小波神经网络简介
- 格式:ppt
- 大小:2.77 MB
- 文档页数:32
1996年 第5期中山大学学报论丛SUPP LEM EN T TO T HE JOU RN ALOF SUN YATSEN UNIV ERSI TYNo.5 1996 小波型神经网络W TNN的设计毛光喜郑咸义(广东商学院计算中心,广州510320) (华南理工大学应用数学系)摘 要 小波分析已成为众多领域中的有力工具.本文采用调制的小波基对输入模式预处理,在函数链神经网络的基础上设计了小波型神经网络W TNN,从而把小波变换与函数链神经网络有机地结合起来.这样设计的模型有惊人的学习速度;体系结构的通用性好;适应性强等特点.最后,通过实例用计算机模拟验证上述特点.关键词 小波变换,函数链神经网络,W TNN,软件模拟1 引 言1.1 小波分析 简言之,小波是由一个满足条件 Rh(x)dx=0(1)的函数(mother wavelet)通过平移和放缩而产生的一个函数族h a,b:h a,b(x)=|a|-1/2h((x-b)/a),a,b∈R,a≠0(2) 小波分析(Wavelets a nalysis)可以认为是Fourier分析发展史上里程碑式的进展.小波分析优于Fourier分析的地方在于它在时域和频域同时具有良好的局部化性质,从而可以把分析的重点聚焦到任意的细节,被人们誉为数学显微镜,成为近年来在工具和方法上的重大突破.从理论上讲,传统上使用Fourier分析的地方,均可以用小波分析来代替.小波几乎可以构成所有常用函数空间的无条件基.因此,我们把小波变换应用到函数链神经网络中,构造了一个新的模型W TNN——小波型神经网络.1.2 函数链神经网络函数链神经网络是对输入模式作非线性变换预处理、利用高阶效应而获得惊人学习速度的单层网络[1].它的基本思想是:一旦一节点被激励,例如k节点被激励,就会有许多附加函数功能也被激励,即不仅能得到O k,而且还能得到f1(O k),f2(O k),…,f n(O k).如图1所示.函数链神经网络的理论基础是Sobajic于1988年奠定的[2],他证明了函数展开模型总能产生一个单层网络,而且在他的理论分析指导下,可以得到形式简单的解.函数链神经网络的不足之处在于,该系统的适应性较差,该系统总是就具体问题而必须事先设计好一组恰国家自然科学基金资助项目收稿日期63:199-0-20当的函数型增强表达式f 1,f 2,…,f n .换句话说,该系统不能自动地获取对输入模式“好”的增强表达,这种“好”的增强表达是指输入模式的增强表达有利于网络的学习.因此,函数链神经网络的应用受到了限制.图1 函数链神经网络2 W TNN 的构造2.1 引入两个工具2.1.1 小波正交基库 这个库是由足够多的小波正交基以及其它许多正交基所组成的基函数集合,集合中的元素均为一组组基函数.2.1.2 选择“好”基的标准 对于原始输入模式,在小波正交基库中按此标准选择一个“好”基,从而对输入模式进行增强表达,即由O k 得到f 1(O k ),f 2(O k ),…,f n (O k ).Wickerharuse 与Coifman 引进了Shannon 熵的概念作为挑选基的标准[3].定义如下:定义 设H 是Hilbert 空间,令v ∈H ,‖v ‖=1,又假设H=⊕Hi 是H 的一个正交直和,则X (v ,{Hi })=(-∑‖v i ‖2ln ‖v i ‖2)1/2(3)称为向量V 关于直和分解{Hi}的Shannon 熵.其中{v i }是v 在此基{Hi}下的坐标.按照使Shannon 熵为最小的标准来挑选“最好”的基,用以展开H 中的元素.2.2 W TNN 模型的构造小波型神经网络W TNN 模型的结构如图2所示.图2 W TNN 模型的结构2.2.1 小波正交基库 也称为正交基馆或函数馆.例如,Coifman 及其合作者就构作了这样的一个正交基馆,其中收藏了大量的小波正交基以及其它许多正交基.2.2.2 调制器 也称为选基器或排基器.其功能是对给定的原始输入模式,在小波正交基库中调制出一个“最好”的基.从而按这个基对输入模式增强表达,进而作为神经网络的输入用于神经网络的训练控制机制是由选基标准实现的例如,我们按照使S 熵为最小的标准来设计调制器3 单层神经网络 网络学习算法采用最简单的W 规则①任取一组随机数初始化数值172中山大学学报论丛 1996年..hannon .2.2.:向量w 1;②对第k 次递归,有w k +1=w k +Z(b k -w f k x k )X k ,其中Z 称为学习年(0<Z <0.5).省去脚标,②式记为Δw=Z W X ,其中,W =b-w fX 为误差.2.2.4 目标系统 存放着具体目标的领域专家的知识.这些知识是粗糙零散的,以输入—输出关联对的形式表达.2.2.5 用户界面 W TNN 网络系统与用户(例如,领域专家)之间的接口,一般它包括输入/输出两大部分.2.3 W TNN 的工作原理(1)根据实际目标的领域专家的以输入—输出关联对形式表达的知识,确定目标系统.(2)从目标系统的传感器取得数据V (即原始输入模式)通过用户界面输入到小波正交基库中,从而对基库中每一个基元{Hi (k )}n i =1,V 都有其坐标展开,即V =∑ni=1V i (k)H i (k ).其中k 为基元素在库内的编号,V i (k )是第i 个坐标分量.(3)调制器在小波正交基库中取得各组{V i (k)}ni=1,根据选基标准,求出一组最优的坐标{V i (k 0)}n i=1,从而调制出一个“最好”的基{H i (k 0)}ni =1.(4)用{H k (k 0)(V )}对单层神经网络进行训练,以提高目标系统的准确性.3 W TNN 的特点W TNN 不仅完全继承了函数链神经网络的优点,而且还具有更强的功能.它有特点:(1)适应性强.WTNN 网络系统中的调制器子系统能自动调制小波基,实现对输入模式按有利于网络训练的方式增强表达.因此,W TNN 的适应性很强,弥补了函数链神经网络的不足.(2)小波变换与神经网络的有机结合.W TNN 网络模型采用小波变换对原始输入模式预处理,通过自动调制有利于网络训练的小波基,实现了小波变换与神经网络的成功结合.(3)继承了函数链神经网络的全部优点,模型结构简单,功能更加强大,网络对学习算法的依赖性很低,体系结构的通用性好.4 实例分析通过两个例子,在微机上运行了W TNN 模拟程序和相应的BP 网络模拟程序.通过对比,证实了WTNN 具有快速学习速度,进一步以函数链神经网络对比,显示了W TNN 网络系统具有很强的适应性.例1 二值异域问题在二值异域XOR 问题中,输入—输出关联对如表1所示.表2显示了系统误差随迭代次数下降的情况.表1 XOR 问题学习模式模式序号x 1x 2关联输出Y100120103173第5期 毛光喜等:小波型神经网络W TNN 的设计1004111表2 学习结果对比迭代次数W TNN 网络系统误差BP 网络系统误差500.050.86251000.002510.8551500.001260.852000.010.8252500.008750.7迭代次数W TNN 网络系统误差BP 网络系统误差3000.00750.553500.006250.34000.0050.054500.003750.0055000.00250.003例2 一元函数的学习向网络提供曲线的20个采样点,表3是输入—输出关联对,表4显示了系统误差随迭代次数下降的情况.表3 学习模式自变量x i函数值y i 自变量x i函数值y i 0.10.24350.60.24350.20.16750.70.75010.30.45490.80.11500.40.45490.90.66190.50.66191.00.0697自变量x i函数值y i 自变量x i函数值y i 1.10.3312 1.60.04111.20.5719 1.70.17181.30.4910 1.80.26521.40.4512 1.90.03321.50.01322.00.1177表4 学习结果对比迭代次数W TNN 网络系统误差BP 网络系统误差5000.0076920.23076910000.0007690.03076915000.0003850.023*******×0.019231迭代次数W TNN 网络系统误差BP 网络系统误差2500×0.0153853000×0.0076923500×0.0038464000××本文构造的W TNN 网络模型,只是初步探讨了小波变换与神经网络的结合.实际上,小波型神经网络W TNN 还需做更深入的研究.例如,神经网络与模糊系统的集成技术已引起了人们的普遍关注;遗传算法作为一种随机搜索的全局优化算法,它在模糊规则的自动获取与神经网络的学习过程中扮演了一个十分令人注目的角色.因此,探讨将W TNN 、遗传算法及模糊系统进行有机结合,将是我们进一步研究工作的重大课题.参考文献1 Klassen M S,Pao Y H .Cha racte ristics of the functional-link net :A higher order delta r ule net.IEEE Proc .of 2nd Aunua l Inte rnationa l Confe rence on Nea ral Networ ks ,1988,I ,507~513 S j D N N f f Sy ,D T ,S D ,W K U y ,,3 f R,W M V y f ,3174中山大学学报论丛 1996年2oba ic .ewral ets or Control o Power stems Ph ..h esis Computer cience ept Case este rn eserve niversit Cleveland 1988Coi ma n ickerha user .Eutrop -based a lgorithms or best basis selection.19928I EEE Tr ans.27,713~7184 周继成等编著.人工神经网络——第六代计算机的实现.北京:科学普及出版社,19935 庄镇泉,王煦法等编著.神经网络与神经计算机.北京:科学出版社,1994Wa velets Neura l Network Mode l -WTNN ’sDes ign a nd Rea liza tion Mao Guangxi Zheng Xianyi(Gua ngdong Commercia l College Com puter Center,Guangzhou 510320) (South China Univer sity ofTech Math D ept,)Abstr act Wavelets a nalysis have become powerful tools in lots of fields.This paper takes modulation wave-lets coordinate to pre-transform the lear n ing specimen.On the basis ofthe functional -link nevral network ,we design the wavelets neural network model -W TNN and combine wavelets transform with the functional-link neural network successfully .This new model has distinguishing feature as following :(1)surprising learning speed;(2)commonly used structure in erea of neural networks ;(3)strong adaptability .Lastly ,we give some examples to prove WTNN model has distinguishing learning speed .Keywor ds Wavelets transforms,W TNN ,functional-link neural network,softwa re imitative175第5期 毛光喜等:小波型神经网络W TNN 的设计。
非线性电路与系统——关于神经网络的一些学习总结姓名:楼韬学号:**********班级:研2-108班导师:***典型神经网络模型及其应用摘要:随着神经网络研究的深入,神经网络在理论上有了很大突破,并在实践中发挥着越来越重要的作用。
本文介绍了径向基网络,支撑矢量机,小波神经网络,反馈神经网络这几种典型的神经网络结构模型、特点及应用。
关键词:神经网络径向基网络支撑矢量机小波神经网络反馈神经网络Abstract: With in-depth study of neural networks, neural networks have great breakthrough in theory and in practice is playing an increasingly important role. This article introduced the RBF networks, support vector machines, wavelet neural networks, feedback neural networks with their concepts, features and applications in scientific research field. Key words: neural networks, RBF networks, support vector machines ,wavelet neural networks ,feedback neural networks.1引言神经网络以其快速的并行处理能力和其强有力的学习能力而获得越来越广泛的重视,神经网络系统最主要的特征是大规模模拟并行处理、信息的分布式存储,高度的容错性和自组织、自学习及实时处理,它可以直接输入样本,信息处理分布于大量神经元的互连之中,并且具有冗余性。
随着对神经网络理论的不断深入研究,其应用目前已经渗透到各个领域。
小波变换与神经网络技术的滋养特征提取及识别应用近年来,小波变换与神经网络技术已经在图像、音频、信号等领域广泛应用,特别是在特征提取和识别方面取得了许多重要进展。
本文将介绍小波变换和神经网络技术的原理及其在特征提取和识别中的应用。
一、小波变换原理小波变换是一种时间-频率分析方法,它将时域信号分解成不同尺度和不同频率的子信号,可以帮助我们更好地理解信号的局部特征。
在小波分析中,小波函数是一种长度有限的函数,它具有自相似性、局部化和可变性等特点。
小波变换的基本过程是将原始信号分解成一组小波系数,这些系数包含了信号在不同尺度上的特征信息,包括低频和高频成分。
其中,低频成分代表信号的整体趋势,高频成分反映了信号的局部细节。
二、神经网络技术原理神经网络是一种模拟人类神经系统运作的计算模型。
它由大量简单的单元组成,这些单元相互连接并通过学习来实现特定任务。
神经网络可以通过多次迭代来优化网络连接权重以及神经元的激活函数,从而得到更好的分类和识别效果。
在神经网络中,网络的输入层接收原始数据,隐含层和输出层则通过多层非线性变换将输入数据映射到具有特定意义的特征空间中。
神经网络的输出层通常表示分类或者识别结果。
三、小波变换与神经网络技术在特征提取中的应用小波变换和神经网络技术已经被广泛应用于图像、音频、信号等领域,特别是在特征提取和识别方面。
以下是一些典型应用案例:1.图像特征提取在图像处理中,小波变换可以将图像分解为不同的频率和尺度。
通过选取合适的小波函数和分解层数,可以提取出图像的不同特征,如边缘、纹理等。
这些特征可以被用于分类、识别和双目视觉等应用中。
神经网络可以通过卷积层和全连接层等深度学习结构学习这些特征,并将其映射到更高层次的特征空间中。
这些特征被广泛应用于计算机视觉任务,如图像分类、目标检测和物体识别等。
2.音频特征提取在音频处理中,小波变换可以将音频信号分解为不同频率的子信号。
这些子信号可以用于声音识别、语音合成、语音分析等应用。
⼩波神经⽹络(WNN)⼈⼯神经⽹络(ANN)是对⼈脑若⼲基本特性通过数学⽅法进⾏的抽象和模拟,是⼀种模仿⼈脑结构及其功能的⾮线性信息处理系统。
具有较强的⾮线性逼近功能和⾃学习、⾃适应、并⾏处理的特点,具有良好的容错能⼒。
⼈⼯神经元神经元是构成神经⽹络的最基本单元。
要想构造⼀个⼈⼯神经⽹络系统,⾸要任务是构造⼈⼯神经元模型。
⼀个⼈⼯神经⽹络的神经元模型和结构描述了⼀个⽹络如何将它的输⼊⽮量转换为输出⽮量的过程。
⼀个神经元有两个输⼊:输⼊向量p,阈值b,也叫偏差。
输⼊向量p通过与它相连的权值分量w相乘,求和后,形成激活函数f(.)的输⼊。
激活函数的另⼀个输⼊是神经元的阈值b。
权值w和输⼊p的矩阵形式可以由w的⾏⽮量以及p的列⽮量来表⽰:神经元模型的输出⽮量可以表⽰为:激活函数是⼀个神经元及⽹络的核⼼。
激活函数的基本作⽤是:1、控制输⼊对输出的激活作⽤;2、对输⼊、输出进⾏函数转换;3、将可能⽆限域的输⼊变换成指定的有限范围内的输出。
激活函数的常⽤类型:⼩波(wave/let):波-震荡,⼩-衰减速度⽐较快。
⼩波分析具有多分辨分析的特点,是⼀种窗⼝⼤⼩固定不变但其形状可以改变的分析⽅法,被称为信号的显微镜。
⼩波分析的种类:Haar⼩波规范正交基、Morlet⼩波、Mallat算法、多分辨分析、多尺度分析、紧⽀撑⼩波基、时频分析等。
⼩波神经⽹络(WNN)集⼈⼯神经⽹络和⼩波分析优点于⼀⾝,即使⽹络收敛速度快、避免陷⼊局部最优,⼜有时频局部分析的特点。
WNN是将神经⽹络隐结点的S函数由⼩波函数来代替,相应的输⼊层到隐含层的权值及隐含层的阈值分别由⼩波函数的尺度伸缩因⼦和时间平移因⼦所代替。
最优控制问题的鲁棒控制算法设计最优控制问题作为控制理论的重要研究领域,涉及到在给定约束条件下,寻找使性能指标最优化的控制策略。
然而,现实中的控制系统常常会受到参数的不确定性和外部干扰的影响,这就需要设计一种鲁棒控制算法,以提高控制系统的稳定性和鲁棒性。
一、最优控制问题简介最优控制问题是研究在给定约束条件下,求解性能函数最优的控制策略的问题。
在控制理论中,最优控制可以分为静态最优控制和动态最优控制,其中动态最优控制又分为无模型和具有模型的控制。
静态最优控制是指在给定约束条件下,通过调节系统的输入使得性能指标最优化。
常用的方法有变分法、极大极小原理等。
动态最优控制则考虑到系统的动力学特性,通过在一段时间内控制系统的状态变量,使得性能指标在这段时间内最优化。
无模型的动态最优控制主要采用最优控制算法,如最优化理论、线性二次型控制等;具有模型的动态最优控制则使用最优化理论中的动态规划方法。
二、鲁棒控制算法设计鲁棒控制算法是为了应对控制系统中的参数不确定性和外部干扰而设计的一种控制策略。
它能够使得控制系统不受扰动的影响,保持稳定性和性能。
1. H∞控制算法H∞控制是一种常用的鲁棒控制算法,它通过优化系统的H∞性能指标来设计控制器。
H∞控制的基本思想是在系统的输入和输出之间引入一个H∞范数,以保证系统对内外干扰的鲁棒性。
2. μ合成算法μ合成算法是一种基于频率域的鲁棒控制算法,它通过优化系统的鲁棒稳定裕度指标来设计控制器。
μ合成算法首先确定系统的不确定性范围,然后通过搜索合适的控制器来最小化系统对不确定性的敏感度。
3. 小波神经网络算法小波神经网络是一种结合小波分析和神经网络的算法,它可以有效地应对控制系统中的不确定性和非线性。
小波神经网络算法通过训练网络的权重和阈值来实现控制系统的稳定性和鲁棒性。
三、鲁棒控制算法的应用鲁棒控制算法在实际控制系统中有着广泛的应用。
下面以飞行器控制系统为例,说明鲁棒控制算法的应用。
小波变换与神经网络的结合在图像分析中的应用随着科技的不断发展,数字化技术在图像处理中的应用越来越广泛。
在图像分析领域中,小波变换和神经网络是两个重要的工具,它们可以互相结合,最终帮助人们更好地进行图像分析。
本文将探讨小波变换和神经网络的结合在图像分析中的应用。
一、小波变换的介绍小波变换是一种基于时间和频率分析的变换方法,它可以将信号分解为不同频率成分和时域特征。
相比于傅里叶变换,小波变换更适合处理非稳态信号,可以提取出更为准确的信息。
在图像分析中,小波变换可以用于图像压缩、去噪、边缘检测等方面。
通过分解和重构,小波变换可以将图像压缩到更小的尺寸,同时保留图像的主要信息。
此外,小波变换可以减少噪声在图像中的影响,提高图像的质量。
在边缘检测方面,小波变换可以定位图像中的边缘,并将其突出显示。
二、神经网络的介绍神经网络是一种基于生物神经系统的模拟技术,它通过多个节点(神经元)之间的连接,来实现信息的处理。
神经网络可以设置多个隐藏层,根据数据集不断进行学习,提高其对目标的识别准确性。
在图像分析中,神经网络可以用于图像识别、物体检测等方面。
通过对大量数据的学习,神经网络可以判断图像中是否存在目标物体,并将其与其他物体区分开来。
此外,神经网络还可以对图像进行分类,例如将不同的动物、车辆等分类出来。
三、小波变换与神经网络的结合小波变换和神经网络在图像分析中都有重要的作用,它们的结合可以更全面地分析图像。
以下是小波变换与神经网络结合的一些应用。
1. 基于小波变换的图像预处理在使用神经网络进行图像分析之前,需要对图像进行预处理。
由于神经网络对噪声、模糊等干扰比较敏感,因此需要使用小波变换来对图像进行去噪、边缘检测等处理,以提高神经网络的准确性。
2. 基于小波变换的神经网络训练方法神经网络的识别准确性与其所学习的数据集的质量有关。
在训练神经网络时,可以采用小波变换来对数据集进行压缩,从而减少神经网络的训练时间和计算量,提高训练效率。
振动信号特征提取及识别随着科技的发展和普及,振动信号成为了现代工业中最为常见的一种信号。
振动信号可以反映机械运行状态,是机械故障诊断、监测和预警的重要依据。
为了正确地识别机械故障,需要对振动信号进行特征提取和识别。
本文将介绍振动信号的特征提取和识别方法。
一、振动信号特征提取振动信号是由机械的磨损、摩擦和冲击等产生的,其包含了丰富的信息。
振动信号的特征提取就是从中提取有意义的特征,以便对机械状态进行分析和诊断。
振动信号的特征通常包括时域特征和频域特征。
1.时域特征时域特征指振动信号在时间范围内的性质,常见的包括均值、方差、峰值、脉冲因数、裕度因子等。
这些特征可以很好的反映机械运行状态的变化。
例如,当轴承受损时,峰值会变小,方差会增大。
2.频域特征频域特征包括频谱分析,频带能量分析,小波分析等。
频谱分析通过对振动信号进行傅里叶变换,得到信号的频谱分布,从而得出不同频段内的幅值和峰值。
频带能量分析则是将频谱分为不同的频带,通过测量每个频带内的能量大小,来反映机械运行状态。
小波分析则是将信号在不同尺度下进行分解,可以提取更为细节的信息。
二、振动信号识别振动信号的识别就是将振动信号的特征和已知故障数据库进行对比,从而推断出机械的运行状态。
振动信号的识别需要依靠先进的算法和技术,下面介绍一些常见的振动信号识别方法。
1.神经网络神经网络是一种模拟人类神经系统的计算模型,可以学习和分类振动信号的特征,适用于大规模的数据处理。
通过训练神经网络,可以实现振动信号的分类和故障诊断。
2.支持向量机支持向量机是一种线性分类器,可以通过构造最优分割超平面,将振动信号进行分类。
其优点是对样本数量不敏感,能够处理高维特征数据。
3.小波神经网络小波神经网络将小波分析和神经网络相结合,可以提取更为细节的振动信号特征,并进行更加精准的故障诊断。
4.模糊神经网络模糊神经网络结合了模糊理论和神经网络,可以处理非线性问题。
模糊神经网络适用于复杂的振动信号分类和故障诊断。
一种深度小波过程神经网络及在时变信号分类中的应用深度小波过程神经网络(Deep wavelet process neural network,DWPN)是一种结合了深度学习和小波变换的新型神经网络模型。
它能够有效地处理信号的时变特性,适用于时变信号分类、预测等任务。
本文将介绍DWPN的结构和工作原理,并探讨其在时变信号分类中的应用。
一、深度小波过程神经网络(DWPN)的结构和工作原理DWPN是一种深度神经网络模型,其核心是小波变换(wavelet transform)和神经网络(neural network)的结合。
小波变换是一种信号处理技术,能够将信号分解为不同频率的子信号,从而实现对信号时频特性的分析。
神经网络是一种模仿人脑神经元网络的计算模型,能够通过学习和训练实现对复杂模式的识别和分类。
DWPN的结构包括多个小波过程层和多个神经网络层,其中小波过程层用于对输入信号进行小波变换和特征提取,神经网络层用于对提取的特征进行分类和预测。
在训练阶段,DWPN通过反向传播算法和梯度下降方法对网络参数进行优化,从而实现对时变信号的分类和预测任务。
二、DWPN在时变信号分类中的应用1. 生物医学信号分类生物医学信号如心电图、脑电图等是一种典型的时变信号,其特征随着时间的变化而变化。
DWPN能够通过学习和训练实现对生物医学信号的自动分类,如心律失常检测、睡眠阶段识别等任务。
2. 金融时间序列预测金融市场的时间序列数据具有复杂的非线性和时变性质,传统的数学模型往往难以准确预测未来的走势。
DWPN能够通过学习历史数据的特征和规律,实现对金融时间序列的预测和分类,如股票价格走势预测、市场波动风险评估等任务。
4. 传感器信号分类传感器网络中产生的信号具有时变的特性,如温度、湿度、压力等信号。
DWPN能够通过学习和训练实现对传感器信号的分类和异常检测,如工业生产过程监测、环境监测等任务。
结语深度小波过程神经网络(DWPN)是一种结合了深度学习和小波变换的新型神经网络模型,能够有效处理信号的时变特性,适用于时变信号分类、预测等任务。
小波网络用于水下目标识别的研究的开题报告一、选题背景及意义水下目标识别是水下机器人、水下测量、水下探测、水下控制等领域中的重要问题。
传统的水下目标识别方法主要采用模式识别和数据分析技术,但是由于水下环境复杂,影响因素多,采集到的数据质量很差,传统的识别方法效果不尽如人意。
近年来,随着小波神经网络技术的发展,逐渐成为了水下目标识别研究的热点之一。
小波神经网络是一种新型的神经网络,是小波变换和神经网络的结合,利用小波多分辨率分析的特性,对输入数据进行多尺度分析,提取数据的局部特征,然后用神经网络进行分类识别,能够有效提高水下目标识别的准确率和可靠性。
因此,探究小波网络用于水下目标识别的研究具有重要的应用价值和深远的意义。
二、研究内容和目标本课题旨在研究小波网络在水下目标识别中的应用,并探究其分类识别性能。
具体研究内容包括:1.对水下目标数据进行采集和处理,获取符合样本特征的数据集。
2.概述小波网络原理及其在水下目标识别中的应用。
3.设计小波神经网络模型,分析反向传播算法,并训练网络模型。
4.对比小波神经网络和其他传统的目标识别方法的性能差异,并分析小波网络在水下目标识别中的适用性。
研究目标是深入探究小波网络在水下目标识别中的优势和局限性,为进一步提高水下目标识别的准确率和可靠性提供参考。
三、研究方法和技术路线本研究将采用以下方法和技术路线:1.对水下目标数据进行采集和处理。
通过利用水下测量、探测等设备获取大量的水下目标数据,进行数据预处理和特征提取,以便满足网络训练的要求。
2. 理解小波神经网络原理及其在水下目标识别中的应用。
通过学习小波变换、多分辨率分析,搭建小波神经网络模型,并运用反向传播算法来训练模型。
3. 对比小波神经网络和其他传统的目标识别方法的性能差异。
通过实验将小波网络和传统的方法进行对比,并分析其性能差异和适用性。
四、预期成果和意义通过本研究,可以得到以下成果和意义:1.对小波网络在水下目标识别中的优势和局限性进行全面深入的探究。
一种深度小波过程神经网络及在时变信号分类中的应用
深度小波过程神经网络是一种基于小波分析和神经网络的深度学习算法,在信号处理、图像识别等领域具有广泛应用。
本文将介绍深度小波过程神经网络的原理以及在时变信号
分类中的应用。
深度小波过程神经网络是将小波分析和神经网络相结合的一种深度学习算法。
小波分
析是一种时频分析方法,可以将信号分解为不同频率的子信号,从而更好地了解信号的特征。
神经网络是一种模拟人脑神经系统的计算模型,可以自动进行特征学习和分类。
深度小波过程神经网络的基本原理是:首先将输入信号进行小波分解,得到不同频率
的子信号;然后将这些子信号和原始信号一起输入到神经网络中进行特征学习和分类。
深
度小波过程神经网络通常采用多层结构,每一层都会对输入信号进行一定的处理和抽象。
在经过多层处理后,网络能够自动地提取信号的高层特征,并进行分类,从而实现对信号
的识别和分类。
时变信号是指随时间而变化的信号,如生物信号、机械振动信号、通信信号等。
由于
时变信号的特征随时间而变化,因此在分类识别上比较困难。
深度小波过程神经网络可以
通过小波分析和神经网络的结合,自动地提取时变信号的高层特征,从而实现对时变信号
的分类。
在实际应用中,深度小波过程神经网络可以用于生物信号分类、机械振动信号故障诊断、通信信号识别等领域。
与传统的分类方法相比,深度小波过程神经网络能够更好地处
理时变信号,提高分类的准确性和效率。