粒子群优化算法详细易懂-很多例子
- 格式:pptx
- 大小:2.37 MB
- 文档页数:49
粒子群算法原理及简单案例[ python ]介绍粒子群算法(Particle swarm optimization,PSO)是模拟群体智能所建立起来的一种优化算法,主要用于解决最优化问题(optimization problems)。
1995年由 Eberhart和Kennedy 提出,是基于对鸟群觅食行为的研究和模拟而来的。
假设一群鸟在觅食,在觅食范围内,只在一个地方有食物,所有鸟儿都看不到食物(即不知道食物的具体位置。
当然不知道了,知道了就不用觅食了),但是能闻到食物的味道(即能知道食物距离自己是远是近。
鸟的嗅觉是很灵敏的)。
假设鸟与鸟之间能共享信息(即互相知道每个鸟离食物多远。
这个是人工假定,实际上鸟们肯定不会也不愿意),那么最好的策略就是结合自己离食物最近的位置和鸟群中其他鸟距离食物最近的位置这2个因素综合考虑找到最好的搜索位置。
粒子群算法与《遗传算法》等进化算法有很多相似之处。
也需要初始化种群,计算适应度值,通过进化进行迭代等。
但是与遗传算法不同,它没有交叉,变异等进化操作。
与遗传算法比较,PSO的优势在于很容易编码,需要调整的参数也很少。
一、基本概念与遗传算法类似,PSO也有几个核心概念。
粒子(particle):一只鸟。
类似于遗传算法中的个体。
1.种群(population):一群鸟。
类似于遗传算法中的种群。
2.位置(position):一个粒子(鸟)当前所在的位置。
3.经验(best):一个粒子(鸟)自身曾经离食物最近的位置。
4.速度(velocity ):一个粒子(鸟)飞行的速度。
5.适应度(fitness):一个粒子(鸟)距离食物的远近。
与遗传算法中的适应度类似。
二、粒子群算法的过程可以看出,粒子群算法的过程比遗传算法还要简单。
1)根据问题需要,随机生成粒子,粒子的数量可自行控制。
2)将粒子组成一个种群。
这前2个过程一般合并在一起。
3)计算粒子适应度值。
4)更新种群中每个粒子的位置和速度。
粒子群优化算法算法介绍 v[] 是粒子的速度, persent[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数.c1, c2 是学习因子. 通常 c1 = c2 = 2. 程序的伪代码如下 For each particle ____Initialize particle END Do ____For each particle ________Calculate fitness value ________If the fitness value is better than the best fitness value (pBest) in history ____________set current value as the new pBest ____End ____Choose the particle with the best fitness value of all the particles as the gBest ____For each particle ________Calculate particle velocity according equation (a) ________Update particle position according equation (b) ____End While maximum iterations or minimum error criteria is not attained在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax。
遗传算法和PSO的比较人工神经网络和PSO 这里用一个简单的例子说明PSO训练神经网络的过程。
这个例子使用分类问题的基准函数 (Benchmark function)IRIS数据集。
多目标优化的粒子群算法及其应用研究共3篇多目标优化的粒子群算法及其应用研究1多目标优化的粒子群算法及其应用研究随着科技的发展,人们对于优化问题的求解需求越来越高。
在工程实践中,很多问题都涉及到多个优化目标,比如说在物流方面,安全、效率、成本等指标都需要被考虑到。
传统的单目标优化算法已不能满足这些需求,因为单目标算法中只考虑单一的优化目标,在解决多目标问题时会失效。
因此,多目标优化算法应运而生。
其中,粒子群算法是一种被广泛应用的多目标优化算法,本文将对这种算法进行介绍,并展示其在实际应用中的成功案例。
1. 算法原理粒子群算法(Particle Swarm Optimization,PSO)是一种仿生智能算法,源自对鸟群的群体行为的研究。
在算法中,将待优化的问题抽象成一个高维的空间,然后在空间中随机生成一定数量的粒子,每个粒子都代表了一个潜在解。
每个粒子在空间中移动,并根据适应度函数对自身位置进行优化,以期找到最好的解。
粒子的移动和优化过程可以通过以下公式表示:$$v_{i,j} = \omega v_{i,j} + c_1r_1(p_{i,j} - x_{i,j}) + c_2r_2(g_j - x_{i,j})$$$$x_{i,j} = x_{i,j} + v_{i,j}$$其中,$i$ 表示粒子的编号,$j$ 表示该粒子在搜索空间中的第 $j$ 个维度,$v_{i,j}$ 表示粒子在该维度上的速度,$x_{i,j}$ 表示粒子在该维度上的位置,$p_{i,j}$ 表示粒子当前的最佳位置,$g_j$ 表示整个种群中最好的位置,$\omega$ 表示惯性权重,$c_1$ 和 $c_2$ 分别为粒子向自己最优点和全局最优点移动的加速度系数,$r_1$ 和 $r_2$ 为两个 $[0,1]$ 之间的随机值。
通过粒子群的迭代过程,粒子逐渐找到最优解。
2. 多目标优化问题多目标优化问题的具体表述为:给出一个目标函数集 $f(x) = \{f_1(x), f_2(x),...,f_m(x)\}$,其中 $x$ 为决策向量,包含 $n$ 个变量,优化过程中需求出 $f(x)$ 的所有最佳解。
【优秀作业】粒子群优化算法粒子群优化算法一、概述粒子群优化算法(Particle Swarm Optimization,PSO)的思想来源于对鸟捕食行为的模仿,最初,Reynolds.Heppner 等科学家研究的是鸟类飞行的美学和那些能使鸟群同时突然改变方向,分散,聚集的定律上,这些都依赖于鸟的努力来维持群体中个体间最佳距离来实现同步。
而社会生物学家 E.O.Wilson 参考鱼群的社会行为认为从理论上说,在搜寻食物的过程中,尽管食物的分配不可知,群中的个体可以从群中其它个体的发现以及以往的经验中获益。
粒子群从这种模型中得到启发并用于解决优化问题。
如果我们把一个优化问题看作是在空中觅食的鸟群,那么粒子群中每个优化问题的潜在解都是搜索空间的一只鸟,称之为“粒子”(Particle),“食物”就是优化问题的最优解。
每个粒子都有一个由优化问题决定的适应度用来评价粒子的“好坏”程度,每个粒子还有一个速度决定它们飞翔的方向和距离,它根据自己的飞行经验和同伴的飞行经验来调整自己的飞行。
粒子群初始化为一群随机粒子(随机解),然后通过迭代的方式寻找最优解,在每一次的迭代中,粒子通过跟踪两个“极值”来更新自己,第一个是粒子本身所经历过的最好位置,称为个体极值即;另一个是整个群体经历过的最好位置称为全局极值。
每个粒子通过上述的两个极值不断更新自己,从而产生新一代的群体。
二、粒子群算法算法的描述如下:假设搜索空间是维,并且群体中有个粒子。
那么群体中的第个粒子可以表示为一个维的向量,,即第个粒子在维的搜索空间的位置是,它所经历的“最好”位置记作。
粒子的每个位置代表要求的一个潜在解,把它代入目标函数就可以得到它的适应度值,用来评判粒子的“好坏”程度。
整个群体迄今为止搜索到的最优位置记作,是最优粒子位置的索引。
()为惯性权重(inertia weight),为第个粒子到第代为止搜索到的历史最优解,为整个粒子群到目前为止搜索到的最优解,,分别是第个粒子当前的位置和飞行速度,为非负的常数,称为加速度因子,是之间的随机数。
粒子群优化法-概述说明以及解释1.引言1.1 概述粒子群优化法(Particle Swarm Optimization,简称PSO)是一种用于求解优化问题的启发式算法。
它模拟了鸟群或鱼群中的群体协作行为,通过不断更新粒子的位置和速度,逐步逼近最优解。
PSO算法最早由Russell Eberhart和James Kennedy于1995年提出,并在之后的二十多年里得到了广泛应用和研究。
PSO算法是一种简单但高效的优化算法,其灵感源于群体智能中的群体行为。
它通过模拟从鸟群和鱼群等自然界中观察到的协同行为,将搜索空间中的解表示为“粒子”,每个粒子根据自己当前的位置和速度信息动态调整,并通过与其他粒子的互动来引导搜索过程。
在PSO算法中,每个粒子都有自己的位置和速度,并且能够记忆并更新自己及其他粒子的最优解。
通过不断地根据历史最优值和邻域最优值进行位置和速度的更新,粒子能够在搜索空间中逐渐找到最优解。
PSO算法具有计算简单、易于实现、收敛速度较快等优点,能够应用于解决连续优化问题、离散优化问题以及多目标优化问题等多个领域。
总的来说,粒子群优化法是一种基于群体智能的优化算法,通过模拟自然界中群体的协同行为,实现了对复杂优化问题的求解。
在实际应用中,PSO算法已经在函数优化、图像处理、机器学习、工程设计等众多领域展现出了良好的性能和广阔的应用前景。
本文将详细介绍粒子群优化法的原理和应用领域,并探讨其优势和发展前景。
1.2文章结构1.2 文章结构本文将按以下顺序展开对粒子群优化法的深入研究和讨论:1.2.1 粒子群优化法的概述首先,我们将介绍粒子群优化法的概念以及其基本原理。
我们将讨论其运作方式,了解粒子群如何模拟鸟群在搜索问题中寻找全局最优解的行为。
1.2.2 粒子群优化法的应用领域接下来,我们将探讨粒子群优化法在不同领域中的广泛应用。
粒子群优化法已被应用于许多问题领域,包括函数优化、图像处理、数据挖掘等。
第二章粒子群优化算法粒子群优化(PSO)是一种基于群体智能的数值优化算法,由社会心理学家James Kennedy和电气工程师Russell Eberhart于1995年提出。
自PSO诞生以来,它在许多方面都得到了改进,这一部分将介绍基本的粒子群优化算法原理和过程。
2.1粒子群优化粒子群优化(PSO)是一种群智能算法,其灵感来自于鸟类的群集或鱼群学习,用于解决许多科学和工程领域中出现的非线性、非凸性或组合优化问题。
图1 Russel Eberhart和James Kennedy2.1.1算法思想许多鸟类都是群居性的,并由各种原因形成不同的鸟群。
鸟群可能大小不同,出现在不同的季节,甚至可能由群体中可以很好合作的不同物种组成。
更多的眼睛和耳朵意味着有更多的及时发现食物和捕食者的机会。
鸟群在许多方面对其成员的生存总是有益的:觅食:社会生物学家E.O. Wilson说,至少在理论上,群体中的个体成员可以从其他成员在寻找食物过程中的发现和先前的经验中获益[1]。
如果一群鸟的食物来源是相同的,那么某些种类的鸟就会以一种非竞争的方式聚集在一起。
这样,更多的鸟类就能利用其他鸟类对食物位置的发现。
抵御捕食者:鸟群在保护自己免受捕食者侵害方面有很多优势。
◆更多的耳朵和眼睛意味着更多的机会发现捕食者或任何其他潜在的危险;◆一群鸟可能会通过围攻或敏捷的飞行来迷惑或压制捕食者;◆在群体中,互相间的警告可以减少任何一只鸟的危险。
空气动力学:当鸟类成群飞行时,它们经常把自己排成特定的形状或队形。
鸟群中鸟的数量不同,每只鸟煽动翅膀时产生不同的气流,这都会导致变化的风型,这些队形会充分利用不同的分型,从而使得飞行中的鸟类能够以最节能的方式利用周围的空气。
粒子群算法的发展需要模拟鸟群的一些优点,然而,为了了解群体智能和粒子群优化的一个重要性质,值得提一下是鸟群的一些缺点。
当鸟类成群结队时,也会给它们带来一些风险。
更多的耳朵和眼睛意味着更多的翅膀和嘴,这导致更多的噪音和运动。
粒子群优化算法的综述
粒子群优化算法(ParticleSwarmOptimization,简称PSO)是一种基于群体智能的优化算法,它模拟了鸟群或鱼群等自然群体的行为方式,通过不断地跟踪当前最优解和群体历史最优解,从而不断地搜索最优解。
PSO算法简单易实现,具有收敛速度快、鲁棒性好、能够避免陷入局部最优等优点,在多个优化问题中表现出较好的效果。
在PSO算法的优化过程中,每个粒子代表一个解,粒子的位置表示解的变量值,粒子的速度表示解的变量值的变化量。
通过不断地更新粒子的位置和速度,逐渐接近最优解。
PSO算法的基本流程包括初始化粒子群、计算适应度函数、更新粒子速度和位置、更新群体历史最优解和个体历史最优解等步骤。
PSO算法的应用领域非常广泛,包括工程设计优化、机器学习、数据挖掘、机器视觉等方面。
在实际应用中,PSO算法可以与其他优化算法相结合,形成混合算法,以提高优化效果。
此外,还可以通过改进PSO算法的参数设置、粒子群模型、适应度函数等方面来提高算法的性能。
总之,PSO算法是一种简单有效的优化算法,具有广泛的应用前景和研究价值,未来还有很大的发展空间。
- 1 -。
粒子群优化算法(PSO)附代码PSO算法的基本思想是通过对群体中每个粒子的速度进行随机扰动,并根据当前位置和速度的信息来更新粒子的位置。
每个粒子记住自己曾经达到的最优位置,同时也会记住整个群体中达到的最优位置。
通过不断迭代,群体中的每个粒子会逐渐收敛到最优解附近。
下面给出一个简单的PSO算法的实现代码:```pythonimport randomimport numpy as npclass Particle:def __init__(self, dim, min_bound, max_bound):self.position = np.zeros(dim)self.velocity = np.zeros(dim)self.best_position = np.zeros(dim)self.min_bound = min_boundself.max_bound = max_bounddef initialize(self):for i in range(len(self.position)):self.position[i] = random.uniform(self.min_bound,self.max_bound)self.velocity[i] = random.uniform(self.min_bound,self.max_bound)self.best_position = self.position.copydef update_velocity(self, global_best_position, c1, c2, w): r1 = random.uniform(0, 1)r2 = random.uniform(0, 1)self.velocity = w * self.velocity + c1 * r1 *(self.best_position - self.position) + c2 * r2 *(global_best_position - self.position)def update_position(self):self.position = self.position + self.velocityfor i in range(len(self.position)):if self.position[i] < self.min_bound:self.position[i] = self.min_boundelif self.position[i] > self.max_bound:self.position[i] = self.max_boundclass PSO:def __init__(self, num_particles, dim, min_bound, max_bound, max_iter):self.num_particles = num_particlesself.dim = dimself.min_bound = min_boundself.max_bound = max_boundself.max_iter = max_iterself.particles = []def initialize_particles(self):for _ in range(self.num_particles):particle = Particle(self.dim, self.min_bound, self.max_bound) particle.initializeself.particles.append(particle)def optimize(self, c1, c2, w):global_best_position = Noneglobal_best_fitness = float('inf')for _ in range(self.max_iter):for particle in self.particles:fitness = self.evaluate_fitness(particle.position)if fitness < self.evaluate_fitness(particle.best_position): particle.best_position = particle.position.copyif fitness < global_best_fitness:global_best_fitness = fitnessglobal_best_position = particle.position.copyparticle.update_velocity(global_best_position, c1, c2, w)particle.update_positionreturn global_best_position, global_best_fitnessdef evaluate_fitness(self, position):#根据具体问题定义适应度函数return np.sum(position ** 2)if __name__ == "__main__":num_particles = 50dim = 10min_bound = -10max_bound = 10max_iter = 100pso = PSO(num_particles, dim, min_bound, max_bound, max_iter) pso.initialize_particlesglobal_best_position, global_best_fitness =pso.optimize(c1=2, c2=2, w=0.8)print("Global best position:", global_best_position)print("Global best fitness:", global_best_fitness)```以上代码实现了一个简单的PSO算法,最大迭代次数为100次,粒子数为50个,维度为10维。
粒子群算法的详细介绍粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智能和进化计算理论的优化算法,由美国社会心理学家尼尔·韦勒等人于1995年提出。
该算法基于模拟鸟群捕食行为而得名,通过模拟鸟群的群体协作行为寻找最优解。
PSO算法基于群体智能的基本原理,将问题的解看做是空间中的一个个粒子,这些粒子在空间中移动,并通过个体和群体的历史经验进行协同优化。
算法的核心思想是通过粒子的移动和信息传递来最优解。
具体而言,PSO算法通过以下步骤进行求解:1.初始化粒子群:确定粒子的初始位置和速度。
2.根据目标函数计算粒子群中每个粒子的适应度值:将粒子的当前位置代入目标函数,得到该粒子的适应度值。
3.更新个体最优解:对于每个粒子,根据其当前的适应度值和历史最优适应度值,更新该粒子的个体最优解。
4.更新群体最优解:在粒子群中,找到适应度值最好的粒子,并更新群体最优解。
5.更新粒子速度和位置:通过更新规则调整粒子的速度和位置,使其朝着个体最优解和群体最优解的方向移动。
6.判断停止条件:重复步骤2至5,直到满足预设的停止条件(如达到最大迭代次数或找到满意的解)。
7.输出最优解:输出迭代完成后的最优解。
PSO算法的核心是粒子的速度更新规则。
速度更新时需要考虑个体最优解和群体最优解的影响,对于每个粒子i,其速度v_i(t+1)的更新可以按以下公式计算:v_i(t+1) = w * v_i(t) + c1 * r1 * (p_i - x_i(t)) + c2 * r2 * (p_best - x_i(t))其中,w是惯性权重,控制粒子速度的惯性程度;c1和c2是学习因子,分别控制个体和群体的权重;r1和r2是随机数,用于控制粒子的随机。
p_i和p_best分别表示粒子i的个体最优解和全局最优解。
x_i(t)表示粒子i在当前迭代次数t的位置。
PSO算法具有以下优点:1.全局能力强:通过粒子群的协同能力,可以快速到全局最优解。
粒子群算法Reynolds,Heppner,Grenader等发现,鸟群在行进过程中会突然同步地改变方向,散开或聚集。
一定有种潜在的规则在起作用,据此他们提出了对鸟群行为的模拟。
在他们的早期模型中,仅仅依赖个体间距的操作,即群体的同步是个体之间努力保持最优距离的结果。
1987年Reynolds对鸟群社会系统的仿真研究,一群鸟在空中飞行,每个鸟遵守以下三条规则:1)避免与相邻的鸟发生碰撞冲突;2)尽量与自己周围的鸟在速度上保持协调和一致;3)尽量试图向自己所认为的群体中靠近。
仅通过使用这三条规则,系统就出现非常逼真的群体聚集行为,鸟成群地在空中飞行,当遇到障碍时它们会分开绕行而过,随后又会重新形成群体。
作为CASKennedy和Eberhart在CAS中加入了一个特定点,定义为食物,鸟根据周围鸟的觅食行为来寻找食物。
他们的初衷是希望通过这种模型来模拟鸟群寻找食源的现象,然而实验结果却揭示这个仿真模型中蕴涵着很强的优化能力,尤其是在多维空间寻优中。
鸟群觅食行为Food Global BestSolutionPast BestSolution车辆路径问题构造一个2L维的空间对应有L个发货点任务的VRP问题,每个发货点任务对应两维:完成该任务车辆的编号k,该任务在k车行驶路径中的次序r为表达和计算方便,将每个粒子对应的2L维向量X分成两个L维向量:Xv(表示各任务对应的车辆)和Xr(表示各任务在对应的车辆路径中的执行次序)。
例如,设VRP问题中发货点任务数为7,车辆数为3,若某粒子的位置向量X为:发货点任务号: 1 2 3 4 5 6 7Xv : 1 2 2 2 2 3 3Xr : 1 4 3 1 2 2 1则该粒子对应解路径为:车1:0 → 1 → 0车2:0 → 4 →5 → 3→ 2→ 0车3:0 → 7→ 6→ 0粒子速度向量V与之对应表示为Vv和Vr。
该表示方法的最大优点是使每个发货点都得到车辆的配送服务,并限制每个发货点的需求仅能由某一车辆来完成,使解的可行化过程计算大大减少。