主动悬架种类及特点介绍
- 格式:docx
- 大小:212.20 KB
- 文档页数:5
主动悬架名词解释主动悬架(Active Suspension)是指一种用于汽车悬挂系统的先进技术,通过使用多种传感器和控制单元来实时监测和调整车身姿态和悬挂系统的运动特性,以提供更高的稳定性、舒适性和操控性能。
主动悬架最早由汽车制造商奔驰于1980年代末引入,并在高端豪华车型上广泛采用。
它的出现旨在解决传统悬挂系统的不足之处,比如过硬的悬挂导致的不良路感、车身姿态变化、车身侧倾等问题。
主动悬架的运作原理是基于实时的电子控制系统,该系统通过传感器实时监测车身位置、车速、行驶道路的条件等参数,并将这些信息发送给控制单元。
控制单元根据这些参数进行计算,并调整每个悬挂单元的状况,以达到最佳的平稳性和操控性能。
主动悬架采用了多种技术和组件,例如可调节阻尼器、气动悬挂、主动稳定杆等。
这些技术可以根据驾驶员的驾驶风格和道路条件进行实时调整,以提供最佳的驾驶体验。
主动悬架具有多项优点。
首先,它可以根据不同的驾驶条件和需求进行实时调整,提供更好的悬挂和稳定性能。
其次,它可以提供更高的舒适性,通过减少车身的颠簸和振动,带来更平顺的驾驶体验。
此外,主动悬架还可以提高车辆的操控性能,加强转弯和制动时的稳定性。
然而,主动悬架也存在一些缺点和挑战。
首先,与传统悬挂系统相比,主动悬架技术更加复杂和昂贵,增加了车辆的制造成本。
其次,悬挂系统的实时调整可能会对车辆的燃油经济性产生一定影响。
此外,主动悬架还需要精确的传感器和控制系统,并可能需要进行定期的维护和校准。
总体而言,主动悬架是一项重要的汽车技术创新,它通过实时调整悬挂系统来提供更高的稳定性、舒适性和操控性能。
虽然它存在一些挑战和限制,但随着技术的进一步发展和成本的降低,主动悬架将有望在更多汽车中得到应用。
汽车底盘悬架是指连接车身和车轮之间的一系列装置,主要作用是传递作用在车轮和车身之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,以保证汽车能平顺地行驶。
下面是几种常见的汽车底盘悬架类型:
- 麦弗逊式独立悬架:麦弗逊式独立悬架是当今世界用的最广泛的轿车前悬挂之一,其主要结构由螺旋弹簧、减震器、三角形下摆臂组成,绝大部分车型还会加上横向稳定杆。
它的优点是结构简单、占用空间小、响应较快、制造成本低,但缺点是稳定性不佳,抗侧倾和制动点头能力较弱。
- 双叉臂式独立悬架:双叉臂式独立悬架拥有上下两个叉臂,横向力由两个叉臂同时吸收,支柱只承载车身重量,因此横向刚度大。
其优点是侧向支撑好、抓地力强、路感清晰,但缺点是制造成本高、悬架定位参数设定复杂。
- 多连杆式独立悬架:多连杆式独立悬架是由连杆,减震器和弹性元件组成的,它的优点是舒适性好、操控性好、结构简单,但缺点是占用空间大、成本高、高速稳定性较差。
- 扭力梁式非独立悬架:扭力梁式非独立悬架是由两个纵摆臂和一个横梁组成的,其优点是结构简单、占用空间小、成本低,但缺点是舒适性较差、操控性较差、抗侧倾能力较弱。
不同类型的汽车底盘悬架具有不同的特点,在选择汽车底盘悬架时,要根据车辆的用途、行驶环境等因素进行综合考虑。
主动悬挂一、概述(一)汽车悬挂系统的作用及组成悬挂是车身与车轮之间的一切传力连接装置的总称。
它的作用是把路面作用于车轮上的垂直反力(支承力)、纵向反力(牵引力和制动力)和侧向反力以及这些反力所造成的力矩都传递到车身上,以保证汽车的正常行驶。
汽车悬挂尽管有各种不同的结构形式,但一般都是由弹性元件、减振器和导向机构三部分组成(图 1)。
由于汽车行驶的路面不可能绝对平坦,路面作用于车轮上的垂直反力往往是冲击性的,特别是在坏路面上高速行驶时,这种冲击力将达到很大的数值。
冲击力传到车身时,可能引起汽车机件的早期损坏;传给乘员和货物时,将使乘员感到极不舒适,货物也可能受到损伤。
为了缓和冲击,在汽车行驶系中,除了采用弹性的充气轮胎之外,在悬挂中还必须装有弹性元件,使车身与车轮之间作弹性联系。
但弹性系统在受到冲击后,将产生振动。
持续的振动易使乘员感到不舒适和疲劳。
故悬挂系统还应具有减振作用,以使振动迅速衰减,振幅迅速减小。
为此,在许多形式的悬挂系统中都设有专门的减振器。
车轮相对于车身跳动时,车轮(特别是转向轮)的运动轨迹应符合一定的要求,否则就会影响汽车的操纵稳定性,因此,悬挂系统中还应具有导向机构(如图 1中的横、纵向推力杆),以使车轮按一定的轨迹相对于车身跳动。
由此可见,上述这三个组成部分分别起缓冲、减振和导向的作用,然而三者共同的任务则是传力。
在多数的轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬挂系统中还设有辅助弹性元件--横向稳定器。
应当指出,悬挂系统只要求具备上述各个功能,在结构上并非一定要设置上述这些单独的装置不可。
例如常见的钢板弹簧,除了作为弹性元件起缓冲作用外,当它在汽车上纵向安置,并且一端与车架作固定铰链连接时,就可担负起决定车轮运动轨迹的任务,因而就没有必要再设置其它导向机构。
此外,一般钢板弹簧是多片叠成的,它本身即具有一定的减振能力,因而对减振要求不高时,在采用钢板弹簧作为弹性元件的悬挂系统中,就可以不装减振器(例如,一般中型货车的后悬挂和重型货车悬挂中都不装减振器)。
悬架系统的分类与特点汽车就像一个人,想要稳稳地站在地上,还能舒舒服服地跑起来,那可得靠一个重要的“腿脚”部件,这就是悬架系统啦。
悬架系统呢,大概可以分成两种类型,独立悬架和非独立悬架。
这就好比人的两条腿,有的时候能各自活动,有的时候是连在一起动的。
先说说独立悬架吧。
独立悬架就像是一个有自己想法的舞者,每个车轮都能单独地跳动,互不干扰。
这种悬架在过弯的时候可就厉害啦。
就像你在走那种弯弯绕绕的小路,独立悬架能让汽车的每个车轮都能根据路面的情况来调整自己的高度和姿态。
比如说双叉臂式独立悬架,它就像一个强壮的大力士,有两根叉臂支撑着车轮,能够承受很大的侧向力。
在那些高性能的跑车上,就经常能看到它的身影。
你想啊,跑车跑起来速度那么快,转弯的时候要是没有这么厉害的悬架,那不得像个醉汉一样东倒西歪呀。
还有麦弗逊式独立悬架,这种悬架在很多家用轿车上都能看到,它就像是一个经济适用型的小助手。
结构简单,占用空间小,还能提供不错的舒适性和操控性。
它就像一个贴心的小管家,虽然没有双叉臂那么强壮,但是把家用轿车照顾得妥妥当当的。
再看看非独立悬架。
非独立悬架就像是两个人绑着腿走路一样,两个车轮是连在一起运动的。
这种悬架结构简单,成本低,在一些小型车或者货车上比较常见。
就拿整体桥式非独立悬架来说吧,它就像一个老实巴交的老黄牛,虽然没有那么多花里胡哨的东西,但是很结实耐用。
货车装了这种悬架,能拉着重重的货物稳稳地跑在公路上。
不过这种悬架也有缺点哦,一个车轮要是碰到个坑洼,另一个车轮也得跟着晃悠,舒适性就没有独立悬架那么好啦。
就好比两个人绑着腿,一个人不小心崴了脚,另一个人也得跟着趔趄一下。
不同的悬架系统特点可真是大不一样呢。
独立悬架舒适性好,操控性也不错,但是成本高呀,维修起来也相对复杂一点。
这就像你买了一件高档的衣服,好看又舒服,但是要是破了个洞,修补起来可就没那么容易了。
非独立悬架呢,虽然简单耐用,成本低,可舒适性和操控性就差了那么一点意思。
简述悬架的分类以及结构特点悬架是指连接车身和车轮的部件,它起到支撑车身、缓冲震动和保持车轮与地面接触的作用。
根据结构和工作原理的不同,悬架可以分为多种类型,每种类型都有其独特的结构特点和适用场景。
一、按照结构特点分类1. 独立悬架:独立悬架是指每个车轮都有自己独立的悬架系统,互不干扰。
它可以分为以下几种类型:- 麦弗逊悬架:麦弗逊悬架是最常见的独立悬架类型,它采用了直立的弹簧和减震器,减小了车身的摇晃和滚动。
- 双叉臂悬架:双叉臂悬架由上下两个控制臂组成,能够提供更好的悬挂控制和稳定性。
- 多连杆悬架:多连杆悬架通过多个控制臂和转向杆连接车身和车轮,提供了更高的悬挂刚度和稳定性。
- 纵臂悬架:纵臂悬架采用了纵向控制臂,能够提供更好的悬挂控制和舒适性。
2. 非独立悬架:非独立悬架是指多个车轮共享同一个悬架系统,它可以分为以下几种类型:- 轴悬架:轴悬架是最简单的非独立悬架类型,通过一根横向的轴连接车轮,适用于负荷较大的载重车辆。
- 半悬挂:半悬挂是一种介于独立悬架和轴悬架之间的结构,它通过一根或多根弹簧连接车轮和车身,提供了一定的独立悬架效果。
- 无独立悬挂:无独立悬挂是指没有独立悬架的结构,多个车轮共享同一个悬架系统,适用于载重量大的商用车辆。
二、按照工作原理分类1. 弹簧悬架:弹簧悬架通过弹簧来支撑车身和缓冲道路震动,常见的弹簧类型包括螺旋弹簧、扭杆弹簧和气囊弹簧。
弹簧悬架具有结构简单、成本低、可靠性高的特点,适用于大多数乘用车和商用车。
2. 液压悬架:液压悬架通过液压系统来调节悬架刚度和减震效果,常见的液压悬架类型包括液压减震器和液压弹簧。
液压悬架具有调节范围广、悬挂稳定性好的特点,适用于高档乘用车和运动车辆。
3. 气压悬架:气压悬架通过气压系统来调节悬架刚度和减震效果,常见的气压悬架类型包括气囊悬架和气弹簧悬架。
气压悬架具有调节范围广、悬挂稳定性好的特点,适用于豪华乘用车和商务车。
三、悬架结构特点1. 独立悬架的结构特点:- 独立悬架能够使每个车轮独立运动,提供更好的悬挂控制和稳定性。
主动悬架技术的分析主动悬架技术(Active Suspension System)是一种通过控制车辆悬挂系统来适应路面状况和车辆动态特性的先进技术。
这种技术通过感知路面情况,对悬挂系统进行实时调节,从而提高车辆的乘坐舒适性、稳定性和操控性能。
本文将对主动悬架技术的原理、优势、应用以及发展方向进行分析。
首先,主动悬架技术的原理是通过传感器感知车辆运动状态和路面情况,然后将这些信息发送给控制器。
控制器根据接收到的信息实时计算出最佳悬挂特性,并通过液压、电动或者电磁力等方式对悬挂系统进行调节。
这种实时调节能够使车辆的悬挂系统更好地适应路面情况,保持车身平衡,减少车身摇晃和侧倾,提高乘坐舒适性和操控性能。
相比于传统悬挂系统,主动悬架技术具有以下几个优势。
首先,它能够大幅度提升乘坐舒适性。
传统悬挂系统在通过减震器提供悬挂刚度时,需要在舒适性和操控性之间找到一个平衡点。
而主动悬架技术通过实时调节悬挂特性,可以根据路面状况和车速自动调整刚度,使乘坐更加平稳舒适。
其次,主动悬架技术能够提高车辆的稳定性和操控性能。
主动悬架系统可以根据车速、转向角度、加速度等参数来实时调节悬挂刚度和阻尼,从而减少车身的侧倾和悬挂系统的回弹,提高车辆的稳定性和操控性能。
尤其在高速行驶和急转弯等情况下,能够更好地保持车辆的平衡和稳定。
此外,主动悬架技术还具有适应性强和可调节性好的特点。
悬挂系统可以根据路面状况的变化实时调整刚度和阻尼,因此可以适应各种路况和行车状态。
而且,主动悬架系统通常可以提供多种不同的悬挂模式,驾驶员可以根据自己的需求选择不同的模式,如舒适模式、运动模式等,从而调节悬挂特性,以适应不同的行车场景。
主动悬架技术在汽车行业的应用前景广阔。
目前,该技术已经在一些高端汽车中得到应用,如宝马、奔驰等。
随着技术的发展和成本的降低,预计主动悬架技术将逐渐普及到中低端汽车中。
尤其在城市交通日益拥堵的情况下,乘坐舒适性和操控性能将成为消费者购车的重要考虑因素,从而推动了主动悬架技术的市场需求。
汽车底盘悬挂系统的主动与半主动控制方法汽车底盘悬挂系统是整个汽车的重要组成部分,它直接影响着行车的舒适性、稳定性和安全性。
随着科技的不断进步,底盘悬挂系统的控制方式也得到了不断的优化和创新,其中主动与半主动控制方法成为当前研究的热点。
本文将重点介绍汽车底盘悬挂系统的主动与半主动控制方法。
一、主动控制方法主动悬挂系统是指可以主动调节悬挂刚度、高度和阻尼等参数的系统。
主动控制方法通过悬挂系统自身的传感器获取道路情况和车辆状态,再通过电子控制单元(ECU)对悬挂系统进行实时调节,从而保证车辆在不同道路和行驶状态下的稳定性和舒适性。
主动控制方法的优点在于可以根据实际情况主动作出调整,保持车辆在最佳状态下行驶。
例如,当车辆行驶在颠簸路面时,主动悬挂系统会加大阻尼力和提高悬挂高度,从而减小车身的颠簸感;当车辆高速行驶时,主动悬挂系统会降低悬挂高度和减小阻尼力,提高车辆的稳定性。
二、半主动控制方法半主动悬挂系统是指在主动悬挂系统的基础上进行改进,可以根据预设的控制算法主动调节悬挂参数。
与主动悬挂系统相比,半主动悬挂系统需要更少的电子控制单元和传感器,成本较低,但调节效果也相对有限。
半主动控制方法通过预设的控制算法对悬挂系统进行调节,例如将车辆的行驶状态、车速和转向角度等信息输入到控制算法中,再根据算法输出的结果对悬挂系统进行调节。
虽然半主动控制方法的调节精度不如主动控制方法准确,但在提升车辆性能和舒适性方面也有一定的作用。
三、主动与半主动控制方法的比较主动悬挂系统和半主动悬挂系统各有其优缺点。
主动悬挂系统可以实现更精确的调节,适应性更强,但成本相对较高;而半主动悬挂系统成本更低,适用性更广,但调节精度有所不足。
在实际应用中,需要根据车辆的具体情况和需求选择适合的悬挂控制方法。
综上所述,汽车底盘悬挂系统的主动与半主动控制方法在提升车辆性能和舒适性方面发挥着重要作用。
随着科技的不断发展和进步,相信底盘悬挂系统的控制方法会越来越完善,为驾驶员提供更加安全、舒适的行车体验。
全主动悬架名词解释一、什么是全主动悬架全主动悬架(Active Suspension)指的是一种利用电子、液压、气压等技术对汽车悬挂系统进行实时调节的装置。
该装置可以通过感应车体动态状态并根据之前预设的计算机程序来调整车身姿态、减震效果等,从而提供更好的悬挂性能和驾乘舒适度。
二、全主动悬架的工作原理全主动悬架系统由多个传感器、控制单元和执行器组成。
以下是全主动悬架的工作原理:2.1 传感器•加速度传感器:用于感知车辆的加速度,可以测量车辆的垂直加速度、前后加速度以及侧向加速度。
•车身倾斜角度传感器:用于感知车身的倾斜角度,可以测量车辆的横摆角度和俯仰角度。
•路面传感器:用于感知路面的不平度,可以测量路面的凹凸度和坡度。
2.2 控制系统全主动悬架的控制系统由控制单元和计算机程序组成。
它接收传感器传递的数据,并根据预设的计算机程序进行实时计算和分析。
控制系统可以根据路面状况和车辆状态,调整悬挂系统的参数,如阻尼、弹簧刚度等。
2.3 执行器执行器是全主动悬架系统中的执行部件,它们通过电子、液压、气压等方式对悬挂系统进行实时调节。
执行器可以根据控制系统的指令,调整悬挂系统的状态,包括悬挂高度、刚度、减震力等。
三、全主动悬架的优势全主动悬架相比传统悬挂系统具有如下优势:3.1 提高车辆操控性全主动悬架通过实时调控悬挂参数,可以根据驾驶员的驾驶方式和路面状况来调整车辆的悬挂状态。
它可以提供更好的悬挂刚度和响应速度,从而提高车辆的操控性和稳定性。
3.2 提升驾乘舒适度全主动悬架可以根据车辆速度和路面状况来调整悬挂系统,使车辆在加减速、行驶过程中的颠簸和震动得到更好的控制。
它可以提供更舒适的驾乘体验,减少驾驶员和乘客的疲劳感。
3.3 改善路面适应性全主动悬架可以感知路面的不平度,并根据不同路况实时调整悬挂系统的参数。
它可以改善车辆在不同类型路面上的悬挂适应性,提供更好的路面附着力和悬挂舒适度。
3.4 提高安全性能全主动悬架可以根据车辆的动态状态和外部环境的变化来调整车身姿态和减震效果。
汽车悬挂系统的类型与特点悬挂系统是汽车底盘中的重要部件,它承载着整车重量并保证车辆平稳行驶。
根据不同的需求和技术特点,汽车悬挂系统有多种类型。
在本文中,我们将详细介绍几种常见的汽车悬挂系统类型以及它们的特点。
一、独立悬挂系统独立悬挂系统是目前广泛使用的一种悬挂系统类型。
它的主要特点是四个车轮之间相互独立,每个车轮的悬挂系统都可以独立调节。
这种设计可以有效减少车身倾斜,提升悬挂系统对路面的适应性和稳定性。
独立悬挂系统大多数采用弹簧和减震器的组合,常见的类型有麦弗逊悬挂、双叉臂悬挂和多连杆悬挂等。
1. 麦弗逊悬挂麦弗逊悬挂是一种简单且成本较低的前独立悬挂系统,适用于经济型和家用车。
它的特点是采用一根支柱将车轮与车身连接,并通过弹簧和减震器提供缓冲和稳定性。
麦弗逊悬挂结构简单,容易维修,但对于运动性能和高速行驶的稳定性稍显不足。
2. 双叉臂悬挂双叉臂悬挂是一种高性能的前独立悬挂系统,常用于高档乘用车和跑车。
它采用两个上下交错的臂连接车轮和车身,通过弹簧和减震器提供悬挂支撑。
双叉臂悬挂系统具有较高的稳定性和操控性能,能够有效减少车身倾斜,提升行驶舒适性。
3. 多连杆悬挂多连杆悬挂是一种复杂且高性能的后独立悬挂系统,常用于高档车和豪华车。
它由多个连杆和横臂组成,通过弹簧和减震器实现对车轮的支撑。
多连杆悬挂系统具有优秀的悬挂调校能力和驾驶稳定性,使得驾乘者可以在高速行驶和复杂路况下获得更好的悬挂性能和舒适性。
二、非独立悬挂系统非独立悬挂系统是一种较为简单和成本较低的悬挂系统类型。
与独立悬挂系统不同,非独立悬挂系统将车轮之间的运动联系在一起。
尽管非独立悬挂系统相对简单,但在适应性和悬挂性能方面存在一定的局限性。
常见的非独立悬挂系统包括扭力梁悬挂和半独立悬挂等。
1. 扭力梁悬挂扭力梁悬挂是一种结构简单且成本较低的非独立悬挂系统,广泛应用于经济型车和SUV等车型。
扭力梁悬挂通过一根横向的扭力梁连接车轮和车身,提供支撑和缓冲作用。
悬架的分类及结构特点悬架的分类悬架是指连接车身与车轮之间的部件系统,其主要功能是支撑和减震车身,同时使车辆保持稳定的操控性。
根据不同的设计原理和结构方式,悬架可以分为以下几类:1. 独立悬架独立悬架是指每个车轮的悬架都是独立的,互相不影响。
常见的独立悬架包括麦弗逊悬架、双叉臂悬架、多连杆悬架等。
独立悬架具有很好的悬架性能,能够适应不同路面的变化,提供较好的驾驶舒适性和操控性。
2. 非独立悬架非独立悬架是指每个车轮的悬架之间存在连接,互相影响。
常见的非独立悬架包括扭力梁式悬架、梁桥式悬架等。
非独立悬架结构简单、成本低,但悬架刚度较大,驾驶舒适性和操控性较差。
3. 半独立悬架半独立悬架是介于独立悬架和非独立悬架之间的一种悬架形式,它既具备独立悬架的优点,又考虑了成本和紧凑性。
常见的半独立悬架包括拖曳臂式悬架、麦弗逊式半独立悬架等。
悬架的结构特点不同类型的悬架结构具有不同的特点,下面将对各类悬架的结构特点进行详细分析。
1. 麦弗逊悬架麦弗逊悬架属于独立悬架的一种,广泛应用于现代汽车中。
它的结构特点如下:•由弹簧和减振器组成,减振器一般是麦弗逊筒。
•轴向向上升紧的承力弹簧使得车身的振动能够得到最佳的控制。
•上部的麦弗逊悬架组件可以通过控制臂旋转来调节悬挂高度和车身倾斜。
•结构简单、重量轻,易于生产和安装。
2. 双叉臂悬架双叉臂悬架也是一种独立悬架,常见于高级车辆和运动型汽车。
它的结构特点如下:•由上下两个控制臂和上下球头连接在一起。
•上下控制臂可以通过旋转和上下平移来调整悬挂高度和车身倾斜。
•双叉臂悬架的结构较为复杂,但可以提供更好的悬挂性能和高速行驶的稳定性。
3. 多连杆悬架多连杆悬架也属于独立悬架的一种,常见于高档车辆和跑车。
它的结构特点如下:•由多个控制臂构成,可以实现多个自由度的运动。
•控制臂的数量和长度可以根据需要进行调整,以实现更高的悬挂性能和操控性。
•多连杆悬架的结构复杂度较高,制造和安装成本相对较高。
汽车悬架系统常识——整理、综述关于汽车悬架系统——简单知识了解李良车辆⼯程说明:1、单独的关于悬架的资料太多,将资料简化,尽可能简单些,写的不好,多多批评指正。
第⼆部分对悬架的设计和选型很有参考价值,可以看看。
2、另外搜集了⼀些关于悬架⽅⾯的资料(太多了,提供部分),也很不错。
3、有什么问题或建议多多提,我喜欢~~~~~~~~第⼀部分简单回答您提出的问题悬架的作⽤:1、连接车体和车轮,并⽤适度的刚性⽀撑车轮;2、吸收来⾃路⾯的冲击,提⾼乘坐舒适性;3、有助于⾏驶中车体的稳定,提⾼操作性能;悬架系统设计应满⾜的性能要点:1、保证汽车有良好的⾏驶平顺性;相关联因素有:振动频率、振动加速度界限值2、有合适的减振性能;应与悬架的弹性特性很好地匹配,保证车⾝和车轮在共振区的振幅⼩,振动衰减快3、保证汽车具有良好的操纵稳定性;主要为悬架导向机构与车轮运动的协调,⼀⽅⾯悬架要保证车轮跳动时,车轮定位参数不发⽣很⼤的变化,另⼀⽅⾯要减⼩车轮的动载荷和车轮跳动量4、汽车制动和加速时能保持车⾝稳定,减少车⾝纵倾(点头、后仰)的可能性,保证车⾝在制动、转弯、加速时稳定,减⼩车⾝的俯仰和侧倾5、能可靠地传递车⾝与车轮之间的⼀切⼒和⼒矩,零部件质量轻并有⾜够的强度、刚度和寿命悬架的主要性能参数的确定:1、前、后悬架静挠度和动挠度;2、悬架的弹性特性;3、(货车)后悬架主、副簧刚度的分配;4、车⾝侧倾中⼼⾼度与悬架侧倾⾓刚度及其在前、后轴的分配;5、前轮定位参数的变化与导向机构结构尺⼨的选择;悬架系统与转向系统:1、悬架机构位移的转向效应,悬架系对操纵性、稳定性的影响之⼀是悬架机构的位移随弹簧扰度⽽变所引起的转向效应。
轴转向,使⽤纵置钢板弹簧的车轴式悬架的汽车在转弯时车体所发⽣侧摆的情况下,转弯外侧车轮由于弹簧被压缩⽽后退,内侧车轮由于弹簧拉伸⽽前进,其结果是整个车轴相当原来的车轴中⼼产⽣转⾓,这种现象称为周转向。
前轮产⽣转向不⾜的效应,后轮产⽣转向过度的效应。
可调式悬挂就是根据车辆不同的需求状态来对悬挂的高度和软硬进行调整,从而使车辆处在最佳的行驶状态。
当下汽车的可调式悬挂按控制类型可分为三大类。
1、空气式可调悬挂空气式可调悬挂就是指利用空气压缩机形成压缩空气,并通过压缩空气来调节汽车底盘的离地间隙一种悬挂方式。
一般装备空气式可调悬挂的车型在前轮和后轮的附近都设有离地距离传感器,按离地距离传感器的输出信号,行车电脑判断出车身高度的变化,再控制空气压缩机和排气阀门,使弹簧自动压缩或伸长,从而起到减震的效果。
空气式可调悬挂中的空气弹簧的软硬能根据需要自动调节。
当在高速行驶时,空气悬挂可以自动变硬来提高车身的稳定性,而长时间在低速不平的路面行驶时,行车电脑则会使悬挂变软来提高车辆的舒适性。
代表车型:奥迪A8、奔驰S级350 、保时捷卡宴。
空气式悬挂结构示意图2、液压式可调悬挂液压式可调悬挂就是指根据车速和路况,通过增减液压油的方式调整汽车底盘的离地间隙来实现车身高度升降变化的一种悬挂方式。
内置式电子液压集成模块是液压式可调悬挂的核心,可根据车速、减振器伸缩频率和伸缩程度的数据信息,在汽车重心附近安装有纵向、横向加速度和横摆陀螺仪传感器,用来采集车身振动、车轮跳动、车身高度和倾斜状态等信号,这些信号被传送给行车电脑,行车电脑在根据输入信号和预先设定的程序操纵前后四个执行油缸工作。
通过增减液压油的方式实现车身高度的升或降,也就是根据车速和路况自动调整离地间隙,从而提高汽车的平顺性和操纵稳定性。
代表车型:宝马7系3、电磁式可调悬挂电磁式可调悬挂就是指利用电磁反应来实现汽车底盘的高度升降变化的的一种悬挂方式。
它可以针对路面情况,在1毫秒时间内作出反应,抑制振动,保持车身稳定,特别是在车速很高又突遇障碍时更能显出它的优势。
它的反应速度比传统的悬挂快5倍,即使是在最颠簸的路面,也能保证车辆平稳行驶。
电磁悬挂系统是由行车电脑、车轮位移传感器、电磁液压杆和直筒减振器组成。
独立悬架的种类与其特点
所谓悬架,是指汽车的车身(车架)与车桥或车轮之间的一切传力连接装置的总称,悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩。
其主要包括弹性元件与阻尼元件,弹性元件能够缓和车身所受冲击,阻尼元件可以消除车身的振动.
悬架的形式主要分为两大类——独立悬架和非独立悬架。
独立悬架采用断开式的车桥,悬架之间互相独立,两车轮间的运动时不会相互影响。
独立悬架的操控性和舒适性较好,但构造较复杂,承载能力小。
独立悬架主要分为三种形式——麦弗逊式独立悬架、双叉臂式独立悬架、多连杆式独立悬架。
独立悬架示意
麦弗逊式独立悬架
麦弗逊悬挂,是现在非常常见的一种独立悬挂形式,大多应用在车辆的前轮。
简单地说,麦弗逊式悬挂的主要结构即是由螺旋弹簧加上减震器以及A字下摆臂组成,减震器可以避免螺旋弹簧受力时向前、后、左、右偏移的现象,限制弹簧只能作上下方向的振动,并且可以通过对减震器的行程、阻尼以及搭配不同硬度的螺旋弹簧对悬挂性能进行调校。
麦弗逊式独立悬架
麦弗逊式悬挂由螺旋弹簧、减震器、A字形下摆臂组成,绝大部分车型还会加上横向稳定杆。
麦弗逊式独立悬架的物理结构为支柱式减震器兼作主销,承受来自于车身抖动和地面冲击的上下预应力,转向节(也可说车轮,因为转向节作用于车轮)则沿着主销转动;此外,其主销可摆动,特点是主销位置和前轮定位角随车轮的上下跳动而变化,且前轮定位变化小,拥有良好的行驶稳定性。
在麦弗逊式独立悬架中,支柱式减震器除具备减震效果外,还要担负起支撑车身的作用,所以它的结构必须紧凑且刚度足够,并且套上螺旋弹簧后还要能减震,而弹簧与减震器一起,构成了一个可以上下运动的滑柱。
还有一个关键部件---A字型下摆臂,它的作用是为车轮提供横向支撑力,并能承受来自前后方向的预应力。
车辆在运动过程中,车轮所承受的所有方向的冲击力量就要靠支柱减震器和A字型下托臂这两个部件承担。
麦弗逊式独立悬架由螺旋弹簧、减震器、下三角摆臂组成,是一种经久耐用的独立悬架。
它结构紧凑、空间小、成本低,具有很强的道路适应能力,在中小型轿车上有很多的应用。
双叉臂式独立悬架
双叉臂式悬架的诞生和麦弗逊式悬架有着紧密的血缘关系,它们的共同点为:下控制臂都由一根V字形或A字形的叉形控制臂构成,液压减震器充当支柱支撑整个车身。
不同处则在于双叉臂式悬架多了一根连接支柱减震器的上控制臂,这样一来有效增强了悬架整体的可靠性和稳定性。
双叉臂式独立悬架结构
双叉臂式悬架由上下两根不等长V 字形或A字形控制臂以及支柱式液压减震器构成,通常上控制臂短于下控制臂。
上控制臂的一端连接着支柱减震器,另一端连接着车身;下控制臂的一端连接着车轮,而另一端则连接着车身。
上下控制臂还由一根连接杆相连,这根连杆同时也还与车轮相连接。
在整个悬架构造中,通过对多个支点的连接提高了上下控制臂以及整个悬架的整体性。
如果是前轮驱动的车型,那么装配在前轮上的双叉臂悬架在上下控制臂之间除装配有传动机构外,还有转向机构,这使得其结构比不带转向机构的后轮要复杂得多。
在转向机构中,转向主销由转向托盘与上下控制臂的连接位置和角度确定,转向轮可绕主销转动,同时也可随下控制臂上下跳动。
在双叉臂悬架中通常采用球头连接来满足前车轮的运动需要:上下控制臂与转向主销的连接部位既要支持前轮实现转向又要控制车轮的上下抖动。
不过由于上下控制臂的长度差问题,这也对双叉臂悬架的设计提出了严峻的考验——如果上下控制臂的长度差过小,车轮抖动时会造成左右轮距偏大,加快轮胎外侧磨损;反之,如果上下臂长度差过大,则会造成车轮转向时外倾角过大,使轮胎内侧磨损加快。
因此,可以通过增加上下控制臂的长度来减小轮距的变化和控制外倾角的变化。
另外,双叉臂悬架的上下控制臂能起到抵消横向作用力的功效,这使得支柱减震器不再承受横向作用力,而只应对车轮的上下抖动,因此在弯道上具有较好的方向稳定性。
素有“弯道之王”美誉的马自达6前悬采用的就是双叉臂悬架。
因此,马自达6在弯道行驶时的侧倾较小,车身的整体感保持得非常好。
多连杆式独立悬架
多连杆式独立悬架是通过各种连杆配置把车轮与车身相连的一套悬挂机构。
由于连杆的角度和方向不同,悬挂在收缩时能够自动调整轮胎外倾角、前束角等,创造很好的乘坐舒适感。
由于其设计的复杂性和制造成本较高,多连杆式独立悬架多于豪华汽车。
多连杆式独立悬架结构
以常见的五连杆式后悬架为例,五根连杆:主控制臂、前置定位臂、后置定位臂、上臂和下臂分别对各个方向的作用力进行抵消。
比如,当车辆进行左转弯时,后车轮的位移方向正好与前转向轮相反,如果位移过大则会使车身失去稳定性,摇摆不定。
此时,前后置定位臂的作用就开始显现,它们主要对后轮的前束角进行约束,使其在可控范围内;相反,由于后轮的前束角被约束在可控范围内,如果后轮外倾角过大则会使车辆的横向稳定性减低,所以在多连杆悬架中增加了对车轮上下进行约束的控制臂,一方面是更好地使车轮定位,另一方面则使悬架的可靠性和刚度进一步提高。
(上:正外倾,下:负外倾)
从车辆操控性角度来看,多连杆悬架的吊悬结构能通过前后置定位臂和上下控制臂有效控制车轮的外倾角及前束角。
例如,当车轮驶过坑洼路面时,首先上下控制臂开始在可控范围摆动,及时给予车轮足够的弹跳行程;如果路面继续不平,同时车辆的速度加块,此时前后置定位臂的作用就是把车轮始终固定在一个行程范围值内,同时液压减震器也会伴随上下控制臂的摆动吸收震动,而主控制臂的工作就是上下摆动配合上下控制臂使车轮保持自由弹跳,令车厢始终处于相对平稳的状态。
正是因为多连杆悬架具备多根连接杆,并且连杆可对车轮进行多个方面作用力控制,所以在做轮胎定位时可对车轮进行单独调整,并且多连杆悬架有很大的调校空间及改装可能性。
不过多连杆悬架在研发上规模较为庞大,由于结构复杂、成本高、零件多、组装费时,并且要达到非独立悬架的耐用度,始终需要保持连杆不变形、不移位,在材料使用和结构优化上都很考究。
所以多连杆悬架是以追求优异的操控性和行驶舒适性为主要诉求的。
三种独立悬架各自优缺点
在这三种悬架中,麦弗逊是结构最简单的,也是制造成本最低用途最广的。
它主要用在大多数中小型车的前桥上。
它以简单独霸天下。
也正是因为他简单所以他轻,响应速度快。
并且在一个下摇臂和支柱的几何结构下能自动调整车轮外倾角,让其能在过弯时自适应路面,让轮胎的接地面积最大化,而且占用空间小适合小型车以及大部分中型车使用。
但是由于结构简单使得悬架刚度较弱,稳定性差,转弯侧倾明显。
双叉臂悬架拥有上下两个摇臂,横向力由两个摇臂同时吸收,支柱只承载车身重量。
因此横向刚度大。
由于上下使用不等长摇臂(上长下短),让车轮在上下运动时能自动改变外倾角并且减小轮距变化减小轮胎磨损。
并且也能自适应路面,轮胎接地面积大,贴地性好。
但是由于多了一个上摇臂,所以需要站用较大的空间,因此小型车的前桥一般布置不下此种悬架。
多连杆悬架,通过各种连杆配置(通常有三连杆,四连杆,五连杆),首先能实现双叉臂悬架的所有性能,然后在双叉臂的基础上通过连杆连接轴的约束作用使得轮胎在上下运动时前束角也能相应改变,这就意味着弯道适应性更好,如果用在前驱车的前悬架,可以在一定程度上缓解转向不足,给人带来精确转向的感觉;如果用在后悬架上,能在转向侧倾的作用下改变后轮的前束角,这就意味着后轮可以一定程度的随前轮一同转向,达到舒适操控两不误的目的。
跟双叉臂式一样,多连杆悬架同样需要占用较多的空间,而且多连杆悬架无论是制造成本还是研发成本都是最高的所以常用在中高级车的后桥上。
所以总的来说,现在最经济适用,性价比最高的前独立悬架是麦弗逊,能做高性能调校和匹配的悬架是多连杆和双叉臂。
结构最复杂实现性能最多的是多连杆。
但由于后两者在结构上使其质量较重所以为了达到更好的响应速度常用铝合金打造,那么成本就可想而知了。