小波神经网络预测的代码1
- 格式:docx
- 大小:16.46 KB
- 文档页数:3
基于小波神经网络的Shibor预测摘要:上海银行间同业拆放利率(Shibor)的推出是中国利率市场化重要的一步。
通过分别建立小波神经网络和回归时间序列组合模型预测2周品种Shibor并作对比分析,结果表明小波神经网络的拟合和预测精度较高,具有一定的科学性和实用性。
关键词:Shibor;小波神经网络;回归时间序列组合;预测一、引言基准利率的形成是利率市场化的重要前提。
以货币市场利率为中介,由市场供求决定金融机构存贷款利率的市场利率体系机制已成为趋势[1],如英国的Libor、美国的联邦基金有效利率和香港的Hibor等。
各国、地区的中央银行通过对基准利率的调控来协调资金供求,实现货币政策目标。
资金在不同金融市场之间流动,影响其流向的一个重要因素是资金成本,而衡量资金成本则需要一个反映市场供求的基准利率[2]。
2007年1月4日上海银行间同业拆放利率(Shanghai Interbank Offered Rate,简称Shibor)的推出正是央行为打造中国金融市场的基准利率而采取的一个重要举措。
目前,国内许多学者展开了对Shibor理论的探讨和研究,大多数从Shibor 的利率市场化及作用进行分析,如姚秦(2007)、刘喜波(2008)、苏昌蕾(2011)等[3-5]。
对于Shibor的预测文献比较少,而且假设的条件、采取的方法以及考虑的变量也不同。
周颖颖等(2009)利用带跳Vasicek单因子利率模型预测3个月的Shibor报价,但其样本量有限,未考虑多因子模型描述Shibor的适用性[6]。
田敏等(2009)应用ARMA模型对1周的Shibor价格进行分析,预测结果与真实值误差偏大[7]。
杨宝臣和苏云鹏(2010)使用Shibor日观测数据对预期理论进行检验,结果发现短端和长端利率分别存在波动趋势和线性漂移趋势,进而得出预期理论对这两类利率分别适用,但是对整体并不适用的结论[7]。
综上,目前针对Shibor的理论研究和实践处于摸索阶段,其走势需要利用模型仿真测试。
本人编辑了一个预测模型的程序,但是matlab老是提示出错,请各位大虾指教:非常感谢!!!>> clear all;%define the input and outputp= [974 874 527;388 466 1764;1316 2439 2251;1836 2410 1860;1557 2301 1578;1490 1877 2749;1513 1278 2026;1070 1561 2794;1347 2415 3306;1324 2746 1233;1383 1463 1847;1282 0 2347];t=[19797;24282;34548];% 创建bp网络和定义训练函数net=newff([388 3306],[15 1],{'tansig' 'purelin'});net.trainparam.goal=50;net.trainparam.epochs=5000;%训练神经网络[net,tr]=train(net,p,t);%输出训练后的权值和阈值iw1=net.IW{1};b1=net.b{1};lw2=net.LW{2};b2=net.b{2};%存储训练好的神经网络save netkohler net??? Error using ==> network.trainInputs are incorrectly sized for network.Matrix must have 1 rows.修改后:>> clear all;%define the input and outputp= [974 874 527;388 466 1764;1316 2439 2251;1836 2410 1860;1557 2301 1578;1490 1877 2749;1513 1278 2026;1070 1561 2794;1347 2415 3306;1324 2746 1233;1383 1463 1847;1282 0 2347];t=[19797;24282;34548];% 创建bp网络和定义训练函数net=newff([388 1836;466 2746;527 3306],[15 1],{'tansig' 'purelin'});net.trainparam.goal=50;net.trainparam.epochs=5000;%训练神经网络[net,tr]=train(net,p,t);%输出训练后的权值和阈值iw1=net.IW{1};b1=net.b{1};lw2=net.LW{2};b2=net.b{2};%存储训练好的神经网络save netkohler net??? Error using ==> network.trainInputs are incorrectly sized for network.Matrix must have 3 rows.clear all;%define the input and outputp= [974 874 527;388 466 1764;1316 2439 2251;1836 2410 1860;1557 2301 1578;1490 1877 2749;1513 1278 2026;1070 1561 2794;1347 2415 3306;1324 2746 1233;1383 1463 1847;1282 0 2347];t=[19797 24282 34548];% 创建bp网络和定义训练函数pr=[527 974;388 1764;1316 2439;1836 2410;1557 2301;1490 2749;%这里是为了方便而建立一个矩阵,注意是12x2,不是3x21278 2026;1070 2794;1347 3306;1233 2746;1383 1847;0 2347]net=newff(pr,[15,1],{'tansig' 'purelin'},'trainlm');%这里要加入输出层的转移函数,一般是trainlm net.trainparam.goal=50;net.trainparam.epochs=5000;%训练神经网络[net,tr]=train(net,p,t);%输出训练后的权值和阈值iw1=net.IW{1};b1=net.b{1};lw2=net.LW{2};b2=net.b{2};%存储训练好的神经网络save netkohler net。
BP神经网络算法代码以下是一个简单实现的BP神经网络算法代码,实现了一个简单的二分类任务。
代码主要分为四个部分:数据准备、网络搭建、训练和预测。
```pythonimport numpy as np#数据准备def prepare_data(:X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) # 输入数据return X, y#网络搭建def build_network(X, y, hidden_dim):input_dim = X.shape[1] # 输入维度output_dim = y.shape[1] # 输出维度#初始化权重和偏置np.random.seed(0)W1 = np.random.randn(input_dim, hidden_dim) /np.sqrt(input_dim)b1 = np.zeros((1, hidden_dim))W2 = np.random.randn(hidden_dim, output_dim) / np.sqrt(hidden_dim)b2 = np.zeros((1, output_dim))return W1, b1, W2, b2#前向传播def forward_propagation(X, W1, b1, W2, b2):z1 = np.dot(X, W1) + b1a1 = sigmoid(z1)z2 = np.dot(a1, W2) + b2a2 = sigmoid(z2)return a1, a2#激活函数def sigmoid(x):return 1 / (1 + np.exp(-x))#反向传播def backward_propagation(X, y, a1, a2, W1, W2): m = X.shape[0] # 样本数量#计算损失loss = np.sum((a2-y)**2) / (2*m)#计算梯度delta2 = 1/m * (a2-y) * a2 * (1-a2)dW2 = np.dot(a1.T, delta2)db2 = np.sum(delta2, axis=0, keepdims=True)delta1 = np.dot(delta2, W2.T) * a1 * (1-a1)dW1 = np.dot(X.T, delta1)db1 = np.sum(delta1, axis=0)return loss, dW1, db1, dW2, db2#更新参数def update_parameters(W1, b1, W2, b2, dW1, db1, dW2, db2, learning_rate):W1 -= learning_rate * dW1b1 -= learning_rate * db1W2 -= learning_rate * dW2b2 -= learning_rate * db2return W1, b1, W2, b2#训练def train(X, y, hidden_dim, num_epochs, learning_rate):W1, b1, W2, b2 = build_network(X, y, hidden_dim)for epoch in range(num_epochs):a1, a2 = forward_propagation(X, W1, b1, W2, b2)loss, dW1, db1, dW2, db2 = backward_propagation(X, y, a1, a2, W1, W2)W1, b1, W2, b2 = update_parameters(W1, b1, W2, b2, dW1, db1, dW2, db2, learning_rate)if (epoch+1) % 100 == 0:print("Epoch {}: loss = {}".format(epoch+1, loss))return W1, b1, W2, b2#预测def predict(X, W1, b1, W2, b2):_, a2 = forward_propagation(X, W1, b1, W2, b2)predictions = (a2 > 0.5).astype(int)return predictions#主函数def main(:X, y = prepare_datahidden_dim = 3num_epochs = 1000learning_rate = 0.1W1, b1, W2, b2 = train(X, y, hidden_dim, num_epochs, learning_rate)predictions = predict(X, W1, b1, W2, b2)print("Predictions:", predictions)if __name__ == "__main__":main```注意:这段代码只是一个简单的实现,可能在复杂任务上效果不佳。
clc;
clear all;
%设定期望的误差最小值
err_goal=0.01;
%设定最大循环次数
max_epoch=50;
%设定修正权值的学习速率0.01-0.7
lr=0.7;
epoch=0;
x=0:0.01:0.3;%输入时间序列
%d=sin(8*pi*x)+sin(4*pi*x)+5*sin(pi*x);%
d=[1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 10 9 8 7];%目标输出序列
M=size(x,2);%输入节点的个数
N=M;%输出节点的个数
n=10;%隐形节点的个数
%这个地方需要改进,由于实际上隐形节点的个数可以通过小波的时频分析确定
Wjk=randn(n,M);
Wij=randn(N,n);
% a=randn(1,n);
a=1:1:n;
b=randn(1,n);
% stepa=0.2*(x(M)-x(1));
% a=stepa:1n-1)+stepa;
% step=(x(M)-x(1))/n;
% b=x(1)+step:step:x(1)+n*step;
% y=zeros(1,N);%输出节点初始化
y=zeros(1,N);%输出节点初始化
net=zeros(1,n);%隐形节点初始化
net_ab=zeros(1,n);%隐形节点初始化
%step2--------对网络进行训练-------------------------------------------
for i=1:1:N
for j=1:1:n
for k=1:1:M
net(j)=net(j)+Wjk(j,k)*x(k);
net_ab(j)=(net(j)-b(j))/a(j);
end
y(i)=y(i)+Wij(i,j)*mymorlet(net_ab(j));
%mymorlet是judyever编写的小波函数,以后可以扩展成输入不同的小波名字即可
% y(i)=mysigmoid(2,y(i));
end
end
% plot(x,d,'r',x,y);
% title('训练前的目标序列和实际输出序列');
err=d-y;
SSE=err*err';
%step3--------调整各个参数-------------------------------------------
while (SSE>err_goal & epoch
d_Wij=zeros(N,n);
d_a=zeros(1,n);
d_b=zeros(1,n);
for i=1:1:N
for j=1:1:n
d_Wij(i,j)=-(d(i)-y(i))*mymorlet(net_ab(j));
%调整d_Wij(i,j)
for k=1:1:M
d_Wjk(j,k)=d_Wjk(j,k)+ (d(i)-y(i)) * Wij(i,j) ;%计算还没有结束
d_Wjk(j,k)=-d_Wjk(j,k)*d_mymorlet(net_ab(j))*x(k)/a(j);%计算结束
end
%调整d_Wjk(j,k)
d_b(j)=d_b(j)+(d(i)-y(i))*Wij(i,j);%计算还没有结束
d_b(j)=d_b(j)*d_mymorlet(net_ab(j))/a(j);%计算结束
%调整d_b(j)
d_a(j)=d_a(j)+(d(i)-y(i))*Wij(i,j);%计算还没有结束
d_a(j)=d_a(j)*d_mymorlet(net_ab(j))*((net(j)-b(j))/b(j))/a(j);%计算结束
%调整d_a(j)
end
end
%step4--------网络重新计算-------------------------------------------
Wij=Wij-lr*d_Wij;
Wjk=Wjk-lr*d_Wjk;
b=b-lr*d_b;
a=a-lr*d_a;
%修正各个权值
y=zeros(1,N);%输出节点初始化
net=zeros(1,n);%隐形节点初始化
net_ab=zeros(1,n);%隐形节点初始化
for i=1:1:N
for j=1:1:n
for k=1:1:M
net(j)=net(j)+Wjk(j,k)*x(k);
net_ab(j)=(net(j)-b(j))/a(j);
end
y(i)=y(i)+Wij(i,j)*mymorlet(net_ab(j));
%mymorlet是judyever编写的小波函数,以后可以扩展成输入不同的小波名字即可
% y(i)=mysigmoid(2,y(i));
end
end
epoch=epoch+1;
err=d-y;
SSE=err*err'/M;
[ epoch SSE]
end
%step5--------输出-------------------------------------------
plot(x,d,'r',x,y,':');
title('训练后的目标序列和实际输出序列');
% gtext({'This is the first line','This is the second line'})
% gtext({'First line','Second line'},'FontName','Times','Fontsize',12)
legend('target output','WNN output',1);