
(2)有效性:估计量的方差尽可能小。
(3)一致性:随着样本量的增大,估计量的值越来越接近被估计总体的参数。
【提示】本考点常见考查方式:①直接考查置信水平为95%的置信区间的含义;②置信度、估计可靠性、置信区间的关系及应用;③置信区间的特点;④给出估计量的具体含义,判断体现了什么标准;⑤直接回答估计量的三个评价标准及具体含义(简答题)。
考点二:一个总体参数的区间估计表7-1 一个总体参数的区间估计【总结】一个总体参数的估计及所使用的分布见图7-1:图7-1 一个总体参数的估计及所使用的分布【真题精选】设总体X~N(μ,σ2),σ2已知,样本容量和置信水平固定,对不同的样本观测值,μ的置信区间的长度()。
[对外经济贸易大学2018研]A.变长B .变短C .保持不变D .不能确定 【答案】C【解析】在正态总体方差已知的条件下,μ的置信区间为/2x z ±ασ所以置信区间长度为/22Z α,当样本容量和置信水平固定时,置信区间长度保持不变。
第七章 参数估计7.1 (1)x σ==(2)2x z α∆= 1.96=1.54957.2 某快餐店想要估计每位顾客午餐的平均花费金额。
在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(1)假定总体标准差为15元,求样本均值的抽样标准误差。
x σ==(2)在95%的置信水平下,求估计误差。
x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=2z α 因此,x x t σ∆=⋅2x z ασ=⋅0.025x z σ=⋅=1.96×2.143=4.2 (3)如果样本均值为120元,求总体均值 的95%的置信区间。
置信区间为:2x z x z αα⎛-+ ⎝=()120 4.2,120 4.2-+=(115.8,124.2)7.322x z x z αα⎛-+ ⎝=104560±(87818.856,121301.144) 7.4 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。
要求:大样本,样本均值服从正态分布:2,x N n σμ⎛⎫ ⎪⎝⎭ 或2,s x N n μ⎛⎫⎪⎝⎭置信区间为:22x z x z αα⎛-+ ⎝=1.2 (1)构建μ的90%的置信区间。
2z α=0.05z =1.645,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(79.03,82.97)(2)构建μ的95%的置信区间。
2z α=0.025z =1.96,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(78.65,83.35)(3)构建μ的99%的置信区间。
2z α=0.005z =2.576,置信区间为:()81 2.576 1.2,81 2.576 1.2-⨯+⨯=(77.91,84.09)7.5 (1)2x z α±=25 1.96±=(24.114,25.886)(2)2x z α±119.6 2.326±=(113.184,126.016)(3)2x z α± 3.419 1.645±(3.136,3.702)7.6 (1)2x z α±=8900 1.96±=(8646.965,9153.035)(2)2x z α±8900 1.96±=(8734.35,9065.65)(3)2x z α±8900 1.645±=(8761.395,9038.605)(4)2x z α±8900 2.58±=(8681.95,9118.05)7.7 某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取36人,调解:(1)样本均值x =3.32,样本标准差s=1.611α-=0.9,t=2z α=0.05z =1.645,x z α± 3.32 1.645±=(2.88,3.76)1α-=0.95,t=z α=0.025z =1.96,x z α± 3.32 1.96±(2.79,3.85)1α-=0.99,t=z α=0.005z =2.576,2x z α± 3.32 2.76±(2.63,4.01)7.82x t α±=10 2.365±7.9 某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是:10 3 14 86 9 12 117 5 1015 9 16 13 2假定总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。
统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。
估计量也是随机变量。
如样本均值,样本比例、样本方差等。
根据一个具体的样本计算出来的估计量的数值称为估计值。
2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。
(2)有效性:是指估计量的方差尽可能小。
对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。
(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。
3. 怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。
置信区间的论述是由区间和置信度两部分组成。
有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。
因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。
在公布调查结果时给出被调查人数是负责任的表现。
这样则可以由此推算出置信度(由后面给出的公式),反之亦然。
4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。
也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。
不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数。
5. 简述样本量与置信水平、总体方差、估计误差的关系。
1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为 其中: 2222α2222)(E z n σα=n z E σα2=▪ 与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;▪ 与总体方差成正比,总体的差异越大,所要求的样本量也越大;▪ 与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。
第七章 抽样调查1、 抽样调查的目的在于用抽样指标去推断总体指标。
( )2、 不论总体单位数多少都适用抽样调查方法。
( )3、 古典概率是指每次试验中事件等可能出现的条件下,试验前就可计算出来的比率。
( )4、 股票指数在未来的一周内上升可能性的大小指的是主观概率。
( )5、对一个有限总体进行重复抽样,各次抽取的结果是相互独立的。
( )6、对一个无限总体进行不重复抽样,各次抽取的结果是相互独立的。
( )7、抽样极限误差可以大于抽样平均误差,可以小于抽样平均误差,当然也可以等于抽样平均误差。
( )8、对于重复简单随机抽样,若其它条件不变,样本单位数目增加3倍,则样本平均数抽样平均误差将必须减少30%。
( )9、对于重复简单随机抽样,若其它条件不变,要使抽样平均误差减少一半,则抽样单位数目将必须增加1倍。
( )10、抽样误差产生的原因是抽样调查时违反了随机原则。
( ) 11、抽样误差是抽样调查所固有的、无法消除的误差。
( )12、在确定样本单位数目时,若总体成数方差未知,则P 可取0.5。
( )1、 若某一事件出现的概率为1/6,当试验6次时,该事件出现的次数将是()。
1次 大于1次小于1次上述结果均有可能2、 已知一批计算机元件的正品率为80%,现随机抽取n 个样本,其中x 个为正品,则x 的分布服从()。
正态分布二项分布泊松分布超几何分布3、某工厂生产的零件出厂时每200个装一盒,这种零件分为合格与不合格两类,合格率约为99%,设每盒中的不合格数为X ,则X 通常服从( )。
正态分布二项分布泊松分布超几何分布4、 若一个系的学生中有65%是男生,40%是高年级学生。
若随机抽选一人,该学生或是男生或是高年级学生的概率最可能是( )。
0.350.600.80 1.055、 有为朋友从远方来,他乘火车、轮船、汽车、飞机来的概率分别为0.3、0.2、0.1和0.4,如果他乘火车、轮船、汽车来的话,迟到的概率分别为1/4、1/3和1/12,而乘飞机则不会迟到,试求他迟到的概率为( )。
实验七:参数估计【目的要求】1.掌握均数抽样误差的概念及产生原因2.掌握总体均数的可信区间及估计方法3.熟悉标准差与标准误的区别和联系【案例分析】案例1:某研究者于某年在某市随机调查了200例正常成年人血铅含量(μg/100g),将资料整理成表5-3的频数表形式,试估计该市正常成年人血铅含量的参考值范围及正常成年人平均血铅含量的置信区间。
由于血铅值高于某上限值才被看作异常,故作者将该数据代入公式X+1.64S计算得到该市正常成年人血铅含量95%参考值范围的上界;并用公式X+1.64 s计算得到正常成年人平均血铅含量的95%置信区间的上界。
试问这样做是否合适? 为什X么?应当怎么做?200名正常成年人血铅频数表组段(μg/100g)频数f累计频数累计频率(%)4~252512.58~325728.512~369346.516~3012361.520~2514874.024~2217085.028~1118190.532~818994.536~419396.540~419798.544~119899.048~119999.552~561200100.0合计∑f=200【SPSS操作】Analyze→Descriptive Statistics→Explore→选择变量到Dependent List列表中→选择Display选择框内的Statistics→OK【练习题】一、填空题1.抽样误差是指。
2.标准误是指。
3.总体均数置信区间的计算方法有和。
4.t分布的自由度是。
5.参数估计分为和。
6.总体概率置信区间的计算方法有和。
二、选择题1.表示均数抽样误差大小的统计指标是( )A.标准差B.方差C.均数标准误D.变异系数E.样本标准误S表示( )2.xA.总体均数B.样本均数的标准差C.总体均数离散程度D.变量值X的离散程度3.标准误越大,表示此次抽样得到的样本频率( )A.系统误差越大B.可靠程度越大C.抽样误差越大D.可比性越差4.要减小抽样误差,通常的做法是( )A.适当增加样本例数B.将个体变异控制在一个范围内C.严格挑选观察对象D.增加抽样次数5.关于t分布的图形,下列哪项是错误的( )A.当v趋于无穷时,标准正态分布是t分布的特例B.当v逐渐增大,t分布逐渐逼近标准正态分布C.v越小,则t分布的尾部越高D.t分布是一条以v为中心左右对称的曲线6.已知某地25岁正常成年男性平均收缩压为113.0mmHg,从该地随机抽取20名25岁正常成年男性,测得平均收缩压为119.0 mmHg. 113.0mmHg与119.0mmHg不同,原因是( )A.样本例数太少B.抽样误差C.总体均数不同D.系统误差E.个体差异太大7.从上题的同一个地区再随机抽取20名8岁正常男孩,测得平均收缩压为90 mmHg,标准差为9.8 mmHg.90 mmHg与113.0 mmHg不同,原因是( )A.样本例数太少B.抽样误差C.总体均数不同D.系统误差E.样本均数不可比8.在同一总体随机抽样,样本含量n固定时,a越大,用总体均数的可信区间估计总体均数,估计的情况是()A.错的概率越大B.错的概率越小C.错的概率不变D.其精度越差9.统计推断包括两个重要方面()A.参数估计和假设检验B.计算均数和标准差C.统计描述和假设检验D.计算均数和标准误10.总体均数的可信区间()A.随总体均数而变化B.不随总体均数而变化C.固定区间D.随样本不同而变化11.总体概率的区间估计中,a值越大()A.置信度越大B.置信度越低C.估计的精度下降D.抽样误差越大E.抽样误差越小12.样本频率的标准误越大,()A.置信度越大B.置信度越低C.估计的精度下降D.抽样误差越大E.抽样误差越小13.置信区间和医学参考值范围相比,()A.置信区间也能判断个体值是否正常B.估计的精度好C.估计的精度下降D.置信区间的宽度小于医学参考值范围的宽度E.两者的计算都利于标准误三、判断题1.一般情况下,同一批资料的标准误小于标准差()2.从同一总体中随机抽取样本含量相同的两个样本,他们的样本均数与总体均数相同()3.增加样本含量可以减小抽样误差,所以样本含量越大越好()4.样本含量足够大时,来自正偏峰分布的样本可用正态近似法作参数估计()5.t分布法计算置信区间只适合小样本而不适用于大样本()6.当v一定,a=0.05时,单侧t值小于双侧t值()7.t值相等时,单侧概率小于双侧概率()8.通过样本频率估计总体概率,99%置信区间的精度高于95%置信区间()S都是变异指标,因此它们都可以表示抽样误差的大小()9.S和x四、思考题1.参考值范围和置信区间有什么区别和联系?2.t分布有什么特点?3.什么是均数标准误?意义是什么?如何计算及控制?【作业】1.为了研究某地黄连中小檗碱含量,随机抽查该地20份黄连中小檗碱含量(mg/100g)得平均数为4.35,标准差为0.20,试计算:(1)总体均数的95%和99%的可信区间。
统计学参数估计统计学参数估计是统计学中一种重要的方法,它通过观察样本数据来估计总体参数的值。
参数是描述总体特征的数值,例如总体均值、总体比例等。
参数估计的目的是根据样本信息对总体参数进行推断,从而得到总体特征的近似值。
参数估计的过程通常分为点估计和区间估计两种方法。
点估计是指根据样本数据求出总体参数的一个数值估计量,例如样本均值、样本比例等。
点估计的基本思想是用样本统计量作为总体参数的估计值,它是参数的无偏估计量时,表示点估计是一个良好的估计。
区间估计是指根据样本数据求出一个区间,这个区间包含总体参数的真值的概率较高,通常用置信区间表示。
区间估计的基本思想是总体参数位于一个区间中的可能性,而不是一个确定的值。
置信区间的构造依赖于样本统计量的分布以及总体参数的估计量的抽样分布。
点估计和区间估计的方法有很多,其中最常用的是最大似然估计和矩估计。
最大似然估计是指根据已知样本观测值,选择使样本观测值出现的概率最大的总体参数作为估计值。
最大似然估计的基本思想是找到一个参数值,使得已观测到的样本结果出现的概率尽可能大。
矩估计是指根据样本矩的观测值,选择使样本矩的偏差与总体矩的偏差最小的总体参数作为估计值。
矩估计的基本思想是利用样本矩估计总体矩,从而近似估计总体参数。
参数估计在实际应用中具有广泛的应用价值。
例如,在医学研究中,需要对患者的疾病概率进行估计,以帮助医生做出正确的诊断和治疗决策。
在经济学研究中,需要对经济指标(如GDP、通胀率等)进行估计,以帮助政府制定宏观经济政策。
在市场调研中,需要对消费者行为进行估计,以帮助企业确定产品定价和市场策略。
然而,参数估计也存在一些局限性。
首先,参数估计的结果仅仅是对总体参数的估计,并不是总体参数的确切值。
其次,参数估计的结果受到样本容量的影响,样本容量越大,估计结果越可靠。
另外,参数估计还需要满足一些假设条件,如总体分布的形式、样本的独立性等,如果这些假设条件不满足,估计结果可能会失效。