材料力学性能重点总结
- 格式:doc
- 大小:56.00 KB
- 文档页数:13
材料性能知识点总结材料的性能是指材料在特定条件下所表现出来的力学、物理、化学、热学等方面的特性。
了解材料的性能对于进行材料的选择、设计以及工程应用至关重要。
本文将从材料的力学性能、物理性能、化学性能和热学性能等方面进行总结。
一、材料的力学性能1. 强度材料的强度是指材料抵抗外部力作用下抵抗破坏的能力。
常见的强度指标包括抗拉强度、抗压强度、抗弯强度等。
强度是材料最基本的性能之一,对于工程结构的设计和选择材料至关重要。
2. 韧性材料的韧性是指材料在受到外部力作用下发生损伤时的能力。
与强度不同,韧性反映了材料在受到冲击或者局部损伤后的延展性和吸能能力。
韧性高的材料通常会在受力后产生一定程度的变形而不会立即断裂。
3. 刚度材料的刚度是指材料在受力作用下的变形程度。
刚度高的材料在受力后会产生较小的变形,具有较好的抗变形能力。
在很多工程应用中要求材料具有一定的刚度以满足设计要求。
4. 硬度材料的硬度是指材料抵抗表面划伤或者压痕的能力。
硬度测试通常通过洛氏硬度、巴氏硬度等方法进行检测。
硬度是材料的持久性能,硬度高的材料通常耐磨损、耐腐蚀能力较强。
5. 疲劳性能材料的疲劳性能是指材料在受到交变载荷或者重复载荷作用下的抗疲劳能力。
疲劳性能是材料在实际使用中的重要性能之一,对于机械零部件、航空工业等领域的材料选择至关重要。
6. 蠕变性能材料的蠕变性能是指材料在高温下长期受力变形的抗蠕变能力。
在高温环境下,材料的蠕变性能会影响结构的安全和可靠性。
二、材料的物理性能1. 密度材料的密度是指单位体积内的质量。
密度的大小直接影响了材料的重量和强度。
通常情况下,密度较小的材料更适合用于要求轻量化设计的结构。
2. 热导率材料的热导率是指材料传导热量的能力。
热导率高的材料在传热和散热方面表现更佳。
3. 电导率材料的电导率是指材料传导电流的能力。
电导率高的材料通常用于导电材料和电子器件的制造。
4. 磁性材料的磁性是指材料在外磁场作用下的磁导能力。
材料力学性能材料受力后就会产生变形,材料力学性能是指材料在受力时的行为。
描述材料变形行为的指标是应力σ和应变ε,σ是单位面积上的作用力,ε是单位长度的变形。
描述材料力学性能的主要指标是强度、延性和韧性。
其中,强度是使材料破坏的应力大小的度量;延性是材料在破坏前永久应变的数值;而韧性却是材料在破坏时所吸收的能量的数值。
1.弹性和刚度材料在弹性范围内,应力与应变成正比,其比值E=σ/ε(MN/m2)称为弹性模量。
E标志着材料抵抗弹性变形的能力,用以表示材料的刚度。
E值主要取决于各种材料的本性,一些处理方法(如热处理、冷热加工、合金化等)对它影响很小。
零件提高刚度的方法是增加横截面积或改变截面形状。
金属的E值随温度的升高而逐渐降低。
2.强度在外力作用下,材料抵抗变形和破坏的能力称为强度。
根据外力的作用方式,有多种强度指标,如抗拉强度、抗弯强度、抗剪强度等。
当材料承受拉力时,强度性能指标主要是屈服强度和抗拉强度。
(1)屈服强度σs在图1-6(b)上,当曲线超过A点后,若卸去外加载荷,则试样会留下不能恢复的残余变形,这种不能随载荷去除而消失的残余变形称为塑性变形。
当曲线达到A点时,曲线出现水平线段,表示外加载荷虽然没有增加,但试样的变形量仍自动增大,这种现象称为屈服。
屈服时的应力值称为屈服强度,记为σS。
有的塑性材料没有明显的屈服现象发生,如图1-6(c)所示。
对于这种情况,用试样标距长度产生0.2%塑性变形时的应力值作为该材料的屈服强度,以σ0.2表示。
机械零件在使用时,一般不允许发生塑性变形,所以屈服强度是大多数机械零件设计时选材的主要依据也是评定金属材料承载能力的重要机械性能指标。
材料的屈服强度越高,允许的工作应力越高,零件所需的截面尺寸和自身重量就可以较小。
(2)抗拉强度σb材料发生屈服后,其应力与应变的变化如图1-1所示,到最高点应力达最大值σb。
在这以后,试样产生“缩颈”,迅速伸长,应力明显下降,最后断裂。
力学材料类知识点总结力学材料是研究各种材料在受力作用下的力学性能的一个重要领域,包括金属材料、塑料材料、陶瓷材料、复合材料和生物材料等。
力学材料的研究对于材料工程、结构设计、材料制备具有重要的意义。
在这篇总结中,我们将介绍一些力学材料的基本知识点,包括材料的力学性能、材料的力学测试方法、材料的损伤与断裂、材料的应用等方面的内容。
1. 材料的力学性能材料的力学性能是指材料在受力作用下所表现出的力学特性及其与力学参数之间的关系。
主要包括材料的弹性性能、塑性性能、断裂性能、疲劳性能等。
材料的力学性能直接影响到材料的应用领域和使用寿命。
弹性性能:材料的弹性性能是指材料在受力作用下的变形能力。
当受力作用停止后,材料能够恢复到原始形状和尺寸。
弹性模量是衡量材料弹性性能的重要参数,不同的材料具有不同的弹性模量。
塑性性能:材料的塑性性能是指材料在受力作用下的变形能力。
当受力超过一定程度时,材料会发生塑性变形并无法完全恢复原态。
屈服强度和延伸率是衡量材料塑性性能的重要参数。
断裂性能:材料的断裂性能是指材料在受力作用下的抗断裂能力。
断裂韧性、断裂强度和断裂伸长率是衡量材料断裂性能的重要参数。
疲劳性能:材料的疲劳性能是指材料在受循环加载作用下的抗疲劳性能。
疲劳寿命、疲劳极限和疲劳裂纹扩展速率是衡量材料疲劳性能的重要参数。
2. 材料的力学测试方法力学测试是研究材料力学性能的重要手段,通常包括拉伸试验、压缩试验、弯曲试验、扭转试验、硬度测试、冲击试验等。
这些测试方法能够准确地评估材料的力学性能,并为材料的应用提供有效的数据支持。
拉伸试验:拉伸试验是测定材料拉伸强度、屈服强度、断裂伸长率等参数的常用试验方法。
通过拉伸试验得到的应力-应变曲线能够反映材料的弹性行为和塑性行为。
压缩试验:压缩试验是测定材料在压缩状态下的力学性能参数,如压缩强度、屈服强度等。
压缩试验能够评估材料在受压状态下的表现情况。
弯曲试验:弯曲试验是测定材料在弯曲状态下的力学性能参数,如抗弯强度、屈服强度、弯曲模量等。
材料力学性能-考前复习总结(前三章)金属材料的力学性能指标是表示其在力或能量载荷作用下(环境)变形和断裂的某些力学参量的临界值或规定值。
材料的安全性指标:韧脆转变温度Tk;延伸率;断面收缩率;冲击功Ak;缺口敏感性NSR材料常规力学性能的五大指标:屈服强度;抗拉强度;延伸率;断面收缩率;冲击功Ak;硬度;断裂韧性第一章单向静拉伸力学性能应力和应变:条件应力条件应变 =真应力真应变应力应变状态:可在受力机件任一点选一六面体,有九组应力,其中六个独立分量。
其中必有一主平面,切应力为零,只有主应力,且,满足胡克定律。
应力软性系数:最大切应力与最大正应力的相对大小。
1 弹变1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
ae=1/2σeεe=σe2/2E。
取决于E和弹性极限,弹簧用于减震和储能驱动,应有较高的弹性比功和良好弹性。
需通过合金强化及组织控制提高弹性极限。
2)弹性不完整性:纯弹性体的弹性变形只与载荷大小有关,而与加载方向及加载时间无关,但对实际金属而言,与这些因素均有关系。
①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
与材料成分、组织及试验条件有关,组织约不均匀,温度升高,切应力越大,滞弹性越明显。
金属中点缺陷的移动,长时间回火消除。
弹性滞后环:由于实际金属有滞弹性,因此在弹性区内单向快速加载、卸载时,加载线与卸载线不重合,形成一封闭回路。
吸收变形功循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力(塑性区加载,塑性滞后环),也叫内耗(弹性区加载),或消震性。
②包申格效应:定义:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
(反向加载时弹性极限或屈服强度降低的现象。
特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了)解释:与位错运动所受阻力有关,在某滑移面上运动位错遇位错林而使其弯曲,密度增大,形成位错缠结或胞状组织,相对稳定。
材料力学性能:材料在各种外力作用下抵抗变形和断裂的能力。
屈服现象:外力不增加,试样仍然继续伸长,或外力增加到一定数值时突然下降,随后在外力不增加或上下波动情况下,试样继续伸长变形。
屈服过程:在上屈服点,吕德斯带形成;在下屈服点,吕德斯带扩展;当吕德斯带扫过整个试样时,屈服伸长结束。
屈服变形机制:位错运动与增殖的结果。
屈服强度:开始产生塑性变形的最小应力。
屈服判据:屈雷斯加最大切应力理论:在复杂应力状态下,当最大切应力达到或超过相同金属材料的拉伸屈服强度时产生屈服。
米赛斯畸变能判据:在复杂应力状态下,当比畸变能等于或超过相同金属材料在单向拉伸屈服时的比畸变能时,将产生屈服。
消除办法:加入少量能夺取固溶体合金中溶质原子的物质,使之形成稳定化合物的元素;通过预变形,使柯氏气团被破坏。
影响因素:1.内因:a)金属本性及晶格类型:金属本性及晶格类型不同,位错运动所受的阻力不同。
b)晶粒大小和亚结构:减小晶粒尺寸将使屈服强度提高。
c)溶质元素:固溶强化。
d)第二相2.外因:温度(-);应变速率(+);应力状态。
第二相强化(沉淀强化+弥散强化):通过第二相阻碍位错运动实现的强化。
强化效果:在第二相体积比相同的情况下,第二相质点尺寸越小,强度越高,强化效果越好;在第二相体积比相同的情况下,长形质点的强化效果比球形质点的强化效果好;第二相数量越多,强化效果越好。
细晶强化:通过减小晶粒尺寸增加位错运动障碍的数目(阻力大),减小晶粒内位错塞积群的长度(应力小),从而使屈服强度提高的方法。
同时提高塑性及韧性的机理:晶粒越细,变形分散在更多的晶粒内进行,变形较均匀,且每个晶粒中塞积的位错少,因应力集中引起的开裂机会较少,有可能在断裂之前承受较大的变形量,即表现出较高的塑性。
细晶粒金属中,裂纹不易萌生(应力集中少),也不易传播(晶界曲折多),因而在断裂过程中吸收了更多能量,表现出较高的韧性。
固溶强化:在纯金属中加入溶质原子形成固溶合金,将显著提高屈服强度。
材料的力学性能
1.刚度---材料抵抗弹性变形的能力
2.强度---材料对塑性变形的抗力
1)屈服强度σs ,材料抵抗塑性变形的能力。
2)抗拉强度σb ,材料抵抗断裂的能力。
3)条件屈服强度σ0.2,有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2。
4)屈强比σs/σb,钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。
屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75,合金结构钢为0.84-0.86。
3.塑性---材料塑性变形的能力
1)延伸率δ,试样拉伸断裂后标距段的总变形ΔL与原标距长度L之比的百分数。
2)断面收缩率ψ,试样拉断时颈缩部位的截面积与原始截面积之差,与原始截面积之比的百分数。
4.硬度---材料表面上,局部体积内对塑性变形的抗力
1)布氏硬度 HB,测量有色金属、铸铁等软材料。
2)洛氏硬度 HRC,测量淬火钢等硬材料(当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量)。
3)维氏硬度 HV,测量硬质合金等高硬度材料。
6.疲劳强度 -1 ---材料承受N次应力循环而不断裂的最大应力
疲劳机理:应力集中、表面状态、内部缺陷等导致显微裂纹>裂纹扩张>零件有效截面减小>
断裂。
绪论弹性:指材料在外力作用下保持和恢复固有形状和尺寸的能力。
塑性:材料在外力作用下发生不可逆的永久变形的能力。
刚度:材料在受力时抵抗弹性变形的能力。
强度:材料对变形和断裂的抗力。
韧性:指材料在断裂前吸收塑性变形和断裂功的能力。
硬度:材料的软硬程度。
耐磨性:材料抵抗磨损的能力。
寿命:指材料在外力的长期或重复作用下抵抗损伤和失效的能。
材料的力学性能的取决因素:内因——化学成分、组织结构、残余应力、表面和内部的缺陷等;外因——载荷的性质、应力状态、工作温度、环境介质等条件的变化。
第一章材料在单向静拉伸载荷下的力学性能1.1 拉伸力—伸长曲线和应力—应变曲线应力—应变曲线退火低碳钢在拉伸力作用下的力学行为可分为弹性变形、不均匀屈服塑性变形、均匀塑性变形和不均匀集中塑性变形和断裂几个阶段。
弹性变形阶段:曲线的起始部分,图中的oa段。
多数情况下呈直线形式,符合虎克定律。
屈服阶段:超出弹性变形范围之后,有的材料在塑性变形初期产生明显的塑性流动。
此时,在外力不增加或增加很小或略有降低的情况下,变形继续产生,拉伸图上出现平台或呈锯齿状,如图中的ab段。
均匀塑性变形阶段:屈服后,欲继续变形,必须不断增加载荷,此阶段的变形是均匀的,直到曲退火低碳钢应力—应变曲线线达到最高点,均匀变形结束,如图中的bc段。
不均匀塑性变形阶段:从试样承受的最大应力点开始直到断裂点为止,如图中的cd段。
在此阶段,随变形增大,载荷不断下降,产生大量不均匀变形,且集中在颈缩处,最后载荷达到断裂载荷时,试样断裂。
弹性模量E:应力—应变曲线与横轴夹角的大小表示材料对弹性变形的抗力,用弹性模量E表示。
塑性材料应力—应变曲线(a)弹性—弹塑性型:Oa为弹性变形阶段,在a点偏离直线关系,进入弹—塑性阶段,开始发生塑性变形,开始发生塑性变形的应力称为屈服点,屈服点以后的变形包括弹性变形和塑性变形。
在m点卸载,应力沿mn降至零,发生加工硬化。
(b)弹性-不均匀塑性-均匀塑性型:与前者不同在于出现了明显的屈服点aa′,有时呈屈服平台状,有时呈齿状。
材料的力学性能材料的力学性能是指材料在外力作用下的力学行为和性能表现。
力学性能是材料工程中非常重要的一个指标,它直接关系到材料的使用寿命、安全性和可靠性。
材料的力学性能主要包括强度、韧性、硬度、塑性、蠕变等指标。
首先,强度是材料抵抗外力破坏的能力。
常见的强度指标包括抗拉强度、抗压强度、抗弯强度等。
抗拉强度是材料在拉伸状态下抵抗断裂的能力,抗压强度是材料在受压状态下抵抗破坏的能力,抗弯强度是材料在受弯曲状态下抵抗破坏的能力。
强度指标直接反映了材料的抗破坏能力,是衡量材料力学性能的重要参数。
其次,韧性是材料抵抗断裂的能力。
韧性是指材料在受外力作用下能够吸收大量的变形能量而不断裂的能力。
韧性好的材料具有良好的抗冲击性能和抗疲劳性能,能够在外力作用下保持良好的形状和结构完整性。
再次,硬度是材料抵抗划痕和穿刺的能力。
硬度是材料抵抗外界硬物划破或穿透的能力,是材料抵抗局部破坏的重要指标。
硬度高的材料通常具有较好的耐磨性和耐磨损性能,能够在恶劣环境下保持较长时间的使用寿命。
此外,塑性是材料在受力作用下发生形变的能力。
塑性好的材料能够在外力作用下产生较大的变形,具有良好的加工性能和成形性能。
材料的塑性直接影响到材料的加工工艺和成型工艺,是材料加工和成形的重要指标。
最后,蠕变是材料在长期受力作用下发生变形和破坏的现象。
蠕变是材料在高温、高压、长期受力作用下产生的一种渐进性变形和破坏,是材料在高温高应力环境下的重要性能指标。
综上所述,材料的力学性能是衡量材料质量和可靠性的重要指标,强度、韧性、硬度、塑性和蠕变是材料力学性能的重要方面。
在材料设计、选材和工程应用中,需要充分考虑材料的力学性能,选择合适的材料以满足工程需求。
同时,通过合理的材料处理和改性,可以改善材料的力学性能,提高材料的使用寿命和安全可靠性。
名词解释: 1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。 2弹性比功:表示金属材料吸收弹性变形功的能力. 3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。 4包申格效应:金属材料通过预先加载产生少量塑性变形(残余应变小于1%—4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象. 5塑性:金属材料断裂前发生塑性变形的能力。常见塑性变形方式:滑移和孪生 6弹性极限:以规定某一少量的残留变形为标准,对应此残留变形的应力。 7比例极限:应力与应变保持正比关系的应力最高限。 8屈服强度:以规定发生一定的残留变形为标准,如通常以0.2%的残留变形的应力作为屈服强度。 9韧性断裂是材料断裂前发生产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的断裂过程,在裂纹扩展过程中不断的消耗能量。韧性断裂的断裂面一般平行于最大切应力并于主应力成45度角。 10脆性断裂是突然发生的断裂,断裂前基本上不发生塑形变形,没有明显征兆,危害性很大。断裂面一般与主应力垂直,端口平齐而光亮,常呈放射状或结晶状。 11剪切断裂是金属材料在切应力作用下,沿着滑移面分离而造成的断裂,又分滑断和微孔聚集性断裂。 12解理断裂:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,总是脆性断裂。 13缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生变化,产生所谓“缺口效应“ ①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的 单向应力状态改变为两向或者三向应力状态。 ② 缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。 8缺口敏感度:有缺口强度的抗拉强度σbm与等截面尺寸光滑试样的抗拉强度σb的比值. NSR=σbn / σs NSR越大 缺口敏感度越小 9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商 10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J 11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状,这种现象称为低温脆性 12 脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。材料屈服强度急剧升高的温度,或断后延伸率,断后收缩率,冲击吸收功急剧减小的温度就是韧脆转变温度tk,tk是一个温度区间 16应力场强度因子KI :表示应力场的强弱程度,对于某一确定的点的大小直接影响应力场的大小,KI 越大,则应力场各应力分量也越大 17应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后产生的低应力脆断现象 第一章 3.金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:由于弹性变形时原子间距在外力作用下可逆变化的结果,应力与应变关系实际上是原子间作用力与原子间距的关系,所以弹性模量与原子间作用力有关,与原子间距也有一定关系,原子间作用力决定于金属原子本性和晶格类型,故弹性模量也主要决定于金属原子本性和晶格类型。 合金化,热处理,冷塑性变形对弹性模量的影响较小,所以金属材料的弹性模量是一个对组织不敏感的力学性能指标,温度加载速率等外在因素对其影响也不大 7.决定金属屈服强度的因素有哪些? 1)影响屈服强度的内在因素:1、结合键2、组织结构:固溶强化、形变强化、沉淀强化及弥散强化、晶界和亚晶强化,前3个提高强度的同时降低了塑性,最后一个既可以提高强度又可以提高塑性3原子本性 2)影响屈服强度的外因:温度,应变速率、应力状态。一般的,升高温度,强度降低;应变速率增大,强度增加;应力状态也影响屈服强度,切应力分量越大,强度越低。 13.何谓拉伸断口三要素?影响宏观拉伸断口形态的因素有哪些? 答:拉伸断口三要素是纤维区、放射区、剪切唇 宏观拉伸断口性态因试样形状、尺寸金属材料的性能以及试样温度、加载速度和受力状态不同而变化,一般来说,材料强度提高,塑性降低,则放射区比例增大,试样尺寸加大,放射区增大明显而纤维区变化不大 试述韧性断裂与脆性断裂的区别,为什么脆断更危险? 金属材料的脆性和韧性是金属材料在不同条件下表现的力学行为或力学状态,两者是相对的并可以相互转化,在一定条件下,金属材料为脆性还是韧性取决于裂纹扩展过程,如果裂纹扩展时,其前沿地区能产生显著塑性变形或受某种障碍所阻,使断裂判据中表面能最大,则裂纹扩展便会停止下来,材料遂显示为韧性,反之.若在裂纹扩展中始终能满足脆性断裂判据的要求,则材料便显示为脆性。 第四章金属的断裂韧度 2说明下列断裂韧度指标的意义及相互关系 KI C和KI KI C为平面应变下的断裂韧度,表示在平面应变条件下材料抵抗裂纹失稳扩展的能力。 KI 为平面应力断裂韧度,表示在平面应力条件下材料抵抗裂纹失稳扩展的能力。 KI C和KI都是I型裂纹的材料断裂韧度指标,但KI 值与试样厚度有关。当试样厚度增加,使裂纹尖端达到平面应变状态时,断裂韧度趋于一稳定的最低值,即为KI C。它与试样厚度无关,而是真正的材料常数. 6、试述K判据的意义及用途 KI≥KI C Yδ√a≥KI C 裂纹体在受力时,只要满足上述条件,就会发生脆性断裂,反之,即使存在裂纹,若 KI<KI C 或Yδ√a<KI C 也不会断裂,这种情况成为破损安全。 K判据将材料断裂韧度同机件的工作应力及裂纹尺寸的关系定量的联系起来了,因此可以直接用于设计计算,如用以估算裂纹体的最大承载能力的δ,语序裂纹尺寸a。以及用于正确选择机件材料,优化工艺等。 第五章 2.解释下列疲劳性能指标的意义 2)疲劳缺口敏感度qf=(kf-1)/(kt—1) kf-理论应力集中系数,kt-疲劳缺口系数 3.试叙述金属疲劳断裂的特点 (1)疲劳是低应力循环延时断裂,即具有寿命的断裂 (2)。疲劳是脆性断裂. (3) 疲劳对缺陷(缺口,裂纹及组织缺陷)十分敏感 (4)疲劳断裂也是裂纹萌生与扩展的过程。 7.试述疲劳裂纹的形成机理及阻止疲劳裂纹萌生的一般方法 形成机理:疲劳微观裂纹都是有不均匀的局部滑移和显微开裂引起的.主要方式有表面滑移带开裂,第二相,夹杂物或其界面开裂,晶界或亚晶界开裂等。 措施 (1)提高材料的滑移抗力(采用固溶强化,细晶强化) (2)降低第二相或夹杂物的脆性 (3)凡使晶界强化,净化和细化晶粒的因素,均能抑制晶界裂纹形成,提高疲劳强度。 金属材料的失效形式:变形、断裂(含疲劳断裂)、磨损、腐蚀,以及加工失误
第一章:金属在单向静拉伸载荷下的力学性能
单向应力、静拉伸 §1-1 应力应变曲线 应力应变曲线的几个阶段:弹性变形、均匀塑变(弹塑性变形)、集中塑变(缩颈)、断裂
§1—2 弹性变形弹性变形的力学性能指标 材料的弹性模量又称为刚度,但与工程构件的刚度不同, 工程上:构件刚度 = 材料刚度E×构件截面积 弹性模量是组织不敏感因素指标,仅与原子间作用力有关 四、弹性比功:应力-应变曲线下弹性范围内所吸收的变形功 表征材料吸收弹性变形能的能力,可作储能减震材料的力学指标. 因弹性模量E是对组织不敏感的常数指标,故需提高材料的弹性极限σe才能提高弹性比功Ae 五、弹性不完整性: 1)包申格效应:先加载致少量塑变,卸载,然后在再次加载时,出现σe(残余伸长应力)升高或降低的现象. 一般认为与位错运动受阻有关。 2)弹性后效-—-—滞弹性、弹性蠕变 指加卸载速度相对较快时,应变落后于应力的现象。 弹性后效可有两种表现:①快速加载后保持应力不变,应变滞后并逐渐增加 ②快速加载后保持应变不变,应力逐渐松驰
§1—3 塑性变形 一、塑性变形的定义和机理: 1)定义:指撤去外力后仍不能回复的变形部份 2)机理:滑移孪生高温蠕变晶界滑移(动) 二、塑性变形的两个阶段: 均匀变形阶段:材料抗力的增加跟得上应变的增加,也称为形变强化阶段 集中变形阶段:材料抗力的增加跟不上应变的增加,也称为颈缩阶段 三、屈服现象: 泛指:金属材料开始发生明显塑性变形 四、四大强化机理:形变、固溶、细化晶粒(组织)、弥散强化。 九、颈缩现象及判据: 当材料的加工硬化率等于该处的真应力S时,材料发生颈缩。 §1—4金属的断裂 一、分类: 1、按断裂时的塑性变形量:1、脆性及韧性:塑性变形量是否达到5% 2、按裂纹扩展途径:穿晶或沿晶:裂纹扩展途径是否沿晶界进行; 3、按断裂机理:解理断裂及微孔聚集型断裂、纯剪切断裂。 韧性断裂:断裂前有明显塑性变形,断口呈纤维状,呈暗灰色,危害相对较轻。 脆断断裂:断裂前无明显塑性变形,断口平整光亮,有放射状花样,危害相对较重。 穿晶断裂:裂纹穿过晶内的断裂 沿晶断裂:裂纹沿晶界扩展的断裂 二、断口的宏观特征 1.光滑圆柱形试样的静拉伸断口:分三区:纤维区、放射区、剪切唇区; 2.板状试样:也分为三区,只是其放射区的花纹为人字纹,裂纹源区为椭圆形 纤维状花样. 3.沿晶断口:断口显现冰糖状晶体特征,有闪烁状光泽;为极脆的脆性断裂断口。一般认为与第二类回火脆有关。 三、解理断裂: 1、定义:金属材料在一定条件下,当外加正应力达到一定数值后,沿解理平面快速分离的穿晶断裂。 3、宏观形貌:严格地沿一定平面(解理面)分离,断口即为这些多个小解理平面的组合,为脆性断裂,与大理石断裂时的机理相似,故叫解理断裂; 4、微观形貌:——-—解理台阶:河流花样,舌状花样 四、微孔聚集断裂:-—塑性断裂 1、机理:成核→长大→聚合→断裂 由晶内的微孔长大聚合所致,又叫韧窝断裂 3、微观形貌:断口表现为韧窝 五、断裂强度 1、理想断裂强度:σm = (Eγs)1/2σm〉>σs αo1/2 αo: 晶格常数或原子间距 E:弹性模量γs:表面能 2.格理菲斯理论: 1) 前提:①脆性材料;②材料内部有微裂纹存在 2) 格理菲斯公式: 格理菲斯公式只适用于如玻璃、超高强度钢等脆性材料,对于大多数材料尤其是金属,裂纹尖端会产生较大的塑性变形,会消耗大量的塑性功,远大于材料的表面能,此时需对之进行修正: 3) 格理菲斯—奥罗万—欧文公式: 奥罗万与欧文认为:格理菲斯公式中的表面能2γs项此时应由(2γs+γp)构成: 即:σc [E(γs + γp)]1/2 (πα)1/2 γp为形成单位面积裂纹表面所需消耗的塑性功,(γs+γp)称为有效表面能