海洋平台概述
- 格式:ppt
- 大小:8.17 MB
- 文档页数:32
全球海洋平台及中国自升式平台概述0842813409 曹剑锋今年1-10月,航运业持续低迷,BDI指数仍在低处徘徊,许多中小型船厂面临破产风险,大型船厂纷纷转向海工市场,今天就来说说海工装备的重头戏——钻井平台。
一、全球海洋钻井平台市场发展迅速过去几十年,石油工业从浅海到深海再到超深海不断扩张。
海洋油气总产量占全球油气总产量的比例已从1997年的20%上升到目前的40%以上,其中深海油气产量约占海洋油气产量的30%以上。
在世界已发现的油气可采储量中,海洋油气约占41%。
一些海域尤其是深海和北极地区的勘探程度还很低,因此海洋油气资源的潜力仍然很大。
海洋油气的产量和储量一直保持较快增长,也带动了海洋钻井平台市场的发展。
上世纪四十年代驳船首次用于近海勘探钻井,1956年出现了钻井船,1961年半潜式钻井平台问世。
目前海洋钻井平台大致可以分为8类,即钻井驳船、钻井船、内陆驳、自升式钻井平台、平台钻机、半潜式钻井平台、座底式平台和钻井模块。
根据RIGZONE网站统计,截至2009年9月,全球海洋钻井平台总数(包括商用平台和非商用平台)达到1249部。
海洋钻井平台的作业能力也发展迅速,目前深水钻井平台的最大作业水深已经达到3600米(12000英尺),最大钻井深度达到11800米(39000英尺)。
例如,Noble公司新建的半潜式平台Danny Adkins和Frontier Drilling公司的Bully Ⅰ和Bully Ⅱ钻井船等都达到了这种能力。
随着作业水深能力的不断进步,深水的定义也在不断扩大。
1998年以前,水深大于200米就认为是深海,1998年以后深水定义扩大到300米,而现在国际上认为水深大于1350米(4500英尺)才为深水。
目前,全球共有约143家公司从事海上钻井,其中海上钻井承包商大约90家,其余为综合性石油公司。
钻井承包商中拥有5部钻井平台以上的约50家,拥有作业水深能力超过600米的钻井平台承包商43家;另外一些综合性公司以及巴西、印度、俄罗斯等国家石油公司也拥有相当数量的海洋钻井平台,但几乎不参与市场竞争。
海洋工程行业海洋平台设计与建造方案第一章海洋平台设计概述 (3)1.1 海洋平台设计的基本原则 (3)1.2 海洋平台设计的主要流程 (3)1.3 海洋平台设计的关键技术 (4)第二章海洋平台总体设计 (4)2.1 海洋平台总体设计要求 (4)2.1.1 设计原则 (4)2.1.2 设计依据 (5)2.2 海洋平台总体设计方案 (5)2.2.1 平台结构类型 (5)2.2.2 设计参数 (5)2.2.3 功能区划分 (5)2.2.4 设备选型与布局 (5)2.3 海洋平台总体设计优化 (5)2.3.1 结构优化 (5)2.3.2 设备优化 (5)2.3.3 生产流程优化 (6)第三章海洋平台结构设计 (6)3.1 海洋平台结构设计原则 (6)3.2 海洋平台结构设计方法 (6)3.3 海洋平台结构设计分析 (6)第四章海洋平台基础设计 (7)4.1 海洋平台基础设计要求 (7)4.2 海洋平台基础设计方案 (7)4.3 海洋平台基础设计分析 (8)第五章海洋平台设备设计 (8)5.1 海洋平台设备设计原则 (8)5.2 海洋平台设备选型与配置 (9)5.2.1 设备选型 (9)5.2.2 设备配置 (9)5.3 海洋平台设备设计优化 (9)5.3.1 设备布局优化 (9)5.3.2 设备功能优化 (9)5.3.3 设备成本优化 (9)5.3.4 设备可靠性优化 (9)第六章海洋平台建造技术 (10)6.1 海洋平台建造技术概述 (10)6.2 海洋平台建造工艺 (10)6.2.1 前期准备 (10)6.2.2 建造过程 (10)6.2.3 后期维护 (10)6.3 海洋平台建造质量控制 (11)6.3.1 设计质量控制 (11)6.3.2 施工质量控制 (11)6.3.3 质量验收 (11)第七章海洋平台材料选择与应用 (11)7.1 海洋平台材料选择原则 (11)7.1.1 耐腐蚀性原则 (11)7.1.2 高强度原则 (11)7.1.3 耐久性原则 (11)7.1.4 经济性原则 (12)7.2 海洋平台常用材料介绍 (12)7.2.1 钢材 (12)7.2.2 铝合金 (12)7.2.3 玻璃钢 (12)7.2.4 橡胶 (12)7.3 海洋平台材料应用分析 (12)7.3.1 钢材在海洋平台中的应用 (12)7.3.2 铝合金在海洋平台中的应用 (12)7.3.3 玻璃钢在海洋平台中的应用 (12)7.3.4 橡胶在海洋平台中的应用 (12)第八章海洋平台环境与安全评估 (13)8.1 海洋平台环境评估方法 (13)8.2 海洋平台安全评估指标 (13)8.3 海洋平台环境与安全评估实践 (13)第九章海洋平台项目管理与实施 (14)9.1 海洋平台项目管理概述 (14)9.1.1 项目管理的定义与意义 (14)9.1.2 海洋平台项目管理的任务与目标 (14)9.1.3 海洋平台项目管理的组织结构 (14)9.2 海洋平台项目进度控制 (14)9.2.1 进度控制的重要性 (14)9.2.2 进度计划编制 (14)9.2.3 进度控制方法 (15)9.2.4 进度调整与优化 (15)9.3 海洋平台项目成本控制 (15)9.3.1 成本控制的重要性 (15)9.3.2 成本估算与预算 (15)9.3.3 成本控制方法 (15)9.3.4 成本控制措施 (15)第十章海洋平台设计建造案例分析与启示 (15)10.1 典型海洋平台设计建造案例分析 (15)10.1.1 案例一:我国南海某深水油气平台设计建造 (15)10.1.2 案例二:某国际大型海洋工程公司设计建造的FPSO(浮式生产储卸油装置)1610.2 海洋平台设计建造成功经验总结 (16)10.2.1 创新技术在海洋平台设计建造中的应用 (16)10.2.2 完善的工程管理体系的建立 (16)10.2.3 国际合作与交流的深化 (16)10.3 海洋平台设计建造发展趋势与展望 (16)10.3.1 绿色环保成为设计建造的重要方向 (16)10.3.2 深水油气资源开发成为新的增长点 (16)10.3.3 数字化、智能化技术助力海洋平台设计建造 (17)第一章海洋平台设计概述1.1 海洋平台设计的基本原则海洋平台设计作为海洋工程行业的重要组成部分,其基本原则主要包括以下几点:(1)安全性原则:保证海洋平台在各种工况下具有良好的稳定性、强度和耐久性,以抵御海洋环境中的各种风险因素,如风、浪、流、冰等。
海洋平台发展与展望海洋,覆盖了地球表面约 71%的面积,蕴含着丰富的资源和巨大的能量。
为了探索和利用这片广阔的领域,人类不断创新和发展海洋平台技术。
海洋平台作为在海洋中进行各类作业的重要基础设施,其发展历程见证了人类对海洋认知和掌控能力的逐步提升。
早期的海洋平台主要是固定式的,它们建在浅海区域,结构相对简单。
随着技术的进步,海洋平台的类型逐渐多样化,从固定式发展到了半固定式和移动式。
固定式平台通常由钢质导管架和上部模块组成,通过打入海底的桩腿来支撑整个结构的重量。
这种平台适用于较浅的海域,建设成本相对较低,但一旦建成,位置就很难改变。
半固定式平台则结合了固定式和移动式平台的特点,常见的有张力腿平台和立柱式平台。
张力腿平台通过张力腿将平台固定在海底,能够适应一定的水深和海洋环境变化;立柱式平台则依靠巨大的立柱和浮筒来保持稳定。
移动式平台具有更强的灵活性,包括自升式平台、半潜式平台和钻井船等。
自升式平台通过桩腿升降来实现工作和移动状态的切换,适合在不同的浅海区域作业。
半潜式平台可以通过调整压载水舱的水量来改变吃水深度和浮态,在深海作业中表现出色。
钻井船则是专门用于钻井作业的移动平台,能够快速移动到指定地点进行钻探。
海洋平台的发展不仅体现在类型的多样化上,其功能也越来越丰富。
从最初的石油和天然气开采,逐渐扩展到了海洋风力发电、海洋渔业养殖、海洋科学研究等多个领域。
在石油和天然气开采方面,海洋平台的技术进步使得深海油气资源的开发成为可能。
先进的钻井技术、水下生产系统和油气输送设施,大大提高了油气的产量和采收率。
海洋风力发电平台是近年来发展迅速的领域之一。
与陆地风力发电相比,海洋风力更加稳定且强劲,但建设和维护成本也更高。
为了提高发电效率和降低成本,海洋风力发电平台的设计和技术不断创新,从单桩基础到导管架基础,再到浮式基础,为大规模开发海洋风能提供了有力支持。
海洋渔业养殖平台的出现为解决全球渔业资源短缺问题提供了新的途径。
海洋平台基础知识系列 0. 海洋工程是什么?(名词解释) Ocean engineering 海洋工程,从地理的角度来说,可分为海岸工程、近岸工程(又称离岸工程)和深海工程三大类。
一般来说,位于波浪破碎带一线的工程,为海岸工程;位于大陆架范围内的工程,为近岸工程;位于大陆架以外的工程,为深海工程,但是在通常情况下,这三者之间又有所重叠。
从结构角度来说,海洋工程又可分为固定式建筑物和系留式设施两大类。
固定式建筑物是用桩或者是靠自身重量固定在海底,或是直接坐落在海底;系留式设施是用锚和索链将浮式结构系留在海面上。
它们有的露出水面,有的半露在水中,有的置于海底,还有一种水面移动式结构装置或是大型平台,可以随着作业的需要在海面上自由移动。
海洋工程是指以开发、利用、保护、恢复海洋资源为目的,并且工程主体位于海岸线向海一侧的新建、改建、扩建工程。
具体包括:围填海、海上堤坝工程,人工岛、海上和海底物资储藏设施、跨海桥梁、海底隧道工程,海底管道、海底电(光)缆工程,海洋矿产资源勘探开发及其附属工程,海上潮汐电站、波浪电站、温差电站等海洋能源开发利用工程,大型海水养殖场、人工鱼礁工程,盐田、海水淡化等海水综合利用工程,海上娱乐及运动、景观开发工程,以及国家海洋主管部门会同国务院环境保护主管部门规定的其他海洋工程。
1: 海洋平台的类型: 海洋平台:(1)移动式平台: 坐底式平台 自升式平台 钻井船 半潜式平台 张力腿式平台 牵索塔式平台 (2)固定式平台:导管架式平台 重力式平台固定平台又可以分为桩式海上固定平台、重力式海上固定平台、自升式海上固定平台 导管架型平台:在软土地基上应用较多的一种桩基平台。
由上部结构(即平台甲板)和基础结构组成。
上部结构一般由上下层平台甲板和层间桁架或立柱构成。
甲板上布置成套钻采装置及辅助工具、动力装置、泥浆循环净化设备、人员的工作、生活设施和直升飞机升降台等。
平台甲板的尺寸由使用工艺确定。
海洋平台的结构强度与稳定性分析海洋平台是一种在海洋中建造的人工平台,用于开展海上石油钻探、海洋科学研究、风电场建设等活动。
在海洋环境中,海洋平台的结构强度和稳定性是非常重要的,对于保证平台运行的安全性和可靠性至关重要。
本文将对海洋平台的结构强度和稳定性进行分析,并提出相应的解决方案。
一、结构强度分析1. 荷载计算海洋平台的结构强度受到多种荷载的影响,包括自重、风载、浪载、冲击载荷等。
在设计海洋平台时,需要根据平台的用途和运行环境合理计算各个荷载的大小,并采取适当的安全系数进行荷载设计。
2. 结构材料选择海洋平台的结构强度与所采用的材料有密切关系。
传统上,海洋平台的结构多采用钢结构,但随着高性能材料的发展,复合材料也逐渐应用于海洋平台的建造中。
选择合适的结构材料可以提高海洋平台的强度和耐久性。
3. 结构设计在海洋平台的结构设计中,需要考虑平台的稳定性和结构的强度。
采用合理的结构形式和连接方式,合理布置支撑结构和刚性连接,可以提高平台的整体结构强度。
二、稳定性分析1. 海底基础设计海洋平台的稳定性受到其海底基础的影响。
根据海洋平台的类型和运行环境,可以选择适合的基础形式,如桩基、板基等。
通过合理设计基础的形状和尺寸,保证海洋平台的稳定性。
2. 平台动力响应分析海洋平台在海洋环境中受到风力、波浪等外部荷载的作用,产生动态响应。
通过对平台的动力响应进行分析,可以评估平台的稳定性,并设计相应的减振措施,如增设阻尼器、减小平台的共振频率等。
3. 风、浪和冲击力分析在海洋平台的稳定性分析中,需要对海洋环境中的风、浪和冲击力进行综合分析。
通过采用海洋气象数据和水动力学模型,可以计算风、浪和冲击力的大小和作用方向,从而评估平台的稳定性。
总结:海洋平台的结构强度与稳定性分析对于确保平台的安全性和可靠性至关重要。
在设计过程中,需要合理计算各个荷载的大小,选择适当的结构材料,设计合理的结构形式和连接方式。
同时,进行稳定性分析包括海底基础设计、平台动力响应分析以及风、浪和冲击力分析等,保证平台在海洋环境中稳定运行。
国际浮式生产储油卸油船(FPSO)发展态势:FPSO(Floating Production Storage and Offloading)浮式生产储油卸油船,它兼有生产、储油和卸油功能,油气生产装置系统复杂程度和价格远远高出同吨位油船,FPSO装置作为海洋油气开发系统的组成部分,一般与水下采油装置和穿梭油船组成一套完整的生产系统,是目前海洋工程船舶中的高技术产品。
韩国船企对FPSO建造具有较强规模效应。
如现代重工专门建有FPSO海洋项目生产厂,已交付了6艘大型FPSO;三星重工手中持有5艘大型FPSO订单;大宇造船海洋工程公司则是全球造船企业中建造海上油气勘探船最多的企业,2005年承接海洋项目设备订单计划指标是17亿美元。
据海事研究机构(DW)预计,未来5年内FPSO新增需求将会达到84座,投资额约为210亿美元。
FPSO主要技术结构表: FPSO主要技术结构FPSO主要结构功能系泊系统:主要将FPSO系泊于作业油田。
FPSO在海域作业时系泊系统多采用一个或多个锚点、一根或多根立管、一个浮式或固定式浮筒、一座转塔或骨架。
FPSO系泊方式有永久系泊和可解脱式系泊两种;船体部分:既可以按特定要求新建,也可以用油轮或驳船改装;生产设备:主要是采油和储油设备,以及油、气、水分离设备等;卸载系统:包括卷缆绞车、软管卷车等,用于连接和固定穿梭油轮,并将FPSO储存的原油卸入穿梭油轮。
其作业原理是通过海底输油管线把从海底开采出的原油传输到FPSO的船上进行处理,然后将处理后的原油储存在货油舱内,最后通过卸载系统输往穿梭油轮。
配套系统:在FPSO系统配置上,外输系统是其关键的配套系统。
FPSO主要优点随着海洋油气开发、生产向深海不断进入,FPSO与其它海洋钻井平台相比,优势明显,主要表现在以下四个方面:(1)生产系统投产快,投资低,若采用油船改装成FPSO,优势更为显著。
而且目前很容易找到船龄不高,工况适宜的大型油船。
1)海洋平台按运动方式分为哪几类?列举各类型平台的代表平台?固定式平台:重力式平台、导管架平台(桩基式);活动式平台:着底式平台(坐底式平台、自升式平台)、漂浮式平台(半潜式平台、钻井船、FPSO);半固定式平台:牵索塔式平台(Spar):张力腿式平台(TLP)2)海洋平台有哪几种类型?各有哪些优缺点?固定式平台。
优点:整体稳定性好,刚度较大,受季节和气候的影响较小,抗风暴的能力强。
缺点:机动性能差,较难移位重复使用活动式平台。
优点:机动性能好。
缺点:整体稳定性较差,对地基及环境条件有要求半固定式平台。
优点:适应水深大,优势明显。
缺点:较多技术问题有待解决3)导管架的设计参数有哪些?(P47)1、平台使用参数;2、施工参数;3、环境参数:a、工作环境参数:是指平台在施工和使用期间经常出现的环境参数,以保证平台能正常施工和生产作业为标准;b、极端环境参数:指平台在使用年限内,极少出现的恶劣环境参数,以保证平台能正常施工和生产作业为标准4、海底地质参数4)导管架平台的主要轮廓尺寸有哪些?(P54)1、上部结构轮廓尺度确定:a、甲板面积;b、甲板高程2、支承结构轮廓尺度确定:a、导管架的顶高程;b、导管架的底高程;c、导管架的层间高程;d、导管架腿柱的倾斜度(海上导管架四角腿柱采用的典型斜度1:8);e、水面附近的构件尺度;f、桩尖支承高程5)桩基是如何分类的?主桩式:所有的桩均由主腿内打出;群桩式:在导管架底部四周均布桩柱或在其四角主腿下方设桩柱6)受压桩的轴向承载力计算方法有哪些?(P93)1、现场试桩法:数据可靠,费用高,深水实施困难;2、静力公式法:半经验方法,试验资料+经验公式,考虑桩和土塞重及浮力,简单实用;3、动力公式法:能量守恒原理和牛顿撞击定理,不能单独使用;4、地区性的半经验公式法:地基状况差别,经验总结。
7)简述海洋平台管节点的设计要求?(P207)1、管节点的设计应降低对延展性的约束,避免焊缝立体交叉和焊缝过度集中,焊缝的布置应尽可能对称于构件中心轴线;2、设计中应尽量减少由于焊缝和邻近母材冷却收缩而产生的应力。
海洋平台设施对当地社区与人类社会的影响海洋平台设施是指在海洋中建造的供人类活动使用的设施,例如海洋油井、海洋风力发电站、海洋渔场等。
这些设施的建设和运营对当地社区和人类社会产生广泛而深远的影响。
本文将从经济、环境、社会和文化方面探讨海洋平台设施对当地社区与人类社会的影响。
首先,海洋平台设施的建设和运营对当地社区的经济带来积极的影响。
海洋平台设施的建设需要大量的劳动力和资金投入,这促进了当地就业机会的增加和经济的发展。
其中,建设阶段将吸引各类专业人才参与,提供工作机会,而设施投入使用后,维护、运营和管理所需的工作也将创造更多的就业机会。
此外,海洋平台设施的运营还将带动相关产业链的发展,例如油气开采将带动石化行业和供应链的发展,渔场的建设将带动渔业加工和相关服务业的兴起。
这些经济活动的发展将增加当地社区的收入和税收,提高居民的生活水平,改善基础设施的建设和社会福利的提供。
然而,海洋平台设施的建设和运营也会对当地社区的环境带来一定的影响。
一方面,海洋平台设施的建设需要占用一定面积的海洋空间,可能会对海洋生态系统造成一定程度的影响。
例如,油井开采过程中产生的废水和废气可能会对周围海域的水质和生物多样性造成污染和破坏。
另一方面,海洋平台设施的运营中,比如石油勘探和开采,也存在安全风险,一旦发生事故可能会对海洋环境造成严重的损害。
因此,在建设和运营过程中,需要加强环境保护意识,采取科学的监测和管理措施,以确保对海洋环境的影响最小化。
海洋平台设施对当地社区的社会结构和文化传统也会产生一定的影响。
首先,这些设施往往需要大量的工作人员,这些来自不同地区和不同文化背景的人们在建设和运营过程中相互交流和融合,推动了社会文化间的交流和共享。
其次,这些设施也会带来移民潮,吸引了大量的外来务工人员前往当地社区,这可能改变当地的人口结构和社会面貌,对社区的社会秩序和文化传统带来一定的冲击和调整。
为了更好地融入当地社区,海洋平台设施的运营方和当地政府应加强对外来人口的管理和服务,促进社区的和谐与稳定。
海洋平台设施在海事领域中的应用近年来,随着科技的快速发展和海洋资源的日益紧缺,海洋平台设施在海事领域中的应用越发重要。
海洋平台设施是指在海洋上建设的各种设施和基础设施,包括海洋观测站、钻井平台、海底管道、风力发电设施等。
这些设施不仅改善了海上工作环境,提升了工作效率,还促进了海洋资源的开发利用。
以下将详细介绍海洋平台设施在海事领域中的应用。
首先,海洋观测站是海洋平台设施的一种重要形式。
海洋观测站通常位于近海或远海上,用于监测和研究海洋环境和气候变化。
它们配备有各种先进的观测和传感器设备,能够实时收集海洋水温、盐度、气象、海洋生态等数据。
这些数据对于海洋环境的保护、气候变化的研究以及海洋资源的合理开发具有重要意义。
海洋观测站还可以提供海洋灾害预警,及时发现并警告海啸、台风等海洋灾害,保障人们的生命财产安全。
其次,钻井平台是海洋平台设施中的另一类重要设施。
钻井平台主要用于在海洋底部进行石油和天然气的勘探和开采。
由于陆地资源的枯竭和深海石油储备的增加,海洋钻井平台的需求越来越大。
海洋钻井平台不仅能够提供稳定的工作平台,减少了陆地资源的压力,还能够将深水、超深水油气资源纳入开发范围,为能源领域的持续发展做出贡献。
另外,海底管道也是海洋平台设施中的重要组成部分。
海底管道主要用于输送石油和天然气等能源资源,连接陆地和海洋油气田之间的输送通道。
海底管道的建设使得远海油气田的开发成为可能,提供了稳定的能源供应。
同时,海底管道还可以实现海洋生态的保护,防止海上工业活动对海洋环境造成破坏。
海底管道的应用不仅提高了能源供应的稳定性,还促进了环境保护和可持续发展。
最后,风力发电设施也是海洋平台设施中的一个突出应用。
随着对清洁能源需求的增加,风力发电成为了一个重要的能源选择。
海洋平台提供了一个理想的风力发电场所,因为海上的风能资源相对于陆地来说更为丰富和稳定。
通过在海洋上建设风力发电设施,不仅可以减少对传统能源的依赖,还可以减少温室气体的排放,保护环境和气候。
《海岸工程学》课程结业论文——海洋平台结构型式发展过程及导管架平台设计需要计算的内容一、海洋平台结构的分类海洋平台是一种海洋工程结构物, 它为开发和利用海洋资源提供了海上作业与生活的场所。
随着海洋开发事业的迅速发展, 海洋平台得到了广泛的应用, 如海底石油和天然气的勘探与开发、海底管线铺设、海洋波浪能的利用、建造海上机场及海上工厂等。
目前应用海洋平台最为广泛的领域当属海上油气资源的勘探与开发。
用于海上油气资源勘探与开发的海洋平台按功能划分主要分为钻井平台和生产平台两大类, 在钻井平台上设有钻井设备, 在生产平台上则设有采油设备。
若按结构型式及其特点来划分, 海洋平台大致可分为三大类固定式平台、移动式平台和顺应式平台。
1.固定式平台固定式平台靠打桩或自身重量固定于海底, 目前用于海上石油生产阶段的大多数是固定式平台, 它又可分为桩式平台和重力式平台两个类别。
桩式平台通过打桩的方法固定于海底, 其中的钢质导管架平台是目前海上使用最广泛的一种平台;而重力式平台则是依靠自身重量直接置于海底, 这种平台的底部通常是一个巨大的混凝土基础沉箱, 由三个或四个空心的混凝土立柱支撑着甲板结构。
2.移动式平台移动式平台是一种装备有钻井设备, 并能从一个井位移到另一个井位的平台, 它可用于海上石油的钻探或生产。
移动式平台可分为坐底式平台、自升或平台、钻井船和半潜式平台四个类别。
坐底式平台一般用于水深较浅的海域, 工作水深通常在60米以内;自升式平台具有能垂直升降的桩腿, 钻井时桩腿着底, 平台则沿桩腿升离海面一定高度, 移位时平台降至水面, 桩腿升起, 平台就像驳船可由拖轮把它拖移到新的井位。
自升式平台的优点主要是所需钢材少, 造价低, 在各种情况下都能平稳地进行钻井作业, 缺点是桩腿长度有限, 使它的工作水深受到限制, 最大的工作水深约在120米左右;钻井船是在船中央设有井孔和井架, 它靠锚泊系统或动力定位装置定位于井位上。
第五章半潜式海洋钻井平台第一节半潜式钻井平台简介一、半潜式平台应用背景辽阔的海洋蕴藏着丰富的资源,其中油气资源的开发是海洋资源开发的重要组成部分。
海洋的平均水深为3730米,其中90%以上海洋面积的水深在200米至6000米之间,74%以上的水深在3000米到6000米间,而目前已探明的海洋石油储量80%以上在水深500米以内,因此有大量的海域面积还有待勘探。
随着世界油气需求的增加,陆上及近海常规水深的开发已趋饱和,海底油气的开采向深水域(水深450-1500米)和超深水域(水深1500米以上)发展。
随着水深的增加,传统的导管架和重力式等平台由于自重和成本的大幅度增大而不适合深水开发,因此适合于深海作业的钻采生产系统成为了研究的热点。
近几十年来,由于墨西哥湾、巴西、西非、北海等深水油气的不断开发,涌现出多种适于深海油气钻采生产的平台型式:张力腿平台(TLP)、Spar、半潜式平台(Semisubmersible)等,其外形及对比如下:半潜式平台又称立柱稳定式平台(Stable Column Platform),是浮式海洋平台的一种常见类型。
半潜式平台由平台主体、立柱(Column)、下体(Submerged Body)或浮箱(Buoyancy Tank)组成,在下体与下体、立柱与立柱、立柱与平台之间通常布置一些支撑连接。
平台上设有钻井机械设备、器材和生活舱室等,供钻井工作用。
平台本体高出水面一定高度,以免波浪的冲击;下体或浮箱提供主要浮力,沉没于水下以减少波浪的干扰力(当波长和平台长度处于某些比值时,立柱和浮体上的波浪作用力能互相抵消,从而使作用在平台上的作用力很小,理论上甚至可以等于零);平台本体与下体之间连接的立柱,具有小水线面的剖面,使得它具有较大的固有周期,不大可能和波谱的主要成分波发生共振,达到减小运动响应的目的;立柱与立柱之间相隔适当的距离,以保证平台的稳定。
因而,半潜式海洋钻井平台具有极强的抗风浪能力、优良的运动性能、巨大的甲板面积和装载容量、高效的作业效率、易于改造并具备钻井、修井、生产等多种工作功能,无需海上安装,全球全天候的工作能力和自存能力等优点。
海洋平台机械设备的使用及安装维护摘要:海洋平台是为海上作业提供生产设施的构建平台,通常是作为石油开采、集运和观测等服务的平台。
在结构形式上可以分为固定式、半固定式和活动式,每种结构形式都有其自身的优势,在实际使用的过程中可以根据生产活动需要进行选择。
海洋平台对于海上生产活动的作用是不可取代的,尤其是对石油开采工作更是起到举足轻重的作用,它可以为石油开采工作提供安全保障,这就要求海洋平台机械设备具备一定的使用性能,并且保证安装质量。
关键词:海洋平台;机械设备;安装维护1 引言科学、稳定、安全是海洋石油设备维护保养的基本目标。
通过缩短设备的停休时间,提升系统的综合监控运转效率,才能够提升企业的综合经济效益,为我国的能源事业发展做出贡献。
为了进一步介绍海洋石油平台机械设备备件系统的构建情况,现就其检验中存在的问题分析如下。
2 海洋石油平台机械设备备件系统构成2.1 底层数据库底层数据库的构成主要包括基础数据库、结果数据库以及知识系统库等子系统构成。
其中,基础数据库的存放备件包括名称、但是、型号以及批号等信息,而知识库主要对一些逻辑规则策略进行管理,属于系统的核心管理环节,同时还包括一些特殊的预警管理规则与出入库管理规则。
系统结果数据库中则主要包括用户名称、库房配置以及操作信息进行管理,通过对对象进行细分管理才能够防止信息的重复、遗漏,提升系统的整体运行效率。
2.2 中间处理中间处理层主要涉及到两个方面的主要功能,一个是功能算法,另外一个主要是数据的交互与处理。
其中,功能算法模型实现的是底层数据的交互与处理,同时包括结果的推送、信息的交互以及系统的内部管理,主要任务是防止出现系统的泄露,以此来提升整个系统的稳定性与安全性。
2.3 上层展示上层展示主要包括普通用户使用的客户端以及专业用户使用的专业端,其主要任务是对结果和数据进行呈现。
3 海洋平台机械设备使用过程中可能出现的问题3.1 海洋平台建造技术趋于成熟海洋平台建设的开展为各类海上生产活动都提供了便利,尤其是对石油开采工作的作用是巨大的,推进了石油开采工程从陆地转向海洋的新进程,在很大程度上缓解了能源稀缺问题的燃眉之急。