电催化析氢-氮还原
- 格式:pptx
- 大小:16.89 MB
- 文档页数:46
难降解废水电催化处理技术(最新版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的安全管理制度,如通用安全、交通运输、矿山安全、石油化工、建筑安全、机械安全、电力安全、其他安全等等制度,想了解不同制度格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of safety management systems, such as general safety, transportation, mine safety, petrochemical, construction safety, machinery safety, electrical safety, other safety, etc. systems, I want to know the format and writing of different systems ,stay tuned!难降解废水电催化处理技术难降解废水主要来自垃圾渗滤液、造纸、制药、石油炼制等行业的工业废水,其成分复杂,含有有毒有害污染物,且排放量大,若不对其进行有效处理,会严重破坏生态环境,危害人体健康。
第52卷第9期2023年9月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.52㊀No.9September,2023Ru 掺杂Ni 3N 催化剂的电催化析氢反应张艳平,高㊀鹏,李建保,王㊀敏,万伟敏,陈拥军(海南大学材料科学与工程学院,南海海洋资源利用国家重点实验室,海口㊀570228)摘要:开发高催化活性和廉价催化剂是催化分解水制氢技术的关键㊂过渡金属氮化镍(Ni 3N)具有优异的热/化学稳定性㊁电化学活性和类贵金属特性,吸引了越来越多研究者的兴趣㊂然而,Ni 3N 碱性电催化析氢反应过程中,水的解离效率低,且对反应中间体质子的吸附太强,这两个因素导致Ni 3N 的性能远低于Pt,还有很大的改进空间㊂本文通过水热-氮化两步法成功制备了Ru 掺杂多孔纳米片Ni 3N /Ru㊂通过X 射线衍射(XRD)㊁扫描电子显微镜(SEM)和透射电子显微镜(TEM)对Ni 3N /Ru 材料的组成㊁形貌和结构进行表征,通过X 射线光电子衍射仪(XPS)对催化机理进行分析,并研究Ru 掺杂量对Ni 3N 材料形貌和电催化性能的影响㊂结果表明,6.30%Ru 负载的Ni 3N 在1mol /L KOH 电解液中驱动10mA㊃m -2的电流密度仅需要49mV 过电位,可以和商业Pt /C 相媲美(46mV@10mA㊃cm -2)㊂将其应用于两电极全解水体系,仅需1.54V 的电压即可获得10mA㊃cm -2的电流密度㊂突出的催化性能归因于Ru 掺杂Ni 3N 有效提升水解离,并使Ni 3N 中Ni 和N 的电子云密度降低,促进吸附氢中间体的形成过程(H ++e -=H ∗),改善析氢反应动力学,进而提升其电催化性能㊂关键词:Ni 3N;Ru 掺杂;电催化析氢;电催化析氧;电催化性能;全解水中图分类号:O614.82+1;TQ116.2+1;TQ426㊀㊀文献标志码:A ㊀㊀文章编号:1000-985X (2023)09-1698-09Ruthenium Dopant in Ni 3N Catalyst for Electrocatalytic Hydrogen Evolution ReactionZHANG Yanping ,GAO Peng ,LI Jianbao ,WANG Min ,WAN Weimin ,CHEN Yongjun(State Key Laboratory of Marine Resource Utilization in South China Sea,School of Materials Science and Engineering,Hainan University,Haikou 570228,China)㊀㊀收稿日期:2023-03-09㊀㊀基金项目:海南省自然科学基金(522QN282)㊀㊀作者简介:张艳平(1996 ),女,河南省人,硕士研究生㊂E-mail:497957657@ ㊀㊀通信作者:陈拥军,博士,教授㊂E-mail:chenyj99@Abstract :The development of high catalytic activity and cheap catalyst is the key of catalytic decomposition of water to produce hydrogen.The transition metal nickel nitride (Ni 3N)has excellent thermal /chemical stability,electrochemical activity and noble metal-like properties,which attracts more and more researchers interest.However,in the process of Ni 3N alkaline electrocatalysis of hydrogen evolution reaction,the dissociation efficiency of water is low,and the adsorption of the intermediate proton is too strong,which result in the much lower performance of Ni 3N than Pt catalyst.In this work,Ru-doped porous Ni 3N nanosheets (Ni 3N /Ru)were prepared successfully by two-step method of hydrothermal and nitriding process.The composition,morphology and structure of Ni 3N /Ru materials were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM)and transmission electron microscopy (TEM).The catalytic mechanism was analyzed by X-ray photoelectron diffractometer (XPS),and the effect of Ru doping amount on the morphology and electrocatalytic performance of Ni 3N materials was also studied.The results show that Ni 3N loaded with 6.30%Ru needs only an overpotential of 49mV to drive the current density of 10mA㊃m -2in 1mol /L KOH electrolyte,which is comparable to commercial Pt /C (46mV@10mA㊃cm -2).The Ni 3N /Ru were then assembled into a two-electrode system for overall water splitting,and the cell voltage required to reach the current density of 10mA㊃cm -2is only 1.54V.The outstanding catalytic performance is attributed to the fact that Ru doping Ni 3N effectively improves the dissociation of water,reduces the electron cloud density of Ni and N in Ni 3N,promotes the formation process of adsorbed hydrogen intermediates (H ++e -=H ∗),improves hydrogen evolution reaction kinetics,and㊀第9期张艳平等:Ru掺杂Ni3N催化剂的电催化析氢反应1699㊀thus enhances its electrocatalytic performance.Key words:Ni3N;Ru doping;electrocatalytic hydrogen evolution;electrocatalytic oxygen evolution;electrocatalytic performance;overall water splitting0㊀引㊀㊀言随着国家推进深度去碳化战略,电解水制氢成为实现碳中和的重要战略举措之一,因此降低制氢成本至关重要[1]㊂电催化水分解包括阴极表面的析氢反应(hydrogen evolution reaction,HER)和阳极表面的析氧反应(oxygen evolution reaction,OER),在碱性电解液中HER通过两种不同的机制有三种可能的反应发生[2-3]:沃尔默步骤(Volmer Step)㊁海洛夫斯基步骤(Heyrosky Step)和塔菲尔步骤(Tafer Step)㊂电化学反应以Volmer反应作为开端,提供H∗(吸附氢中间体),之后发生Heyrosky反应或Tafer反应,最终形成氢气分子㊂因此催化剂需要与反应中间体具有合适的结合能,使H∗的吸附与脱附达到平衡㊂但是,水分解反应过程中动力学缓慢和反应能垒高等缺点限制了电解水制氢技术的广泛应用㊂近年来,人们研究了许多新型电催化剂来解决这一问题,如具有HER催化活性的Pt基材料和具有OER活性的Ru/Ir基氧化物材料[4]㊂然而,贵金属基催化剂的大规模商业应用受到价格高和资源匮乏的阻碍㊂因此,开发高催化活性和廉价催化剂是极具前景的㊂近几十年来,Ni3N及其复合材料由于其优异的热/化学稳定性㊁高电化学活性和类贵金属特性,在水分解中得到了广泛的研究[5-6]㊂此外,有相关研究表明,在N-Ni表面,Ni原子和周围的N原子由于N-Ni 共轭效应表现出较小的氢吸附自由能,是最活跃的HER位点[7],因此在电催化领域具备很大的潜力㊂然而, Ni3N在碱性HER过程中,水解离效率低,且对反应中间体质子的吸附太强[8]㊂这两个因素导致Ni3N的性能远低于Pt,还有很大的改进空间㊂元素的掺杂已经被证明是优化催化剂活性的有效手段[9-12]㊂例如Zhou等展示了一种海胆样N掺杂Ni5P4空心球的合成,通过阴离子掺杂将电子与丰富的活性位点结合起来㊂实验和密度泛函理论(density functional theory,DFT)计算结果表明,N加入到Ni5P4晶格中可以显著增加活性位点数量,调节电子构型,从而优化氢吸附自由能㊂N-Ni5P4空心球在电流密度为10mA㊃cm-2时的过电位低至96mV[13]㊂Zhao等[14]成功制备了钌纳米颗粒(nano particle,NP)修饰的WSe2纳米片,由于WSe2纳米片与Ru NPs之间的界面协同效应,加快了碱性HER决定速率的水解离步骤和随后的制氢步骤,所以Ru-WSe2催化剂表现出优异的HER 催化性能,电流密度为10mA㊃cm-2时,其过电位低至87mV㊂Zhang等[15]通过制备V掺杂Ni3N/Ni异质结催化剂,在10mA㊃cm-2电流密度下的HER过电位仅为44mV,DTF计算表明金属Ni和掺杂V的耦合可以促进水吸附及优化H∗的吸附和解离㊂Ru是一种广泛应用的催化剂,同时也是最便宜的铂族金属元素,Ru 对氢具有中等的吸附强度,对HER具有良好的催化活性[16]㊂因此本文通过水热和高温氮化法合成了分散均匀的Ru修饰Ni3N多孔纳米片结构,Ni3N多孔纳米片和Ru之间的界面协同效应加快了HER决定速率的水解离步骤和随后的制氢步骤㊂结果表明,6.30%Ru(质量分数,下同)的负载下,Ni3N/Ru在1mol/L KOH电解液中的过电位低至49mV就可以提供10mA㊃cm-2的电流密度,性能和商业Pt/C相媲美(46mV@10mA㊃cm-2)㊂将其用作全解水的双功能催化剂时,仅需要1.54V即可实现10mA㊃cm-2的电流密度㊂1㊀实㊀㊀验1.1㊀实验原料氢氧化钾(KOH),分析纯,90%,上海易恩化学技术有限公司;氯化镍㊃六水(NiCl2㊃6H2O),分析纯, 99%,上海易恩化学技术有限公司;氯化钌㊃三水(RuCl3㊃3H2O),分析纯,上海麦克林生化科技有限公司;尿素((NH2)2CO),分析纯,99%,上海阿拉丁生化科技股份有限公司;无水乙醇(C2H6O),分析纯,西陇科学股份有限公司;泡沫镍(Ni foam,NF),厚度为2mm,昆山尚特新材料有限公司㊂1.2㊀催化剂的制备如图1所示,Ni3N/Ru催化剂通过两步合成:将镍泡沫(1.5cmˑ2cm)分别用5%的HCl溶液㊁乙醇和1700㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第52卷去离子水超声处理25min,用作基底材料㊂称取0.07g NiCl 2㊃6H 2O㊁0.03g 尿素和一定量的RuCl 3㊃3H 2O 溶于30mL 去离子水中,将溶剂和处理过的NF 移入50mL 的聚四氟乙烯内衬不锈钢高压反应釜中,将其置入烘箱中,在120ħ下保温12h㊂待反应完成后,将产物用去离子水和乙醇分别淋洗数次,在50ħ真空干燥箱中干燥5h,得到生长在NF 上的Ni(OH)2/Ru 前驱体㊂将上述前驱体放入干净的瓷舟中,放置于管式炉恒温区㊂随后,在氨气气氛下以5ħ/min 的升温速率升至400ħ,保温4h,随炉冷却,即可在NF 上得到Ni 3N /Ru㊂将不同Ru 掺杂量的Ni 3N 记作Ni 3N /Ru x (x =0㊁3.15%㊁6.30%㊁12.60%和15.26%),同时将Ni 3N /Ru x (x =6.30%)记作Ni 3N /Ru㊂图1㊀Ni 3N /Ru 催化剂的合成示意图Fig.1㊀Schematic illustration of the synthetic procedure of Ni 3N /Ru 1.3㊀性能测试与表征采用X 射线衍射(XRD)测试制备材料的晶体结构,设备型号为Smart Lab,靶材为铜靶,测试样品的范围为30ʎ~90ʎ,扫速为5(ʎ)㊃min -1,步长为0.01ʎ,样品为粉末㊂采用日立公司生产的Hitachi S-4800型带有X 射线能谱分析仪(EDS)的扫描电子显微镜研究材料的微观形貌和尺寸㊂使用型号为JEM-2100F 的透射电子显微镜(TEM)研究材料的形貌和组成,工作电压为200kV,点分辨率为0.19nm㊂采用型号为PHI Quantum 2000的X 射线光电子衍射仪(XPS)测试元素价态,使用铝K α微聚焦单色器作为X 射线源,测试深度小于10nm㊂通过CHI-660E 电化学工作站测试催化剂的电催化活性,在室温下采用三电极体系进行电化学测试,在1mol /L KOH 电解质中测量材料的催化活性,催化剂材料用于工作电极的催化面积为0.3cm ˑ0.3cm,碳棒和饱和甘汞电极(SCE)(Hg /HgCl 2/KCl)作为对电极和参比电极,用公式E (RHE)=E (SCE)+0.059pH +0.240V 对可逆氢电极进行校正㊂2㊀结果与讨论图2㊀Ni 3N /Ru x (x =0㊁3.15%㊁6.30%㊁12.60%和15.26%)样品的XRD 图谱Fig.2㊀XRD patterns of Ni 3N /Ru x (x =0,3.15%,6.30%,12.60%,and 15.26%)2.1㊀物相分析选用XRD 对不同Ru 掺杂量Ni 3N /Ru x 粉末样品的晶体结构进行了表征,其结果如图2所示㊂从图中可以看出,Ni 3N /Ru x (x =0㊁3.15%㊁6.30%㊁12.60%和15.26%)为六方相,不同Ru 掺杂量的衍射峰均很好地与标准PDF 卡片#10-0280对应,未出现其他衍射峰,表明Ru 掺杂并未改变Ni 3N 的晶体结构㊂对比标准PDF 卡片可以找到各个衍射峰所对应的晶面,最强衍射峰所对应的晶面为(111)晶面㊂而对于不同Ru含量的Ni 3N 样品只测出Ni 3N 相的衍射峰,由于Ru 元素过少无相应衍射峰出现㊂通过SEM 来初步表征材料的微观形貌㊂如图3(a)~(e )所示,不同Ru (x =0㊁3.15%㊁6.30%㊁㊀第9期张艳平等:Ru 掺杂Ni 3N 催化剂的电催化析氢反应1701㊀12.60%和15.26%)掺杂量的Ni 3N 形貌均为多孔网状结构的纳米片,无明显差别,说明掺杂并没有改变样品的片状结构㊂这些尺寸约为50nm 的纳米小片可以增加电解液的接触面积,充分利用更多的活性位点㊂图3㊀Ni 3N /Ru x 催化剂的SEM 照片Fig.3㊀SEM images of Ni 3N /Ru x catalyst 另一方面,曾有报道指出,金属Ru 具有相对较高的表面能,倾向于形成聚集形态[17]㊂对样品Ni 3N /Ru x(x =6.30%)催化剂进行EDS 面分布扫描,结果如图4(a)~(c)所示,从图中可以看出Ni㊁N 和Ru 元素均匀分布,同时验证了Ru 元素的成功掺杂㊂图4㊀Ni 3N /Ru x (x =6.30%)样品的EDS 面分布图像Fig.4㊀EDS plane distribution images of Ni 3N /Ru x (x =6.30%)sample 图5㊀不同放大倍数下Ni 3N /Ru x (x =6.30%)样品的HRTEM 照片Fig.5㊀HRTEM images of Ni 3N /Ru x (x =6.30%)at different magnification 采用高分辨率透射电子显微镜(HRTEM )对Ni 3N /Ru x (x =6.30%)催化剂的形貌结构进行进一步表征㊂图5(a)中可以看出Ni 3N /Ru 为约50nm 的小纳米片,这与SEM 结果一致㊂图5(b)可以清楚地分辨催化剂材料的晶格条纹,0.203nm 的晶格条纹间距很好地对应Ni 3N 的(111)晶面[15]㊂2.2㊀电催化析氢性能研究采用标准三电极体系,将一系列催化剂材料作为工作电极在N 2饱和的1mol /L KOH 电解液中进行了HER 测试㊂商业铂碳(Pt /C)催化剂作为对比样品进行了相同的测试㊂在循环伏安法(CV)活化后测量所有数据且未进行iR 补偿㊂图6(a)为样品的线性扫描1702㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第52卷伏安(LSV)曲线,可以根据LSV 曲线得出催化剂在电流密度为10mA㊃cm -2的HER 过电位㊂如图6(b)所示,Ni 3N 中Ru 掺杂量为6.30%时的过电位为49mV,低于掺杂量为0(139mV)㊁3.15%(100mV)㊁12.60%(76mV)和15.26%(96mV)时的过电位㊂Ni 3N/Ru x (x =6.30%)与商业Pt /C 的催化性能(46mV@10mA㊃cm -2)相当㊂根据LSV 曲线拟合出塔菲尔斜率,如图6(c)所示,当x =0㊁3.15%㊁6.30%㊁12.60%和15.26%时催化剂的塔菲尔斜率分别为97.22㊁84.12㊁29.82㊁63.11和50.06mV㊃dec -1㊂商业Pt /C 催化剂的塔菲尔斜率为25.42mV㊃dec -1㊂塔菲尔斜率的值可以反映电催化过程中的机理和反应动力学[18]㊂对于不同掺杂量的Ni 3N,当x =6.30%时,塔菲尔斜率最小,表明电荷转移最快,并遵循Volmer-Tafel 机制,Ru 的掺杂优化了HER 过程的Volmer 和Tafel 步骤㊂不同催化剂的电化学阻抗谱图6(d)所示,x =6.30%时催化剂的电荷转移电阻(R ct )远小于x =0㊁3.15%㊁12.60%和15.26%时的电荷转移电阻,仅次于Pt /C,说明当Ru 掺杂量为6.30%时,电极和电解质之间有更快的电子转移㊂此外,Ni 3N /Ru x (x =6.30%)的HER 过电位低于许多已经报道的类似催化剂(见表1)㊂图6㊀不同催化剂的HER 电催化性能㊂(a)扫描速率为5mV㊃s -1时的HER 极化曲线;(b)电流密度为10mA㊃cm -2时的HER 过电位;Tafel 图(c)和电化学阻抗图谱(d)Fig.6㊀HER electrocatalytic performance of different catalysts.(a)HER polarization curves at scanning rate of 5mV㊃s -1;(b)HER overpotential at current density of 10mA㊃cm -2;Tafel plots (c)and Nyquist plots (d)表1㊀Ni 3N /Ru 和之前报道的类似催化剂的HER 性能Table 1㊀HER properties of Ni 3N /Ru and similar catalysts previously reportedMaterial HER /(mV@mA㊃cm -2)Reference Ni 3N /Ru49@10This work Ru-SAS-Ni 2P 57@10[19]Ru-WSe 287@10[14]Ru /CoO 55@10[20]Ru /Ni 3N-Ni 53@10[21]CoN-Ni 3N247@10[22]Ni 1.25Ru 0.75P 340@10[23]RuP /NPC 168@10[24]㊀第9期张艳平等:Ru掺杂Ni3N催化剂的电催化析氢反应1703㊀㊀㊀要实现高效的碱性HER,电极表面的快速水解离㊁快速的质子吸附和氢解析是必不可少的㊂因此对Ni3N 和Ni3N/Ru样品进行XPS表征,进一步识别元素表面的化学环境,揭示催化剂的电化学行为㊂图7(a)为Ni3N/Ru的Ni2p光谱,855.6和873.4eV处的双峰归因于Ni2p3/2和Ni2p1/2,属于Ni+的氧化态Ni2+,可能是由材料暴露在空气中引起的部分氧化造成㊂此外,853.0和870.4eV处的两个峰来源于Ni+2p3/2和Ni+2p1/2[25]㊂861.1和873.4eV分别为Ni2p3/2和Ni2p1/2的两个卫星峰[26]㊂值得注意的是,Ni3N/Ru中Ni+的峰位置(853.0和870.4eV)与Ni3N(852.8和869.9eV)相比结合能向高的方向移动,表明Ni电子密度的降低㊂在Ni3N/Ru的N1s谱(见图7(b))中,398.1和402.3eV处的两个特征峰与Ni N和N O键一致[27]㊂Ni3N/Ru中Ni N的峰位置与Ni3N相比向结合能高的方向移动㊂在Ni3N/Ru的Ru3d谱(见图7(c))中,280.3和284.2eV处的双峰分别为Ru0的Ru3d5/2和Ru3d3/2[28]㊂在Ru掺杂后Ni3N催化剂Ni2p和N1s的结合能向高能区转移,表明Ni和N周围的电子云密度降低㊂有报道表明电子密度的降低有利于水的吸附和解离,促进H∗的形成[29]㊂因此,突出的催化性能归因于Ru㊁Ni和N之间的相互作用改变了Ni和N的电荷密度分布,从而促进吸附氢中间体(H++e-=H∗)和氢气(H∗+H∗=H2)的形成过程㊂图7㊀Ni3N/Ru和Ni3N中,Ni2p(a)和N1s(b)的XPS谱图,以及Ni3N/Ru中Ru3d(c)的XPS图Fig.7㊀XPS of Ni2p(a)and N1s(b)in Ni3N/Ru and Ni3N,and Ru3d(c)in Ni3N/Ru2.3㊀电催化析氧性能研究采用标准三电极体系,将一系列催化剂材料作为工作电极在O2饱和的1mol/L KOH电解液中测试OER 的电催化性能,结果如图8(a)所示㊂商业二氧化钌(RuO2)催化剂作为对比样品进行相同的测试㊂Ni3N中Ru掺杂量为6.30%时的OER过电位为293mV,低于Ru掺杂量为0(348mV)㊁3.15%(310mV)㊁12.60% (298mV)和15.26%(312mV)的,优于商业RuO2的(335mV@10mA㊃cm-2)(见图8(b))㊂此外通过CV 曲线得到塔菲尔斜率的值,当x=0㊁3.15%㊁6.30%㊁12.60%和15.26%时的塔菲尔斜率分别为47.59㊁39.81㊁33.52㊁40.60和44.74mV㊃dec-1,RuO2催化剂的塔菲尔斜率为104.83mV㊃dec-1(见图8(c)),证明Ru掺杂量为x=6.30%时,Ni3N/Ru反应速率最快㊂随后测试了催化剂的电化学阻抗图谱(EIS),发现6.30%Ru掺杂后的Ni3N的电阻(R ct)最小(见图8(d)),说明Ru掺杂后的Ni3N具有优异的电子传输能力㊂2.4㊀电催化全解水研究基于以上所述,Ni3N/Ru是一种可用作阴极和阳极的双功能催化剂㊂因此,利用Ni3N/Ru作为阳极和阴极的双功能电催化剂来驱动碱性全解水㊂同时将商业Pt/C和RuO2电极对作为对比样品分析了其电催化性能㊂如图9(a)所示,在1mol/L KOH2电解液中,Ni3N/Ru要达到10mA㊃cm-2的电流密度,只需要1.54V的电池电压,比Pt/C和RuO2电极对低0.089V,且低于较多已经报道的类似催化剂(见表2)㊂此外,稳定性是催化剂性能的一个重要指标,因此对其进行了稳定性测试㊂如图9(b)所示,Ni3N/Ru材料用作双功能电极在运行27h内电压没有明显变化,而Pt/C和RuO2电极对随着时间的增加,电位从1.56V上升至1.68V㊂图9(c)为稳定性测试前后的LSV曲线,Ni3N/Ru的电池电压从1.54V升高至1.58V,电压增加的比例约为2.6%,较小的电位变化表明Ni3N/Ru催化剂具有较好的稳定性㊂1704㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第52卷图8㊀不同催化剂的OER电催化性能㊂(a)在O2饱和的1mol/L KOH溶液中,扫描速率为5mV㊃s-1时,未经iR校正的CV曲线;(b)电流密度为10mA㊃cm-2时不同催化剂的OER过电位;Tafel图(c)和电化学阻抗图谱(d) Fig.8㊀OER electrocatalytic performance of different catalysts.(a)CV curves in O2saturated1mol/L KOH solution at scaning rate of 5mV㊃s-1without iR correction;(b)OER overpotentials at current density of10mA㊃cm-2;Tafel plots(c)and Nyquist plots (d)图9㊀Ni3N/Ru的全解水性能测试㊂(a)N3N/Ru和Pt/C-RuO2电极对的LSV曲线,以5mV㊃s-1进行全解水测试; Ni3N/Ru和Pt/C-RuO2电极对在电流密度为10mA㊃cm-2时的稳定性测试(b)和稳定性测试前和后测试的LSV曲线(c) Fig.9㊀Performance test of overall water splitting of Ni3N/Ru.(a)LSV profiles of Ni3N/Ru,Pt/C-RuO2couple foroverall water splitting at scanning rate of5mV㊃s-1;chronoamperometric response of Ni3N/Ru and Pt/C-RuO2couple at current density of10mA㊃cm-2(b),and LSV curves of stability test before and after test(c)㊀第9期张艳平等:Ru掺杂Ni3N催化剂的电催化析氢反应1705㊀表2㊀Ni3N/Ru和之前报道的类似催化剂的电化学性能Table2㊀Electrochemical performance of Ni3N/Ru and similar catalysts previously reportedMaterial Cell votages/(V@mA㊃cm-2)ReferenceNi3N/Ru 1.54@10This workCoN-Ni3N 1.56@10[19]Pd/NiFeO x 1.57@10[23]Co@Ir/NC-10% 1.667@10[30]Ru2Ni2SNs/C 1.58@10[31]Ir@Co/NC 1.6@10[32]Ru-NiCoP/NF 1.515@10[33]Pt-CoS2/CC 1.550@10[34]3㊀结㊀㊀论本文设计并制备了Ru掺杂Ni3N双功能电催化材料,有效提高了Ni3N的电催化性能㊂通过实验分析确定了Ni3N获得最佳催化活性时Ru的掺杂量为6.30%㊂在电流密度为10mA㊃cm-2时HER过电位仅为49mV,塔菲尔斜率为29.82mV㊃dec-1㊂优异的电催化析氢性能归因于:1)纳米片形貌的构建有利于电解液充分和催化剂表面接触且可以提供更多的活性位点㊂2)Ru掺杂Ni3N有效改善水解离过程,且Ru㊁Ni和N之间的相互作用改变了Ni和N的电荷密度分布,从而促进吸附氢中间体(H++e-=H∗)和氢气(H∗+H∗=H2)的形成过程,加速了HER反应动力学,有效提升了Ni3N的电解水性能㊂此外,将Ni3N/Ru 双功能催化剂用于两电极全解水体系,驱动10mA㊃cm-2的电流密度仅需1.54V电压,低过电位使其在水电解领域具有广阔的应用前景㊂参考文献[1]㊀KAKOULAKI G,KOUGIAS I,TAYLOR N,et al.Green hydrogen in Europe-A regional assessment:substituting existing production withelectrolysis powered by renewables[J].Energy Conversion and Management,2021,228:113649.[2]㊀TAN L,YU J T,WANG C,et al.Partial sulfidation strategy to NiFe-LDH@FeNi2S4heterostructure enable high-performance water/seawateroxidation[J].Advanced Functional Materials,2022,32(29):2200951.[3]㊀WEI Z M,GUO M W,ZHANG Q B.Scalable electrodeposition of NiFe-based electrocatalysts with self-evolving multi-vacancies for high-performance industrial water electrolysis[J].Applied Catalysis B:Environmental,2023,322:122101.[4]㊀WANG L,CHEN M X,YAN Q Q,et al.A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts[J].Science Advances,2019,5(10):eaax6322.[5]㊀WU T,SONG E H,ZHANG S N,et al.Engineering metallic heterostructure based on Ni3N and2M-MoS2for alkaline water electrolysis withindustry-compatible current density and stability[J].Advanced Materials,2022,34(9):e2108505.[6]㊀ZHANG X Y,MA G,SHUI L L,et al.Ni3N nanoparticles on porous nitrogen-doped carbon nanorods for nitrate electroreduction[J].ChemicalEngineering Journal,2022,430:132666.[7]㊀GAO D Q,ZHANG J Y,WANG T T,et al.Metallic Ni3N nanosheets with exposed active surface sites for efficient hydrogen evolution[J].Journal of Materials Chemistry A,2016,4(44):17363-17369.[8]㊀GUAN J L,LI C F,ZHAO J W,et al.FeOOH-enhanced bifunctionality in Ni3N nanotube arrays for water splitting[J].Applied Catalysis B:Environmental,2020,269:118600.[9]㊀HUANG C Q,YU L,ZHANG W,et al.N-doped Ni-Mo based sulfides for high-efficiency and stable hydrogen evolution reaction[J].AppliedCatalysis B:Environmental,2020,276:119137.[10]㊀YANG D,CAO L Y,HUANG J F,et al.Vanadium-doped hierarchical Cu2S nanowall arrays assembled by nanowires on copper foam as anefficient electrocatalyst for hydrogen evolution reaction[J].Scripta Materialia,2021,196:113756.[11]㊀NICHOLS F,LIU Q M,SANDHU J,et al.Platinum-complexed phosphorous-doped carbon nitride for electrocatalytic hydrogen evolution[J].Journal of Materials Chemistry A,2022,10(11):5962-5970.[12]㊀LIU J B,WANG D S,HUANG K,et al.Iodine-doping-induced electronic structure tuning of atomic cobalt for enhanced hydrogen evolutionelectrocatalysis[J].ACS Nano,2021,15(11):18125-18134.[13]㊀ZHOU G Y,MA Y R,WU X M,et al.Electronic modulation by N incorporation boosts the electrocatalytic performance of urchin-like Ni5P4hollow microspheres for hydrogen evolution[J].Chemical Engineering Journal,2020,402:126302.1706㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第52卷[14]㊀ZHAO Y M,MAO G X,HUANG C Z,et al.Decorating WSe2nanosheets with ultrafine Ru nanoparticles for boosting electrocatalytic hydrogenevolution in alkaline electrolytes[J].Inorganic Chemistry Frontiers,2019,6(6):1382-1387.[15]㊀ZHANG H,WANG J,QIN F Q,et al.V-doped Ni3N/Ni heterostructure with engineered interfaces as a bifunctional hydrogen electrocatalyst inalkaline solution:simultaneously improving water dissociation and hydrogen adsorption[J].Nano Research,2021,14(10):3489-3496. [16]㊀LI J Y,TAN Y A,ZHANG M K,et al.Boosting electrocatalytic activity of Ru for acidic hydrogen evolution through hydrogen spillover strategy[J].ACS Energy Letters,2022,7(4):1330-1337.[17]㊀NIELSEN R M,MURPHY S,STREBEL C,et al.The morphology of mass selected ruthenium nanoparticles from a magnetron-sputter gas-aggregation source[J].Journal of Nanoparticle Research,2010,12(4):1249-1262.[18]㊀LYU F L,WANG Q F,CHOI S M,et al.Noble-metal-free electrocatalysts for oxygen evolution[J].Small,2019,15(1):1804201.[19]㊀WU K L,SUN K A,LIU S J,et al.Atomically dispersed Ni-Ru-P interface sites for high-efficiency pH-universal electrocatalysis of hydrogenevolution[J].Nano Energy,2021,80:105467.[20]㊀GUO J X,YAN D Y,QIU K W,et al.High electrocatalytic hydrogen evolution activity on a coupled Ru and CoO hybrid electrocatalyst[J].Journal of Energy Chemistry,2019,37:143-147.[21]㊀LIU Z,ZHA M,WANG Q A,et al.Overall water-splitting reaction efficiently catalyzed by a novel bi-functional Ru/Ni3N-Ni electrode[J].Chemical Communications,2020,56(15):2352-2355.[22]㊀RAY C,LEE S C,JIN B J,et al.Conceptual design of three-dimensional CoN/Ni3N-coupled nanograsses integrated on N-doped carbon to serveas efficient and robust water splitting electrocatalysts[J].Journal of Materials Chemistry A,2018,6(10):4466-4476.[23]㊀LIYANAGE D R,LI D,CHEEK Q B,et al.Synthesis and oxygen evolution reaction(OER)catalytic performance of Ni2-x Ru x P nanocrystals:enhancing activity by dilution of the noble metal[J].Journal of Materials Chemistry A,2017,5(33):17609-17618.[24]㊀QIN Q,JANG H,CHEN L L,et al.Electrocatalysts:low loading of Rh x P and RuP on N,P codoped carbon as two trifunctional electrocatalystsfor the oxygen and hydrogen electrode reactions[J].Advanced Energy Materials,2018,8(29):1870130.[25]㊀ZHANG B,WANG J,LIU J,et al.Dual-descriptors tailoring:The hydroxyl adsorption energies-dependent hydrogen evolution kinetics of high-valance state doped Ni3N in alkaline media[J].ACS Catalysis,2019,9(10):9332-9338.[26]㊀LI Q,LIANG C L,LU X F,et al.Ni@NiO core-shell nanoparticle tube arrays with enhanced supercapacitor performance[J].Journal ofMaterials Chemistry A,2015,3(12):6432-6439.[27]㊀HU S N,FENG C Q,WANG S Q,et al.Ni3N/NF as bifunctional catalysts for both hydrogen generation and urea decomposition[J].ACSApplied Materials&Interfaces,2019,11(14):13168-13175.[28]㊀ZHU J W,LU R H,SHI W J,et al.Epitaxially grown Ru clusters-nickel nitride heterostructure advances water electrolysis kinetics in alkalineand seawater media[J].Energy&Environmental Materials,2023,6(2):12318.[29]㊀WU Y S,LIU X J,HAN D D,et al.Electron density modulation of NiCo2S4nanowires by nitrogen incorporation for highly efficient hydrogenevolution catalysis[J].Nature Communications,2018,9:1425.[30]㊀ZHANG W,JIANG X E,DONG Z M,et al.Porous Pd/NiFeO x nanosheets enhance the pH-universal overall water splitting[J].AdvancedFunctional Materials,2021,31(51):2107181.[31]㊀LI D L,ZONG Z,TANG Z H,et al.Total water splitting catalyzed by Co@Ir core-shell nanoparticles encapsulated in nitrogen-doped porouscarbon derived from metal-organic frameworks[J].ACS Sustainable Chemistry&Engineering,2018,6(4):5105-5114.[32]㊀LAI W H,ZHANG L F,HUA W B,et al.Generalπ-electron-assisted strategy for Ir,Pt,Ru,Pd,Fe,Ni single-atom electrocatalysts withbifunctional active sites for highly efficient water splitting[J].Angewandte Chemie International Edition,2019,58(34):11868-11873. [33]㊀CHEN D,LU R H,PU Z H,et al.Ru-doped3D flower-like bimetallic phosphide with a climbing effect on overall water splitting[J].AppliedCatalysis B:Environmental,2020,279:119396.[34]㊀HAN X P,WU X Y,DENG Y D,et al.Electrocatalysis:ultrafine Pt nanoparticle-decorated pyrite-type CoS2nanosheet arrays coated on carboncloth as a bifunctional electrode for overall water splitting[J].Advanced Energy Materials,2018,8(24):1870110.。
第43卷第3期马静静等:CoPc/N-C催化剂的制备及C02电催化还原267 DOI:10.13822/ki.hxsj.2021007930丨研究报告丨化学试剂,2021,43( 3) ,267〜273 CoPc/N-C催化剂的制备及C02电催化还原马静静,朱红林‘(宁波大学材料科学与化学工程学院化学合成与绿色应用研究所,浙江宁波315211)摘要:金属酞菁(MePcs)因其易得性和结构可调性被认为是一种很有前途的C02减排催化剂。
其中,酞菁钴(CoPc)基杂 化材料用于电催化C02还原(C02-RR)近年来受到了广泛关注。
通过制备简便的2-甲基咪唑锌盐M0F材料为前驱体,N2气氛下热解后的N-C作为载体,在DMF的超声作用下与CoPc混合制备CoPc/N-C。
在三电极体系下,0. 1mol/L KHC03电解液中,CoPc/N-C表现出较好的C02电催化还原为C O的性能,过电位低至190 mV,在电位-0.7〜-1 V vs RHE电势区间表现出较高的CO法拉第效率(>85%)且具有较好的稳定性,其优异的电催化C02还原性能主要归因于复合材料中CoPc与N-C载体之间的协同作用。
关键词:金属酞菁;酞菁钴;电化学C02还原;杂化材料;金属有机骨架中图分类号:0643.3 文献标识码:A文章编号:0258-3283( 2021)03-0267-07Preparation of CoPc/N-C Catalyst and Electrochemical Reduction of C02MA Jing-jing,ZH U Hong-lin* (Institute of C h e mical Synthesis a n d G r e e n Applications, College of Materials Science a n d C h e m i c a l Engineering, N i n g b o University, N i n g b o 315211,C h i n a),H u a x u e Shiji,2021,43(3),267〜273Abstract :Metal phthalocyanines (M e P c s)have been considered as promising catalysts for C02 emission reduction d u e to accessibility and structural tunability.Among them,cobalt phthalocyanine (C o P c)based hybrid material for electrocatalytic C02red u ction (C02-R R)has received extensive attention in recent years.Herein,C o P c/N-C w a s prepared by mixing C o P c under ultrasonic of D M F with N-C carrier w h i c h w a s pyrolyzed via 2-methylimidazole zinc salt M O F material as the precursor under N2 atmosphere. In a three-electrode s ystem,the C o P c/N-C exhibits excellent performance for reducing C02 to C O with low overpotential 190 m V, Faraday efficiency of C O(F E C0)exceeded 85%over a wide potential range from -0. 7 —1V vs R H E a n d remarkable stability in the 0. 1m o l/L K H C03 electrolyte.The excellent electrocatalytic performance could be obtained d u e to the synergistic effect on the interface of C o P c a n d N-C.Key words:metal phthalocyanine;cobalt phthalocyanine;electrochemical C02 reduction;hybrid materials;M O F化石燃料的不可持续利用引起了严重的能源危机,随之大量排放的c o2使得全球温室效应日益加剧n'2]。