高吸水性树脂概述、特性和应用
- 格式:ppt
- 大小:1.01 MB
- 文档页数:85
高吸水性树脂产品指标高吸水性树脂是一种吸水量可达自向重量几十倍甚至几千倍的树脂。
这种树脂不但吸水量大,而且保水能力强,并有很强的增稠性能,因此可广泛应用于生理卫生用品、农林园艺、改选沙漠、医药、土木工程、工业用品、保鲜包装材料、日用品等领域。
一、物理性质高吸水性树脂是一种具有吸水功能的透明粉剂,本品同时含有植物生长所需的氮、磷等元素、降解后元素、无残留、不污染土壤。
二、主要指标三、主要用途1、用作土壤改良剂:将高吸水性树脂与栽培土按一定比例混合,可以改善团粒结构,提高土壤的保水性、透水性和透气性,缩小土壤昼夜温差变化,调节封的干湿度,减少灌溉次数,达到改良劣质土壤、抗旱保收的目的。
2、用作种子培育促进剂和苗木移植保存剂:高吸水性树脂以混合法、片法和涂覆法用于植物种子培育,可使其提早发育,提高发芽率,缩短发芽时间,促进生长。
将高吸水性树脂与草籽拌种,可提高飞机在干旱地区播种的成活率;将高吸水性树脂吸水凝胶涂覆在出土的幼苗的根部,进行保水处理,可大大提高幼苗的成活率和移植存放时间。
3、用作化肥缓释剂:用高吸水性树脂对化肥进行包衣后施肥,可使肥料缓慢释放,提高化肥的利用率,减少肥料流失造成的浪费和对环境的污染。
4、其它:高吸水性树脂还可用于土壤培土、农药扩散剂、菌固培养等方面。
四、包装及储存1、包装:本公司的产品均采用三合一牛皮纸包装,内衬聚乙烯塑料膜,每袋净重25公斤。
2、储存:该产品应置于阴凉通风的库房中,注意防潮。
聚丙烯酸钠百科名片聚丙烯酸钠聚丙烯酸钠是一种新型功能高分子材料和重要化工产品,固态产品为白色(或浅黄色)块状或粉末,液态产品为无色(或淡黄色)粘稠液体。
溶解于冷水、温水、甘油、丙二醇等介质中,对温度变化稳定,具有固定金属离子的作用,能阻止金属离子对产品的消极作用,是一种具有多种特殊性能的表面活性剂。
目录[隐藏]概述性质加工或制造方法用途概述性质加工或制造方法用途[编辑本段]概述聚丙烯酸钠,英文名Sodium polyacrylate,缩写PAAS或简称PAA-Na,结构式为[-CH2-CH(COONa)]n-。
高吸水性树脂在河道整治中的应用前景随着城市化进程的不断推进,河道整治成为改善城市生态环境和水资源保护的重要手段。
而高吸水性树脂作为一种新型环保材料,具有较强的保水保肥能力和较高的吸水速度,在河道整治中拥有广阔的应用前景。
高吸水性树脂,又称超级吸水树脂,是一种具有高吸水性的聚合物材料。
它能以自身重量的几百倍甚至上千倍的倍数吸收并保持水分,形成水凝胶状。
在河道整治中,高吸水性树脂可以应用于以下几个方面。
首先,高吸水性树脂可以有效改善河道水质。
当高吸水性树脂与水接触时,树脂内外的水分达到动态平衡,一部分水分被树脂吸收并形成凝胶状,从而降低了水中的悬浮物和有害物质的浓度。
这种吸附作用可以有效净化河道水体,提高水质的透明度和清洁度。
其次,高吸水性树脂的保水保肥特性使其能够在河道整治中发挥生态修复的作用。
该树脂能够吸收大量水分,并形成坚韧的凝胶状结构,使树脂与土壤紧密结合。
这种结合可以增加土壤的持水性和肥力,提供植物生长所需的养分和水分,促进植被的恢复和生态系统的重建。
此外,高吸水性树脂还可以用于河道护坡工程。
由于护坡区域的土壤常受到水流冲刷和侵蚀的影响,容易发生坡面破损和坡体塌方等问题。
而高吸水性树脂的润湿性和粘附性使其能够牢固地黏附在土壤表面,形成一层坚韧的保护膜,防止土壤被冲刷和侵蚀。
这种应用方式不仅能够有效稳定河道坡面,还能够减少土壤流失和水土流失的问题。
此外,高吸水性树脂在河道整治中还可以用于雨水收集和储存。
由于城市化进程的加速,城市面积不断扩大,雨水的排水问题成为一个日益紧迫的环境挑战。
高吸水性树脂可以应用于雨水集水设施中,通过吸收和储存雨水,缓解城市排水系统的压力,实现雨水资源的合理利用。
尽管高吸水性树脂在河道整治中具有广阔的应用前景,但也需要注意其合理使用与管理。
首先,需要对树脂的选择、使用方法和用量进行科学研究和评估,确保树脂的使用对环境和生态系统没有负面影响。
其次,应根据不同地区的实际情况和需求,制定相应的使用标准和规范,确保树脂的应用能够发挥最佳效果。
高吸水性树脂的性能及应用叶良隐 02300021[摘 要]综述了高吸水树脂的制备、结构及吸水机理,介绍了高吸水树脂在各方面的应用,并提出了目前的主要研究趋势。
[关键词]高吸水树脂;吸水机理;发展;制备;应用。
高吸水性树脂也称超强吸水性聚合物(SuperabsorbentPolymers ),简写为SAP。
它是一种含有羧基、羟基等强亲水性基团并具有一定交联度的水溶胀型的高分子聚合物,不溶于水也不溶于有机溶剂,能够吸收自身重量的几百倍甚至上千倍的水,且吸水膨胀后生成的凝胶具有良好的保水性和耐候性,一旦吸水膨胀成水凝胶 ,即使加压也难以将水分离出来。
同时 ,高吸水性树脂可循环使用。
因此 ,越来越受到人们的关注。
目前 ,超强吸水树脂已在工业、农业、林业、卫生用品等领域中得到广泛应用 ,并显示出更为广阔的发展前景[1]。
1.SAR的结构与吸水机理1.1 SAR的交联网络结构SAR 与传统的吸水材料不同,它可以吸收比自身重几百倍甚至几千倍的水。
在处于吸水状态时其保水性好,在压力下水也不会从中溢出。
而传统的吸水材料只能吸收自身重量的 20倍的水。
树脂的高吸水性主要与它的化学结构和聚集态中极性基团的分散状态有关,它具有低交联度亲水性的三维空间网络结构[2]。
它是由化学交联和聚合物分子链间的相互缠绕物理交联构成。
吸水前,高分子链相互缠绕在一起,彼此交联成网状结构,从而达到整体上的紧固程度;吸水后,聚合物可以看成是高分子电解质组成的离子网络和水的构成物。
在这种离子网络中存在可移动离子对,它们是由高分子电解质离子组成的[3]。
1.2 SAR的吸水机理关于SAR的吸水机理存在不同的说法。
其中有两种占主要地位,金益芬等[3]认为SAR吸水有3个原动力:水润湿、毛细管效应和渗透压。
高吸水能力主要由这3个方面的因素决定。
水润湿是所有物质吸水的必要条件,聚合物对水的亲和力大,必须含有多个亲水基团(如—OH,—COOH等);毛细管效应的作用则是让水容易迅速地扩散到聚合物中去;渗透压可以使水通过毛细管扩散、渗透到聚合物内部或者渗透压以水连续向稀释聚合物固有的电解质浓度方向发动。
高吸水性树脂的结构特点和应用前景高吸水性树脂是一种新型的功能高分子材料, 由含强亲水性基团的单体经过适度交联使其能够吸收上百倍甚至上千倍的水, 并且具有很强的保水性能。
它的微观结构因其合成体系不同而呈现多样性。
它的吸水机理可以用Flory 的凝胶理论及刘廷栋的离子网络结构来解释。
一、高吸水性树脂的结构特点高吸水性树脂吸水但不溶于水, 也不溶于常规的有机溶剂。
用不同方法合成的不同种类的吸水性树脂的结构也是千差万别。
对绝大多数高吸水性树脂而言, 从化学结构看, 它的主链或接枝侧链上含有羧基、羟基等强亲水性官能团, 这些亲水基团与水的亲合作用是其具吸水性的最主要内因; 从物理结构看, 要实现其高吸水性, 树脂必须是一个低交联度的三维网络, 网络的骨架可以是淀粉、纤维素等天然高分子, 也可以是合成树脂(如聚丙烯酸类) ; 从微观结构看, 高吸水性树脂的微观结构也因其合成体系不同而呈现出多样性: 如黄美玉等研究的淀粉接枝丙烯酸呈海岛型结构, I1Sakata等研究的纤维素接枝丙烯酰胺呈峰窝型结构, 而部分水解的聚丙烯酰胺树脂则呈粒状结构( GranularSt ructure) 等。
I1Sakata 等采用冷冻态—SEM 透镜法来研究高吸水性树脂的微观结构, 此法具有高准确度和客观反映原始结构的优点, 另外, 研究树脂吸水后形成水凝胶的多孔网状结构对其吸水机理的探讨及性能的改进也有十分重要的意义。
日本的吉武敏彦认为, 高吸水性树脂是具有像ABS 塑料那样的“岛屿”型微相分离结构。
在聚乙烯醇—丙烯酸盐嵌段共聚物中, 聚丙烯酸盐就像无数的“小岛”分布在聚乙烯醇的“大海”中。
聚乙烯醇使聚丙烯酸盐不再溶于水, 当聚丙烯酸盐吸水溶胀时, 分子伸展, 使吸水凝胶具有高强度。
而当聚丙烯酸盐失水时, 聚乙烯醇又对失水起着阻挡层的作用。
对于淀粉—聚丙烯酸盐接枝聚合物来说, 聚丙烯酸盐是“岛”, 而淀粉是“海”, 淀粉使聚丙烯酸盐不溶于水而本身吸水作用不大。
高吸水树脂摘要:高吸水树脂是一种具有极高吸水能力的材料,广泛应用于医疗、卫生、农业、工业等领域。
本文将介绍高吸水树脂的定义、制备方法、吸水机理、应用领域等方面内容,以帮助读者更好地了解和应用这种材料。
一、引言高吸水树脂是一种具有很高吸水能力的材料,能够迅速吸收自身质量数十倍的水分。
它在各个领域都有广泛的应用,比如在医疗用品的制造中,用于护理褥疮、卫生巾等产品的吸水层;在农业上用来提高土壤保水能力;在工业上用作液体吸附材料等。
本文将从定义、制备方法、吸水机理和应用领域等几个方面对高吸水树脂进行深入介绍。
二、定义高吸水树脂,也称为高分子吸水树脂,是一种以交联聚合物为主体,具有极高吸水能力的材料。
它通常具有大量的多孔结构,能够在短时间内吸收大量的水分,并保持较长时间的持水性能。
三、制备方法目前,常见的高吸水树脂制备方法有以下几种:1. 原位聚合法:通过合成聚合物的方法来制备高吸水树脂,常用的原料有丙烯酸酯类单体、交联剂等。
2. 预处理法:先将聚合物材料预处理,然后再进行交联,最后制备成高吸水树脂。
3. 化学交联法:通过化学反应制备高吸水树脂,常用的化学交联剂有二硫化二苯醚、异氰酸酯等。
4. 物理交联法:通过物理手段将聚合物交联起来,确保材料的吸水性能。
四、吸水机理高吸水树脂的吸水机理主要有以下几种:1. 渗透压平衡:高吸水树脂中的孔隙能够形成渗透压梯度,使水分从低浓度到高浓度的位置移动,从而实现吸水效果。
2. 溶剂化作用:高吸水树脂中的孔隙能够与水分子产生相互作用,使水分子被吸附到聚合物的内部而非外部,从而实现吸水效果。
3. 力学作用:高吸水树脂的材料结构可以形成一种吸附作用,使水分子通过物理吸附的方式被固定住,从而实现吸水效果。
五、应用领域高吸水树脂在各个领域都有广泛的应用,主要包括以下几个方面:1. 医疗卫生领域:用于制造护理褥疮垫、卫生巾等产品的吸水层,保持皮肤的干燥和清洁。
2. 农业领域:用于改善土壤的保水能力,提高植物的生长质量和产量。
吸水树脂应用绿植的原理介绍吸水树脂是一种具有良好吸水性能的材料,可以用来提供植物所需的水分。
它在绿植养护中起到了重要的作用。
本文将介绍吸水树脂在绿植养护中的原理及应用。
吸水树脂的特性•高吸水性:吸水树脂可以迅速吸收大量的水分,起到储水的作用。
•持水能力强:吸水树脂可以长时间保持水分,减少频繁浇水的需求。
•能释放水分:吸水树脂可以根据植物的水分需求来释放适量的水分。
•环境友好:吸水树脂是一种无毒、无害的材料,对环境无污染。
吸水树脂在绿植养护中的应用1.提供充足的水分:吸水树脂可以将大量的水分吸收并储存起来,通过根据植物的水分需求来释放适量的水分,从而为植物提供充足的水分。
2.减少浇水频次:由于吸水树脂具有持水能力强的特性,可以长时间保持水分,减少了频繁浇水的需求,给人们的养护工作带来了便利。
3.缓解干旱环境:吸水树脂的高吸水性能和持水能力可以帮助植物在干旱环境中生存,提供了良好的养分和水分供给,减轻了植物受干旱影响的程度。
4.提高植物生存率:吸水树脂能够提供可控的水分供给,避免过度浇水或水分不足造成的植物死亡,从而提高了植物的生存率。
5.保持土壤湿润度:吸水树脂可以帮助保持土壤的湿润度,在植物生长过程中起到稳定土壤湿度的作用,为植物的生长提供了良好的环境。
6.降低养护难度:由于吸水树脂减少了频繁浇水的需求,可以降低植物的养护难度,方便了人们的养护工作。
吸水树脂的使用方法1.选择适合的吸水树脂:根据植物的种类和具体需求选择合适的吸水树脂规格和品牌,确保吸水树脂的质量和效果。
2.使用适量的吸水树脂:根据植物的根系大小和需水量,使用适量的吸水树脂,避免过量或不足。
3.混合吸水树脂和土壤:将适量的吸水树脂和土壤混合均匀,确保吸水树脂能够与土壤充分接触和发挥作用。
4.喷水激活吸水树脂:在混合吸水树脂和土壤后,喷水激活吸水树脂,使其吸水膨胀,准备好为植物提供水分。
5.按照植物的生长需求进行管理:根据植物的生长需求,定期检查和管理吸水树脂的湿润程度,避免出现水分过多或过少的情况。
高吸水性树脂的制备和应用高吸水性树脂是一种具有极高吸水性能的新型材料。
它具有非常强的水吸附性和保水性能,可以在单体、乳液或粉末形式等多种形式出现。
高吸水性树脂被广泛应用于各种领域,如医疗、农业、环保等等。
本文将介绍高吸水性树脂的制备及其应用。
一、高吸水性树脂的制备高吸水性树脂的制备方法主要有两种,分别是物理交联法和化学交联法。
其中,化学交联法是最常用的方法。
1. 物理交联法物理交联法是将含有吸水性单体的水溶液或水相悬浊液中加入一些交联剂,使得单体间形成物理交联点,从而形成高分子网络结构。
实验中可采用以下方法:(1)冻融法将含有吸水性单体的水溶液或水相悬浊液冷冻至低于0℃,然后加热至30~40℃进行融化,反复进行数次,直到交联点足够稳定。
(2)加盐交联法在吸水性单体水溶液或水相悬浊液中加入一些盐类,使得单体形成物理交联点。
2. 化学交联法化学交联法是将含有吸水性单体的水溶液或水相悬浊液中加入一些交联剂,在高温或室温下反应形成交联点。
实验中可采用以下方法:(1)自由基交联法使用引发剂进行自由基聚合反应,产生交联点。
通常使用双丙烯酰胺作为单体,N,N'-亚甲基双丙烯酰胺或N,N'-亚甲基双丙烯酰胺偶氮联产物作为引发剂。
(2)离子交联法使用离子反应组成交联点,通常使用一些含有羟基的单体,如丙烯酸、甲基丙烯酸和2-羟乙基丙烯酸等。
二、高吸水性树脂的应用1. 医疗用途高吸水性树脂被广泛应用于医疗领域,如医用敷料和尿不湿等。
吸收率高、吸收速度快、保持时间长等特点让它成为医疗敷料中重要的原料。
2. 农业用途高吸水性树脂可以被应用于土壤改良和植物生长促进。
在干旱或缺水期,将高吸水性树脂添加到土壤中可以提高土壤的保水性能,促进植物的生长。
3. 环保用途高吸水性树脂可以用于水处理和土壤污染治理。
它可以吸附有害物质、去除水的污染物和土壤中的重金属等。
高吸水性树脂作为一种新型的材料,在各个领域都有着广泛的应用前景。
高吸水性树脂在水域治理中的应用前景引言:随着全球水资源的快速消耗和环境污染问题的日益严重,对水域治理的需求变得越来越迫切。
高吸水性树脂作为一种新型材料,具有优异的吸水性能和环境适应性,在水域治理中展现出广阔的应用前景。
本文将从高吸水性树脂的基本特性、应用领域以及未来发展方向三个方面进行探讨和分析。
一、高吸水性树脂的基本特性高吸水性树脂是一种具有超强含水性的树脂材料,其最大特点就是在吸水后能够迅速形成凝胶状物质,并能保持相对稳定的体积。
这种材料在吸水后能够将大量的水分固定在凝胶中,形成一种类似于海绵状的结构,具有良好的持水性和附水性。
同时,高吸水性树脂具有较高的物理强度和化学稳定性,能够承受一定的外部压力而不易变形或破碎。
二、高吸水性树脂在水域治理中的应用领域1. 水质净化高吸水性树脂可以作为一种有效的水质净化材料,通过其优异的吸附性能,可以吸附和固定水体中的有害物质,如重金属离子、氨氮等。
此外,高吸水性树脂还能够起到过滤和分离的作用,去除水中的悬浮物和浮游生物,提高水质的透明度和纯净度。
2. 水体截污水域污染问题严重时,高吸水性树脂可以用于水体截污工程。
通过将高吸水性树脂投放到污染源周围的水域中,可以迅速吸附水中的有害物质并形成凝胶,阻止污染物的进一步扩散和蔓延,有效控制污染源的扩散范围,减轻对水环境的破坏。
3. 废水处理高吸水性树脂作为一种理想的吸附材料,在废水处理中具有广泛的应用前景。
其优良的吸附性能可以有效地吸附并去除废水中的有害物质,如有机物、色素、重金属离子等。
与传统的废水处理方法相比,高吸水性树脂具有操作简便、成本低廉、净化效果好的优点,能够为废水处理带来新的解决方案。
4. 水域生态修复水域生态修复是目前水域治理中一个重要的课题。
高吸水性树脂可以作为一种生态修复材料,用于改善受损水域的水环境条件。
通过投放高吸水性树脂,可以恢复水域中的水位、湿度和养分等,为水体生态系统的恢复和重建提供有利条件,促进水中生物的繁衍和生长。
高吸水性树脂简介1、定义高吸水性树脂(Superabsorbent Polymer, SAP)是一种具有轻度交联的三维网络状吸水性的材料,含有大量的亲水性基团,能在很短的时间内迅速吸收大量的天然水分从而达到完全饱和状态,而且即便是施加一定的压力依旧能够有效保住水分的不流失。
2、高吸水性树脂的结构特点从化学结构看,SAP聚合网络链段上含有大量强亲水性基团,如羧基、羟基、酰胺基和磺酸基等,可以与水分子发生氢键作用,具备优异的亲和性能,所以,制备的SAP树脂与水接触后能够迅速吸收水分而达到溶胀平衡。
从物理结构看,SAP是一个三维网络结构,具有一定的交联密度,即使与水相遇也不容易发生溶解。
通常制备的SAP多为水溶性线性聚合物,如果没有经过交联处理,在吸收水分后便会形成一种流动性强的聚合液,无法达到保水效果。
进行适度的交联后,SAP在吸收水分溶胀后不会被水溶解。
水分被包裹在树脂网络内部,即便施加一定的压力水分也不会溢出,达到束水目的。
3、高吸水性树脂的性能(1)吸水性能SAP有着超高的吸水性能主要是因为其自身的三维网络结构,其聚合物网络链段上含有-COOH、-OH、-CONH2等多个强亲水性官能团,能够吸收大量的水分并将水分保持在网络内部。
其吸水性能也会因亲水基团类型的不同、网络结构、外部环境的变化而具有差异。
(2)耐盐性能根据SAP的吸水机制,可以大量吸收纯水中的自由水,但是如果水里含有盐离子的话,液体吸收能力会大幅下降,而SAP经常被广泛应用于农业、医疗、环保等领域,其吸收介质为肥料、血液、尿液和土壤等,其大多为混合的盐溶液,所以单纯的追求吸纯水的能力远不能满足其应用的要求,因此关于SAP耐盐性能的研究有重要的意义。
(3)保水性能保水性能是SAP的一个重要功能。
它可以通过交联网络将大量的水或水溶液锁定在网络内,从而保持大量的水。
即使在特定外压下,水分也难从网格中流出,吸水性树脂的网格构造是保水性的关键。
高吸水性树脂介绍与应用一、高吸水性树脂介绍:高吸水性树脂又称为超强吸水剂,是一种含有羧基等强亲水性基团并具有一定交联度的水溶胀型高分子聚合物。
不溶于水和有机溶剂,但具有吸水性和保水性亦具高分子材料的优点。
二、高吸水树脂的分类:高吸水性高分子材料按照原料的不同可以分3 类:淀粉系列、纤维素系列和合成系列。
前两类以淀粉或纤维素为主要原料,在主链上接枝共聚上亲水性或水解后为亲水性基团的烯烃单体;后一类主要由聚丙酸型树脂或聚乙烯醇型树脂为主要原料,经过适度的交联即可制得,近年来已经成为了高吸水性高分子材料的热点。
三、高吸水性树脂的结构:高吸水性树脂是一种三维网络结构,它不溶于水而能大量吸水膨胀,形成高含水凝胶。
高吸水性树脂的主要性能是具有吸水性和保水性,这是因为其分子中含有强吸水性基团和一定的网络结构,即具有一定的交联度。
实验表明:吸水基团极性越强、含量越多,吸水率就越高,保水性也越好。
而交联度需要适中,交联度过低则保水性差,尤其在外界有压力时水很容易脱除。
高吸水性树脂的微观结构因合成体系的不同而呈现出多样性。
大多数高吸水性树脂是由分子链上含有强亲水性基团(如羧基、磺酸基、酞胺基、羟基等)的三维网状结构所组成。
吸水时,首先是离子型亲水基团在水分子的作用下开始离解,阴离子固定在高分子链上,阳离子作为可移动离子在树脂内部维持电中性。
由于网络具有弹性,因而可容纳大量水分子,当交联密度较大时,树脂分子链的伸展受到制约,导致吸水率下降。
随着离解过程的进行,高分子链上的阴离子数增多,离子之间的静电斥力使树脂溶胀,同时,树脂内部的阳离子浓度增大,在聚合物网络内外溶液之间形成离子浓度差,渗透压随之增大,使水进一步进入聚合物内部。
当离子浓度差提供的驱动力不能克服聚合物交联结构及分子链间的相互作用(如氢键)所产生的阻力时,吸水达到饱和。
四、高吸水性树脂的吸水机理:高吸水性树脂吸水机理有多种解释,其中有两种占主要地位。
一者认为高吸水性树脂吸水有3个原动力:水润湿、毛细管效应和渗透压。
高吸水性树脂高吸水性树脂(Super Absothent Polymer,简称SAP),是由低分子物质经聚合反应合成或由高分子化合物经化学反应制成,是一种经适度交联而具有三维网络结构的新型功能高分子材料,分子链上含有很多强亲水基团,能吸收相当于自身重量几百倍甚至几千倍的水,这是以往材料所不可比拟的。
高吸水性树脂不但吸水能力强,且保水能力非常高,吸水后无论加多大压力也不脱水【5】。
因此被广泛地应用到农业、林业、园艺等的土壤改良剂、卫生用品材料、工业用脱水剂、保鲜剂、防雾剂、医用材料、水凝胶材料等。
1高吸水树脂的结构高吸水树脂是一种三维网络结构,它不溶于水而大量吸水膨胀形成高含水凝胶。
高吸水树脂的主要性能是具有吸水性和保水性。
要具有这种特性,其分子中必须含有强吸水性基团和一定的网络结构,即具有移动的交联度。
实验表明:吸水基团极性极性越强,含量越多,吸水率越高,保水性也越好。
而交联度需要适中,交联度过低则保水性差,尤其在外界有压力时水很容易脱。
高吸水性树脂的微观结构因合成体系的不同而呈现出多样性[1]。
1.1离子型高吸水树脂结构大多数高吸水性树脂是由分子链上含有强亲水性基团(如梭基、磺酸基、酞图1 高吸水树脂的离子网络结构胺基、轻基等)的三维网状结构所组成,如图1所示。
吸水时,首先是离子型亲水团在水分子的作用下开始离解,阴离子固定在高分子链上,阳离子作为可移动离子在树脂内部维持电中性由于网络具有弹性,因而可容纳大量水分子,当交联密度较大时,树脂分子链的伸展受到制约,导致吸水率下降。
随着离解过程的进行,高分子链上的阴离子数增多,离子之间的静电斥力使树脂溶胀,同时,树脂内部的阳离子浓度增大,在聚合物网络内外溶液之间形成离子浓度差,渗透压随之增大,使水进一步进入聚合物内部。
当离子浓度差提供的驱动力不能克服聚合物交联构造及分子链间相互作用(如氢键)所产生的阻力时,达到饱和量。
1.2淀粉接枝型高吸水性树脂结构日本三洋化成工业公司温品谦二等根据V on E. Cgruber等的方法探讨了淀粉接枝丙烯酸的聚合物结构,见图2如示【2】。