机载数据总线简介共43页
- 格式:ppt
- 大小:6.13 MB
- 文档页数:43
总线技术及CAN总线技术简介【摘要】CAN总线技术是国际上应该最为广泛的现场总线之一。
CAN总线技术最初只是为了解决汽车工业在发展的过程中应用的线束过长,影响汽车内空间的使用率和信息传递的可靠性。
随着CAN总线技术的发展和不断成熟,CAN 总线技术广泛应用到了工业控制的各个角落。
1.现场总线技术简介1.1 什么是现场总线现场总线是20世纪90年代发展形成的,用于过程自动化、制造自动化、楼宇自动化、家庭自动化等领域的现场设备互连的通信网络,是现场通信网络与控制系统的集成。
1.2 现场总线的特点1.2.1 现场总线的结构特点与传统的控制系统在设备之间采用一对一的连线,测量变送器、控制器、执行器、开关、电机之间均为一对一的物理连接,而在现场总线系统中,个现场设备粉笔作为总线上的一个网络节点,设备之间采用网络式连接是现场总线系统在结构上最显著的特征之一。
在两根普通导线制成的双绞线上,挂着几个、十几个自控设备。
总线在传输多个设备的多宗信号,如运行参数、设备状态、故障、调校与维护信息等的同时,还可以为总线上的设备提供直流工作电源。
1.2.2 现场总线的技术特点现场总线是控制系统运行的命脉、通讯的枢纽,因而应关注系统的开放性、互可操作性、通讯的实时性、以及对环境的适应性等问题:(1)系统的开放性系统的开放性体现在通信协议公开,不同制造商提供的设备之间可实现网络互连与信息交换。
这里的开放是指对相关规范的一致与公开,强调对标准的共识与遵从。
一个开放系统,是指它可以与世界上任何一家制造商提供的、遵守相同标准的其他设备或体统相互连接。
用户可以根据自己的需要,把来自不同制造商的商品组合成适合自己控制应用需要的系统。
(2)互可操作性互可操作性,是指网络中互连的设备之间可实现数据信息传送与交换。
也意味着,对不同生产厂家的性能类似的设备可以相互交替换。
(3)通讯的实时性与确定性现场总线系统的基本任务是实现测量和控制,而有些测控任务是有严格的时序和实时性要求的,达不到这个要求或因时间同步问题影响了网络节点间的动作时序,有时会造成灾难性的后果,这就要求现场总线系统能提供相应的通信机制,提供时间发布于时间管理功能,满足控制系统的实时性要求。
军用总线控制技术简介作者:陈峰付国忠姚兆来源:《武汉科技报·科教论坛》2013年第11期【摘要】本文主要介绍了不同军用数据控制技术的特点、改进及其发展用途。
【关键词】军用航空数据;高速数据总线;光纤通道一、 MIL-STD-155320世纪70年代,美国军方制定了军用航空数据总线标准— MIL-STD-1553。
该总线为指令/响应时分多路数据总线,采用冗余的总线型拓扑结构,利用屏蔽双绞线或同轴电缆作为传输介质,传输数据率可达1Mb/s。
其主要功能是为所有连接到总线上的航空电子系统提供综合化、集中式的系统控制接口。
这种总线技术首先运用于美国空军F-16战斗机。
MIL-STD-1553总线技术共有2个版本:1553A和1553B。
二、MIL-STD-17731988年,美国国防部发布了新的军用标准 MIL-STD-1773,这个标准是对 MIL-STD-1553标准在传输介质上的一个改进,利用光纤传输介质来取代屏蔽双绞线以及电缆,其他的高层协议与 MIL-STD-1553B相同。
MIL-STD-1773数据总线在20世纪90年代已被美国国家航空,宇宙航行局和海军所使用,F-18战斗机就是使用这一标准的试验机型。
与此同时,英国也在研究基于光纤的数据传输总线技术,“山猫”直升机(Lynxhelicopter)就是利用光纤作为其传输介质的机型。
当前, MIL-STD-1773已发展到了双速率、高速度的阶段,波音公司已制造出基于MIL-STD-1773标准的双速率的收发器,具有1Mb/s和20Mb/s两种速率,1Mb/s主要用于MIL-STD-1553总线的使用,而20Mb/s主要用于高速数据传输。
三、STANAG3910STANAG3910也是一种指令/响应协议,采用双速率传输总线结构。
高速通道具有20Mb/s 的传输速率,以满足现今绝大多数战机航电子系统之间高速通信的要求,而低速率的MIL-STD-1553B通道主要控制高速通道的通信。
FC总线技术简介(一)在前面的介绍中,我们介绍了航空航天数据总线技术,并认为FC总线技术由于具备高速率的数据传输特性、较高可靠性、可扩展性强等特点被认为是未来航空总线发展的主要数据总线之一。
因此,在接下来的几期文章中,我们将从光纤通道技术、FC-AE系列标准、FC-AE-1553及FC标准簇等方面进行详细介绍。
在本期中,我们将对光纤通道的相关技术进行介绍,包括分层结构、拓扑结构、端口类型、服务类型及端口单元等方面。
1.光纤通道简介光纤通道航空环境(FC-AE:Fiber Channel Avionics Environment)是光纤通道(Fiber Channel)标准开发组织制定的一簇协议族,用于详细定义可用于光纤通道航空电子环境上的(包含军事以及商业应用)专用系统。
该协议将快速可靠的通道技术和灵活的、可扩展的网络技术有机融合在一起。
FC 协议发展至今,已经能够支持很多上层协议和指令集,例如:MIL-STD-1553B、IP、ATM 等协议以及 HIPPI、IPI、SCSI等指令集,支持光纤和铜缆等多种物理介质。
FC 协议能够很好地实现全双工、半双工和单工的通信模式。
光纤通道的基本特点如下:高带宽、多媒介、长距离传输:串行传输速率已由最初的1Gbps 提高到4Gbps ,并且正在向更高速率、更大数据吞吐量发展,适用于不同模块间大规模应用数据(如音频、视频数据流)交换;以光纤、铜缆或屏蔽双绞线为传输介质,低成本的铜缆传输距离为25m,多模光纤传输距离为0.5km,单模光纤传输距离为10km;∙∙可靠性与实时性:多种错误处理策略,32位CRC 校验,利用优先级不同适应不同报文要求,并解决媒介访问控制时的冲突,传输误码率低于10-12,端到端的传输延迟小于10us,支持非应答方式与传感器数据传输;∙∙统一性与可扩展性:可以方便的增加和减少节点以满足不同应用需求,拓扑结构灵活,支持多层次系统互连,利用高层协议映射提高兼容和适应能力。
===================================当前所看到的1553B板卡,ddc的和国内一些厂家的都以总线式PCI PC104等的板卡为主,然后可能会提供相关的驱动程序包。
所以会便于开发。
一、1553B总线简介1553B总线是MIL-STD-1553总线的简称,其中B就是BUS,MIL-STD-1553总线是飞机内部时分制命令/响应式多路复用数据总线。
1553B数据总线标准是20世纪70年代由美国公布的一种串行多路数据总线标准。
1553B总线能挂31个远置终端,1553B总线采用指令/响应型通信协议,它有三种终端类型:总线控制器(BC)、远程终端(R T)和总线监视器(BM);信息格式有BC到R T、R T到BC、R T到R T、广播方式和系统控制方式;传输媒介为屏蔽双绞线,1553B总线耦合方式有直接耦合和变压器耦合;1553B总线为多冗余度总线型拓扑结构,具有双向传输特性,其传输速度为1Mbps传输方式为半双工方式,采用曼彻斯特码进行编码传输。
采用这种编码方式是因为适用于变压器耦合,由于直接耦合不利于终端故障隔离,会因为一个终端故障而造成整个总线网络的完全瘫痪,所以其协议中明确指出不推荐使用直接耦合方式。
在20世纪60年代以前,飞机机载电子系统没有标准的通用数据通道,各个电子设备单元之间连接往往需要大量的电缆。
随着机载电子系统的不断复杂化,这种通信方式所用的电缆将会占用很大的空间和重量,而且对传输线的定义和测试也较为复杂,费用较高。
为了解决这一问题,美国SA E A2K委员会在军方和工业界的支持下于1968年决定开发标准的信号多路传输系统,并于1973年公布了MIL-STD-1553标准。
1973年的1553B多路传输数据总线成为了未来军机将采用的技术,它取代了在传感器、计算机、指示器和其他飞机设备间传递数据的庞大设备,大大减少了飞机重量,并且使用简单、灵活,此标准的修订本于1978年公布,即MIL-STD-1553标准。
1553B航电总线在航空通信中的应用摘要:MIL-STD-1553B总线以其传输的高可靠性、稳定性、使用简单灵活的特点,逐步从飞行控制系统,扩展到航空通信的应用。
本文通过对军用航空总线标准MIL-STD-1553B总线的硬件结构和原理,对传输协议中的字类型、通信传输格式、帧结构做了全面的介绍和剖析;并介绍了其在航空通信中的应用。
关键词:1553B总线;航空通信;协议1.引言1553B总线标准全称MIL-STD-1553B,它始于1968年初,1978年9月21日,在获得正式的书面批准后,作为美国官方的文件公布发表。
它取代了在传感器、计算机、指示器和其他飞机设备间传递数据的庞大设备,大大减少了飞机重量,并且使用简单、灵活。
航空机载数据总线本质上,是一种实时网络互连的系统工程;通过数据总线将飞机上各计算机构成信息网络,实现信息的有效传输、共享,实现座舱的综合信息显示和控制,从而有效形成综合化的航空电子系统。
2.1553B总线简介1553B总线由美国自动化工程师协会于1978年发布,全称为飞机内部时分制指令/响应型多路传输数据总线,我国与之对应的标准是GJB289A-97。
该总线采用冗余的总线型拓扑结构,传输数据率为1Mb/s。
1553B数据总线上节点分为不同的终端类型:包括总线控制器(BC)、远程终端(RT)和总线监控器(MT)。
BC是在总线上唯一被安排为执行建立和启动数据传输任务的终端,在同一时刻,总线上只允许一个BC存在;RT是用户子系统到数据总线上的接口,它在BC的控制下发送数据或接收数据;MT监控总线上的信息传输,以完成对总线上的数据源进行记录和分析,但它本身不参与总线的通信。
3.1553B总线通信系统的组成1553B总线通信系统一般由若干个子系统通过嵌入式总线接口并经过总线介质互联而成,各个子系统之间操作独立,资源和功能则可以通过网络共享。
图1 1553B总线通信系统的组成1)网络的消息传输由BC得总线表统一控制,严格定义了全网络中每条消息的长度,以及发送和接收的顺序、过程;2)传输方式为半双工方式,一个终端不能实现同时接收与发送数据;3)总线可挂接32个终端,各终端之间信息传输方式有:BC到RT,RT到BC,RT到RT,广播方式和系统控制方式;4)在1553B总线上可以有一个总线监视器,它不响应总线控制器的任何命令,用于监视总线数据及提取数据以便以后的数据分析;5)总线上的信息流由3种类型的字消息组成:命令字、数据字(最长为32字节)和状态字,并有同步位和校验位;6)采用双冗余工作方式,第二条属于备份,即当前路径不通过才启用第二条;7)1553B数据总线传输速率为1Mbit/s,标准规定了2中耦合方式:直接耦合方式和变压器耦合方式。
AFDX与1553B、ARINC429的区别AFDX与1553B、ARINC429的区别ARINC429和1553B两种实用化机载总线都经过了多年的实际应用,其优点也是毋庸置疑的。
但是,它们同时也存在不同程度的缺点。
MIL-STD-1553B总线的主要缺点是采用了总线控制器,整个总线系统的通信是在总线控制器的指挥下完成的,这给总线带来潜在的单点故障可能性。
一旦总线控制器失效,将造成整个总线系统的瘫痪。
虽然可以增加一个备用总线控制器来提高总线的可靠性,但这样就大大增加了系统软硬件的复杂程度。
同时1553 B总线虽然提高了综合化程度,但是单条1553B总线的节点数目不能超过31个,集中式的总线调度限制了系统升级和适应多任务的灵活性。
ARINC429总线虽然没有总线控制器,但是为了使消息在总线上有序地传输而不发生碰撞,付出的代价是只能使一个信源连接一条ARINC429总线。
这必然大大增加电缆重量和连接器的数量,给航空电子系统进行大规模综合化带来不可逾越的障碍。
AFDX的传输速度可以达到100Mbit/s甚至更高,传输介质为铜制电缆或光纤。
AFDX 中没有总线控制器,不存在1553B中的集中控制问题。
同时,AFDX采用接入交换和骨干交换拓扑结构,使它的覆盖范围和可以支持的节点数目远远超过了1553B总线。
在ARINC429中,一个发送机可以连接20个接收机。
而在AFDX中,发送机连接的接收机的数量仅由交换机端口的数目来限制。
同样,通过交换机的串连,可以很容易地将接收机的数量增加到需要的数目。
另外,根据ARINC 664 part7 “确定型网络”草案的规定,AF DX采用虚拟链路(virtual link, VL)技术替代数目众多的ARINC 429单向传输总线,大大减少了电缆的重量和连接器的数量,使航空电子系统可以进行大规模的综合。
几种总线性能指标对比见表1。
目前机载总线主要有ARINC429、1553B、AFDX、商用以太网和FC等。