提取公因式法因式分解练习题
- 格式:docx
- 大小:37.64 KB
- 文档页数:7
因式分解经典例题一、提取公因式法例1:分解因式ax + ay。
解析:公因式为a,所以ax+ay = a(x + y)。
例2:分解因式3x^2-6x。
解析:公因式为3x,3x^2-6x=3x(x - 2)。
例3:分解因式5a^2b - 10ab^2。
解析:公因式为5ab,5a^2b-10ab^2=5ab(a - 2b)。
二、运用平方差公式a^2-b^2=(a + b)(a - b)分解因式例4:分解因式x^2-9。
解析:x^2-9=x^2-3^2=(x + 3)(x-3)。
例5:分解因式16y^2-25。
解析:16y^2-25=(4y)^2-5^2=(4y + 5)(4y-5)。
例6:分解因式(x + p)^2-(x + q)^2。
解析:根据平方差公式a=(x + p),b=(x+q),则(x + p)^2-(x + q)^2=[(x + p)+(x + q)][(x + p)-(x + q)]=(2x + p + q)(p - q)。
三、运用完全平方公式a^2±2ab + b^2=(a± b)^2分解因式例7:分解因式x^2+6x + 9。
解析:x^2+6x + 9=x^2+2×3x+3^2=(x + 3)^2。
例8:分解因式4y^2-20y+25。
解析:4y^2-20y + 25=(2y)^2-2×5×2y+5^2=(2y - 5)^2。
例9:分解因式x^2-4xy+4y^2。
解析:x^2-4xy + 4y^2=x^2-2×2xy+(2y)^2=(x - 2y)^2。
四、综合运用多种方法分解因式例10:分解因式x^3-2x^2+x。
解析:先提取公因式x,得到x(x^2-2x + 1),而x^2-2x + 1=(x - 1)^2,所以原式=x(x - 1)^2。
例11:分解因式2x^2-8。
解析:先提取公因式2,得到2(x^2-4),再利用平方差公式x^2-4=(x + 2)(x-2),所以原式=2(x + 2)(x - 2)。
因式分解提公因式法计算题40道因式分解是代数学中的一个重要概念,它在解决多项式方程、简化分式等方面起着关键作用。
提公因式法是因式分解中常用的一种方法,它可以帮助我们将多项式分解成更简单的形式。
下面我将为你提供40个因式分解提公因式法的计算题,并尽可能从多个角度全面地回答。
1. 2x^2 + 5x.2. 3x^2 12。
3. 4x^2 25。
4. 6x^2 + 11x 35。
5. 2x^3 8x^2 + 6x.6. 3x^3 + 12x^2 27x.7. 4x^3 16x.8. 5x^3 125。
9. 6x^3 + 27x^2 63x.10. 2x^4 18x^2 + 40。
11. 3x^4 48x^2 + 192。
12. 4x^4 12x^2 + 9。
13. 5x^4 20x^2 + 15。
14. 6x^4 72x^2 + 216。
15. 2x^5 + 8x^4 10x^3。
16. 3x^5 12x^4 + 9x^3。
17. 4x^5 32x^3 + 64x.18. 5x^5 80x^3 + 400。
19. 6x^5 + 18x^4 108x^3。
20. 2x^6 18x^4 + 40x^2。
21. 3x^6 48x^4 + 192x^2。
22. 4x^6 12x^4 + 9x^2。
23. 5x^6 20x^4 + 15x^2。
24. 6x^6 72x^4 + 216x^2。
25. 2x^7 + 8x^6 10x^5。
26. 3x^7 12x^6 + 9x^5。
27. 4x^7 32x^5 + 64x^3。
28. 5x^7 80x^5 + 400x^3。
29. 6x^7 + 18x^6 108x^5。
30. 2x^8 18x^6 + 40x^4。
31. 3x^8 48x^6 + 192x^4。
32. 4x^8 12x^6 + 9x^4。
33. 5x^8 20x^6 + 15x^4。
34. 6x^8 72x^6 + 216x^4。
三十道因式分解练习题一、提取公因式类1. 因式分解:$6x^2 + 9x$2. 因式分解:$8a^3 12a^2$3. 因式分解:$15xy 20xz$4. 因式分解:$21m^2n 35mn^2$5. 因式分解:$4ab^2 + 6a^2b$二、公式法类6. 因式分解:$x^2 9$7. 因式分解:$a^2 4$8. 因式分解:$4x^2 25y^2$9. 因式分解:$9m^2 16n^2$10. 因式分解:$25p^2 49q^2$三、分组分解类11. 因式分解:$x^3 + x^2 2x 2$12. 因式分解:$a^3 a^2 3a + 3$13. 因式分解:$3x^2 + 3x 2x 2$14. 因式分解:$4m^2 4m 3m + 3$15. 因式分解:$5n^3 10n^2 + 3n 6$四、十字相乘法类16. 因式分解:$x^2 + 5x + 6$17. 因式分解:$a^2 7a + 10$18. 因式分解:$2x^2 9x 5$20. 因式分解:$4n^2 13n + 3$五、综合运用类21. 因式分解:$x^3 2x^2 5x + 10$22. 因式分解:$a^3 + 3a^2 4a 12$23. 因式分解:$2x^2 + 5x 3$24. 因式分解:$3m^2 7m + 2$25. 因式分解:$4n^2 + 10n 6$六、特殊因式分解类26. 因式分解:$x^4 16$27. 因式分解:$a^4 81$28. 因式分解:$16x^4 81y^4$29. 因式分解:$25m^4 49n^4$30. 因式分解:$64p^4 81q^4$一、平方差公式类1. 因式分解:$x^2 25$2. 因式分解:$4y^2 9$3. 因式分解:$49z^2 100$4. 因式分解:$25a^2 121b^2$5. 因式分解:$16m^2 36n^2$二、完全平方公式类6. 因式分解:$x^2 + 8x + 16$7. 因式分解:$y^2 10y + 25$8. 因式分解:$z^2 + 14z + 49$10. 因式分解:$b^2 + 22b + 121$三、交叉相乘法类11. 因式分解:$x^2 + 7x + 12$12. 因式分解:$y^2 5y 14$13. 因式分解:$z^2 + 11z + 30$14. 因式分解:$a^2 13a 42$15. 因式分解:$b^2 + 17b + 60$四、多项式乘法公式类16. 因式分解:$x^3 + 3x^2 + 3x + 1$17. 因式分解:$y^3 3y^2 + 3y 1$18. 因式分解:$z^3 + 6z^2 + 12z + 8$19. 因式分解:$a^3 6a^2 + 12a 8$20. 因式分解:$b^3 + 9b^2 + 27b + 27$五、分组分解法类21. 因式分解:$x^4 + 4x^3 + 6x^2 + 4x + 1$22. 因式分解:$y^4 4y^3 + 6y^2 4y + 1$23. 因式分解:$z^4 + 8z^3 + 18z^2 + 8z + 1$24. 因式分解:$a^4 8a^3 + 18a^2 8a + 1$25. 因式分解:$b^4 + 12b^3 + 54b^2 + 108b + 81$六、多项式长除法类26. 因式分解:$x^5 x^4 2x^3 + 2x^2 + x 1$27. 因式分解:$y^5 + y^4 + 2y^3 2y^2 y + 1$28. 因式分解:$z^5 3z^4 + 3z^3 z^2 + z 1$29. 因式分解:$a^5 + 3a^4 3a^3 + a^2 a + 1$30. 因式分解:$b^5 5b^4 + 10b^3 10b^2 + 5b 1$答案一、提取公因式类1. $6x^2 + 9x = 3x(2x + 3)$2. $8a^3 12a^2 = 4a^2(2a 3)$3. $15xy 20xz = 5x(3y 4z)$4. $21m^2n 35mn^2 = 7mn(3m 5n)$5. $4ab^2 + 6a^2b = 2ab(2b + 3a)$二、公式法类6. $x^2 9 = (x + 3)(x 3)$7. $a^2 4 = (a + 2)(a 2)$8. $4x^2 25y^2 = (2x + 5y)(2x 5y)$9. $9m^2 16n^2 = (3m + 4n)(3m 4n)$10. $25p^2 49q^2 = (5p + 7q)(5p 7q)$三、分组分解类11. $x^3 + x^2 2x 2 = (x^2 + 2)(x 1)$12. $a^3 a^2 3a + 3 = (a^2 3)(a 1)$13. $3x^2 + 3x 2x 2 = (3x 2)(x + 1)$14. $4m^2 4m 3m + 3 = (4m 3)(m 1)$15. $5n^3 10n^2 + 3n 6 = (5n^2 3)(n 2)$四、十字相乘法类16. $x^2 + 5x + 6 = (x + 2)(x + 3)$17. $a^2 7a + 10 = (a 2)(a 5)$18. $2x^2 9x 5 = (2x + 1)(x 5)$19. $3m^2 + 11m + 4 = (3m + 1)(m + 4)$20. $4n^2 13n + 3 = (4n 1)(n 3)$五、综合运用类21. $x^3 2x^2 5x + 10 = (x^2 5)(x 2)$22. $a^3 + 3a^2 4a 12 = (a^2 + 4)(a 3)$23. $2x^2 + 5x 3 = (2x 1)(x + 3)$24. $3m^2 7m + 2 = (3m 1)(m 2)$25. $4n^2 + 10n 6 = (2n 1)(2n + 6)$六、特殊因式分解类26. $x^4 16 = (x^2 + 4)(x + 2)(x 2)$27. $a^4 81 = (a^2 + 9)(a + 3)(a 3)$28. $16x^4 81y^4 = (4x^2 + 9y^2)(2x + 3y)(2x 3y)$29. $25m^4 49n^4 = (5m^2 + 7n^2)(5m + 7n)(5m 7n)$30. $64p^4 81q^4 = (8p^2 + 9q^2)(4p + 3q)(4p 3q)$一、平方差公式类1. $x^2 25 = (x + 5)(x 5)$2. $4y^2 9 = (2y + 3)(2y 3)$3. $49z^2 100 = (7z + 10)(7z 10)$4. $25a。
完整版)提公因式法练习题提公因式法一、课堂练1.把一个多项式拆分成几个乘积的形式,这个操作叫做因式分解,也可以说是把这个多项式分解成若干个因式的乘积。
2.填写公因式:1) x(x-5y)。
(2) -3m2(n-4)。
(3) 4b(3b2-2b+1)4) -4ab2(a+3b)。
(5) xy(x2y2-xy+2)3.填写括号中的多项式:1) -4b(a+1)。
(2) 4xy(2x-3y)。
(3) 9m2(m+3)4) -3p(5q+3p)。
(5) 2ab(a2-2ab+b2)。
(6) -x(x-y+z)7) a(2a-1)二、选择题1.正确的因式分解变形是选项B:x2+3x-4=x(x+3)-4.2.正确的因式分解变形是选项C:(x-y)2=x2-2xy+y2.3.错误的因式分解是选项C:a2b2-1/3ab2=4ab(4a-b)。
4.多项式-6a3b2-3a2b2+12a2b3因式分解时,应提取的公因式是选项D:-3a2b2.5.应提取公因式2x2y2的是选项B:2x2y2(1/2xy+y-1)。
提公因式法一、课堂练1.把一个多项式拆分成若干个因式的乘积形式,这个操作叫做因式分解。
2.填写公因式:1) x(x-5y)。
(2) -3m^2(n-4)。
(3) 4b(3b^2-2b+1)4) -4ab^2(a+3b)。
(5) xy(x^2y^2-xy+2)3.填写括号中的多项式:1) -4b(a+1)。
(2) 4xy(2x-3y)。
(3) 9m^2(m+3)4) -3p(5q+3p)。
(5) 2ab(a^2-2ab+b^2)。
(6) -x(x-y+z)7) a(2a-1)二、选择题1.正确的因式分解变形是选项B:x^2+3x-4=x(x+3)-4.2.正确的因式分解变形是选项C:(x-y)^2=x^2-2xy+y^2.3.错误的因式分解是选项C:a^2b^2-1/3ab^2=4ab(4a-b)。
4.多项式-6a^3b^2-3a^2b^2+12a^2b^3因式分解时,应提取的公因式是选项D:-3a^2b^2.5.应提取公因式2x^2y^2的是选项B:2x^2y^2(1/2xy+y-1)。
提取公因式法因式分解【知识梳理】一.因式分解的意义1、分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.2、因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.例如:3、因式分解是恒等变形,因此可以用整式乘法来检验.二.公因式1、定义:多项式ma+mb+mc中,各项都含有一个公共的因式m,因式m叫做这个多项式各项的公因式.2、确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.三.因式分解-提公因式法1、提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.2、具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.(2)如果多项式的第一项是负的,一般要提出“﹣”号,使括号内的第一项的系数成为正数.提出“﹣”号时,多项式的各项都要变号.3、口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.4、提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同.【考点剖析】一.因式分解的意义(共4小题)1.(2022秋•黄浦区期中)下列等式中,从左到右的变形是多项式的因式分解的是()A.(a+b)2=a2+2ab+b2B.x2﹣2x+5=x(x﹣2)+5C.a2﹣2ab+b2=(a﹣b)2D.x2+1=x(x+)2.(2022秋•静安区校级期中)在下列等式中,从左到右的变形是因式分解的是()A.2a2﹣3a+1=a(2a﹣3)+1B.C.(a+1)(a﹣1)=a2﹣1D.﹣4﹣x2y2+4xy=﹣(2﹣xy)23.(2022秋•闵行区校级期末)下列各式从左到右的变形是因式分解的是()A.a(a+b)=a2+ab B.a2+2a+1=a(a+2)+1C.(a+b)(a﹣b)=a2﹣b2D.2a2﹣6ab=2a(a﹣3b)4.(2022秋•浦东新区校级期末)下列等式从左到右是因式分解,且结果正确的是()A.a2+8a+16=(a+4)2B.(a+4)2=a2+8a+16C.a2+8a+16=a(a+8)+16D.a2+8(a+2)=a2+8a+16二.公因式(共7小题)5.(2022秋•青浦区校级期中)单项式3a3b与单项式9a2b3的公因式是()A.3a2b B.3a3b3C.a2b D.a3b36.(2020秋•浦东新区期末)多项式3x﹣9,x2﹣9与x2﹣6x+9的公因式为()A.x+3B.(x+3)2 C.x﹣3D.x2+97.(2022秋•嘉定区期中)多项式6x3y2﹣3x2y2+12x2y3的公因式是.8.(2019秋•黄浦区校级期中)多项式4a(x﹣y)﹣6a2(x﹣y)中各项的公因式是.9.(2018秋•嘉定区期末)写出多项式x2﹣y2与多项式x2+xy的一个公因式.10.(2019秋•浦东新区期末)8x3y2和12x4y的公因式是.11.(2019秋•松江区期中)多项式:4x(x﹣y)﹣3(x﹣y)的公因式是.三.因式分解-提公因式法(共14小题)12.(2022秋•徐汇区期末)分解因式:(x﹣5)(3x﹣2)﹣3(x﹣5)=.13.(2022秋•嘉定区期中)分解因式:3x3﹣9x2﹣3x=.14.(2022秋•宝山区校级期末)分解因式:4x2y﹣12xy=.15.(2021秋•金山区期末)因式分解:6a2﹣8a3=.16.(2021秋•奉贤区期末)分解因式:2m2n﹣mn2=.17.(2022秋•嘉定区校级期中)因式分解:﹣15a﹣10ab+5abc=.18.(2022秋•嘉定区期中)当a=3,b=时,代数式﹣a2+4ab的值为.19.(2022秋•嘉定区期中)因式分解:6(x+y)2﹣2(x+y)(x﹣y)20.(2022秋•杨浦区期中)分解因式:a2(a+2b)﹣ab(﹣4b﹣2a).21.(2022秋•浦东新区校级期中)因式分解:(y﹣x)2+2(x﹣y)=.22.(2022秋•青浦区校级期中)因式分解:15a2b﹣3ab=.23.(2022秋•虹口区校级期中)分解因式:3x2y﹣12xy2=.24.(2022秋•宝山区校级期中)分解因式:a(a﹣b)+b(b﹣a)=.25.(2022秋•浦东新区校级期中)2m(a﹣c)﹣5(a﹣c).【过关检测】一、单选题1.(2023·上海·七年级假期作业)下列各式从左到右的变形是因式分解的是( ) A .()2222x y x y xy +=−+B .()422211(1x x x x x x ++=++−+)C .()230130x x x x −−=−−D .()22121a a a −=−+2.(2022秋·上海宝山·七年级校考期中)分解因式()()222b x b x −+−正确的结果是( )A .()()22x b b −+B .()()21b x b −+C .()()22x b b −−D .()()21b x b −−3.(2022秋·上海松江·七年级校考期中)已知多项式2ax bx c ++分解因式得()()32x x −+,则a ,b ,c 的值分别为( )A .1,1−,6B .1,1,6−C .1,1−,6−D .1,1,64.(2023秋·上海浦东新·七年级校考期末)下列等式从左到右是因式分解,且结果正确的是( )5.(2020秋·七年级校考课时练习)把多项式-4a 3+4a 2-16a 分解因式( )二、填空题 7.(2023·上海·七年级假期作业)若5x y −=,6xy =则22x y xy −=________,2222x y +=________.8.(2022秋·上海·七年级上海市西延安中学校考期中)分解因式:22615x z yz −+=__________.9.(2022秋·上海浦东新·七年级校考期中)分解因式:223714ab a b −=______.10.(2022秋·上海·七年级上海市建平中学西校校考期中)因式分解:2()2()y x x y −+−=___________.11.(2022秋·上海松江·七年级校考期中)因式分解:2368xy y −=___________.12.(2023秋·上海浦东新·七年级校考期中)分解因式:25x y xy +=__________.13.(2023秋·上海宝山·七年级校考期末)分解因式:2412x y xy −=______.14.(2022秋·上海松江·七年级校考期中)因式分解:()()()2222a b b a a b −−−+=___________.15.(2023·上海·七年级假期作业)因式分解:15105a ab abc −−+=___________.16.(2023·上海·七年级假期作业)已知:()()2111x x x x x +++++=[](1)1(1)x x x x +⋅+++=()()()()31111x x x x ⎡⎤+⋅+⋅+=+⎣⎦,因式分解()()()220221111x x x x x x x ++++++⋅⋅⋅++,结果为_______________. 17.(2022秋·上海普陀·七年级统考期中)如果210x x ++=,那么23991x x x x ++++⋅⋅⋅+的值是______.18.(2023·上海·七年级假期作业)分解因式:(5)(32)3(5)x x x −−−−=___________三、解答题19.(2022秋·上海·七年级上海市建平中学西校校考期中)因式分解:2()5()m a c a c −−−20.(2022秋·上海·七年级专题练习)因式分解:()13(1)22n n n a a a a +−−−21.(2022秋·上海·七年级专题练习)因式分解:()()42a x y b y x −−−.22.(2022秋·上海黄浦·七年级上海市民办立达中学校考期中)因式分解:()22a b a b −−+(1x x +++。
因式分解-提公因式和公式法专项练习(一)知识点1:因式分解1.定义:把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.2.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.3.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.【典例1】下列各式由左边到右边的变形中,是因式分解的是()A.a(x﹣y)=ax﹣ay B.a2﹣b2=(a+b)(a﹣b)C.x2﹣4x+3=x(x﹣4)+3D.a2+1=(a+1)(a﹣1)【变式1-1】下列各式从左到右不属于因式分解的是()A.x2﹣x=x(x﹣1)B.x2+2x+1=x(x+2)+1C.x2﹣6x+9=(x﹣3)2D.x2﹣1=(x+1)(x﹣1)【变式1-2】下列各式从左到右的变形是因式分解的是()A.a(a+b)=a2+ab B.a2+2a+1=a(a+2)+1C.(a+b)(a﹣b)=a2﹣b2D.2a2﹣6ab=2a(a﹣3b)知识点2:公因式的公因式是.【典例2-2】4x(m﹣n)+8y(n﹣m)2的公因式是.【变式2-1】多项式.4ab2+8a2b的公因式是.【变式2-2】多项式3x+3y与x2﹣y2的公因式是.【变式2-3】多项式4x(m﹣n)+2y(m﹣n)2的公因式是.知识点3:提公因式提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.注意:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.【典例3】分解因式:(1)2y+3xy;(2)2(a+2)+3b(a+2).【变式3-1】因式分解(1)x2﹣4x;(2)8y3﹣2x2y.【变式2-2】因式分解:(1)8abc﹣2bc2;(2)2x(x+y)﹣6(x+y).【变式3-3】分解因式:x(m+n)﹣y(n+m)+(m+n).知识点4:公式法=.【变式4-1】因式分解:a2﹣169=.【变式4-2】因式分解:4a2﹣b2=.【变式4-3】把多项式a2﹣9b2分解因式结果是.【典例5】分解因式:a2+8a+16=.【变式5-1】因式分解x2﹣6ax+9a2=.【变式5-2】分解因式:a2﹣6a+9=.知识点5:提公因式与公式法综合1.提公因式:一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.2.公式法:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)【典例6】分解因式(1)x2y﹣y;(2)ax2﹣6ax+9a.【变式6-1】因式分解:(1)x3y﹣xy3;(2)8a2﹣16ab+8b2.【变式6-2】因式分解:(1)2x3y﹣2xy3(2)﹣a3+2a2﹣a.【变式6-3】分解因式:(1)5x2﹣5y2;(2)2mx2+4mxy+2my2.【变式6-4】因式分解:9a2(x﹣y)+4b2(y﹣x)【达标测评】一.选择题(共8小题)1.(2023秋•泉港区期末)多项式12a3b﹣8ab2c的公因式是()A.4a2B.4abc C.2a2D.4ab 2.(2023秋•莱西市期末)多项式3m2+6mn的公因式是()A.3B.m C.3m D.3n 3.(2023秋•纳溪区期末)因式分解(x﹣1)2﹣9的结果是()A.(x﹣10)(x+8)B.(x+8)(x+1)C.(x﹣2)(x+4)D.(x+2)(x﹣4)4.(2023秋•泰山区期末)分解因式:64﹣x2正确的是()A.(8﹣x)2B.(8﹣x)(8+x)C.(x﹣8)(x+8)D.(32+x)(32﹣x)5.(2023秋•沙坪坝区校级期末)因式分解:mx2﹣4m=()A.m(x2﹣4)B.m(x+2)(x﹣2)C.mx(x﹣4)D.m(x+4)(x﹣4)6.(2023秋•哈密市期末)下面各式从左到右的变形,属于因式分解的是()A.x(x﹣1)=x2﹣x B.x2﹣1=(x﹣1)2C.x2﹣x﹣1=x(x﹣1)﹣1D.x2﹣x=x(x﹣1)7.(2024•裕华区校级开学)若a+b=3,a﹣b=,则a2﹣b2的值为()A.1B.C.D.98.(2023秋•南沙区期末)已知多项式x2+ax+16可以用完全平方公式进行因式分解,则a的值为()A.4B.8C.﹣8D.±8二.填空题(共5小题)9.(2023秋•临潼区期末)式子x(y﹣1)与﹣18(y﹣1)的公因式是.10.(2024•榆阳区校级一模)因式分解:2x2y+10xy=.11.(2024•西山区校级模拟)分解因式:m3+6m2+9m=.12.(2023秋•哈密市期末)已知x+y=10,xy=1,则代数式x2y+xy2的值为.13.(2024•临潼区一模)因式分解:3a2﹣12=.三.解答题(共3小题)14.(2023秋•海口期末)把下列多项式分解因式:(1)4a3﹣16ab2;(2)3(x﹣1)2+12x.15.(2023秋•洪山区期末)因式分解.(1)x3﹣2x2y+xy2(2)m2(a﹣b)+n2(b﹣a)16.(2023秋•寻乌县期末)因式分解:(1)﹣x3﹣2x2﹣x;(2)x2(a﹣1)+y2(1﹣a).。
初二因式分解经典题35题一、提取公因式法相关(10题)1. 分解因式:6ab + 3ac- 你看这里面每一项都有个3a呢。
就像大家都有个共同的小秘密一样。
那我们就把3a提出来呀,提出来之后就变成3a(2b + c)啦。
2. 分解因式:15x^2y−5xy^2- 哟,这里面5xy是公共的部分哦。
把5xy提出来,就剩下5xy(3x - y)啦,是不是很简单呢?3. 分解因式:4m^3n - 16m^2n^2+8mn^3- 仔细瞧瞧,8mn是都能提出来的。
提出来后就变成8mn(m^2 - 2mn + n^2)啦。
4. 分解因式:−3x^2y+6xy^2−9xy- 这里面−3xy是公因式哦。
把它提出来,就得到−3xy(x - 2y+3)啦。
5. 分解因式:2a(x - y)-3b(x - y)- 看呀,(x - y)是公共的部分呢。
提出来就变成(x - y)(2a - 3b)啦。
6. 分解因式:a(x - y)^2 - b(y - x)^2- 注意哦,(y - x)^2=(x - y)^2。
那这里面(x - y)^2是公因式,提出来就得到(x - y)^2(a - b)啦。
7. 分解因式:x(x - y)+y(y - x)- 先把y(y - x)变成-y(x - y),这样公因式就是(x - y)啦,提出来就是(x - y)(x - y)=(x - y)^2。
8. 分解因式:3a(a - b)+b(b - a)- 把b(b - a)变成-b(a - b),公因式(a - b)提出来,就得到(a - b)(3a - b)啦。
9. 分解因式:2x(x + y)-3(x + y)^2- 公因式是(x + y),提出来就变成(x + y)[2x-3(x + y)]=(x + y)(2x - 3x - 3y)=(x + y)(-x - 3y)=-(x + y)(x + 3y)。
10. 分解因式:5(x - y)^3+10(y - x)^2- 把(y - x)^2变成(x - y)^2,公因式5(x - y)^2提出来,得到5(x - y)^2[(x -y)+2]=5(x - y)^2(x - y + 2)。
数学提取公因式法专项练习题一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
基础训练1.多项式8x3y2-12xy3z的公因式是_________.2.多项式-6ab2+18a2b2-12a3b2c的公因式是A.-6ab2cB.-ab2C.-6ab2D.-6a3b2c3.下列用提公因式法因式分解正确的是A.12abc-9a2b2=3abc4-3abB.3x2y-3xy+6y=3yx2-x+2yC.-a2+ab-ac=-aa-b+cD.x2y+5xy-y=yx2+5x4.下列多项式应提取公因式5a2b的是A.15a2b-20a2b2B.30a2b3-15ab4-10a3b2C.10a2b-20a2b3+50a4bD.5a2b4-10a3b3+15a4b25.下列因式分解不正确的是A.-2ab2+4a2b=2ab-b+2aB.3ma-b-9nb-a=3a-bm+3nC.-5ab+15a2bx+25ab3y=-5ab-3ax-5b2y;D.3ay2-6ay-3a=3ay2-2y-16.填空题:1ma+mb+mc=m________; 2多项式32p2q3-8pq4m的公因式是_________;33a2-6ab+a=_________3a-6b+1;4因式分解:km+kn=_________;5-15a2+5a=________3a-1; 6计算:21×3.14-31×3.14=_________.7.用提取公因式法分解因式:18ab2-16a3b3; 2-15xy-5x2;3a3b3+a2b2-ab; 4-3a3m-6a2m+12am.8.因式分解:-a-bmn-a+b.提高训练9.多项式mn-2-m22-n因式分解等于A.n-2m+m2B.n-2m-m2C.mn-2m+1D.mn-2m-110.将多项式ax-y+2by-2bx分解因式,正确的结果是A.x-y-a+2bB.x-ya+2bC.x-ya-2bD.-x-ya+2b11.把下列各式分解因式:1a+b-a+b2; 2xx-y+yy-x;36m+n2-2m+n; 4mm-n2-nn-m2;56pp+q-4qq+p.应用拓展12.多项式-2an-1-4an+1的公因式是M,则M等于A.2an-1B.-2anC.-2an-1D.-2an+113.用简便方法计算:39×37-13×34=_______.14.因式分解:x6m-nx-nx2.参考答案1.4xy22.C3.C4.A5.C6.1a+b+c 28pq3 3a 4km+n5-5a 6-31.47.18ab21-2a2b 2-5x3y+x3aba2b2+ab-1 4-3ama2+2a-48.-a-bmn+19.C10.C11.1a+b1-a-b 2x-y2 32m+n•3m+3n-1 4m-n3 52p+q3p-2q12.C 13.390 14.2x3m-nx感谢您的阅读,祝您生活愉快。
完整版)提公因式法因式分解练习题因式分解——提公因式法以下是因式分解和不是因式分解的变形:1) 6a^3-3a^2b = 3a^2(2a-b) 是因式分解。
2) -x^2+x^3 = -x^2(1-x) 是因式分解。
3) (a-b)(a^2+ab+b^2) = a^3-b^3 是因式分解。
4) (x-2)(x-3) = x^2-5x+6 是因式分解。
5) m^2 = m×m 不是因式分解。
6) m^2+m = m^3 不是因式分解。
二、用提公因式法因式分解1) 8ab^2-16a^3b^3 = 8ab^2(1-2a^2b^2)。
2) -m^2n+mn^2 = -mn(m-n)。
3) -15xy-5x^2 = -5x(x+3y)。
4) a^2b^2-1/4ab^3 = 1/4ab^2(a-4b)。
5) a^3b^3+a^2b^2-ab = ab(a^2b^2+a-b)。
6) -8a^3y+12a^2y^2-16ay^3 = -4ay(2a-y)(2a+3y)。
7) -3a^3m-6a^2m+12am = -3am(a^2+2a-4)。
8) -x^3y^2+2x^2y+xy = xy(-x^2+2x+1)。
用提公因式法因式分解(二)1) (a+b)-(a+b)^2 = -(a+b)(2a+b)。
2) x(x-y)+y(y-x) = 0.3) 6(m+n)^2-2(m+n) = 2(m+n)(3m+3n-1)。
4) 3(y-x)^2+2(x-y) = (y-x)(3y-3x+2)。
5) -3x(y-x)-(x-y) = -2(x-y)(x+3)。
6) m(m-n)^2-n(n-m)^2 = (m-n)^2(m+n)。
7) 6p(p+q)-4q(q+p) = 2p(3p-2q)。
8) 12a^2b(x-y)-4ab(y-x) = 4ab(3a-1)(y-x)。
9) (a+b)(x+y)-(a+b)(x-y) = 2(a+b)y。
人教版八年级上册因式分解专项练习-提公因式法(含答案)1.请把下列各式分解因式(1)x(x-y)-y(y-x) (2)-12x3+12x2y-3xy2(3)(x+y)2+mx+my (4)a(x-a)(x+y)2-b(x-a)2(x+y)(5)15×(a-b)2-3y(b-a)(6)(a-3)2-(2a-6)(7)(m+n)(p-q)-(m+n)(q+p)2.因式分解:(1)3x2﹣6xy+x;(2)﹣4m3+16m2﹣28m;(3)18(a﹣b)2﹣12(b﹣a)3.3.因式分解:-2m3+8m2-12m;4.用提公因式法分解多项式:3223048x y x yz -+5.分解因式:(1)−4ab −8b 2+10b (2)2(n −m)2−m(m −n)(3)15y(a −b)2−3y(b −a) (4)6(m −n)3−12(n −m)2(5)x 2+3x +1=0,求2x 2010+6x 2009+2x 2008的值 6.分解因式:3210()5()ab a b b b a ---7.把下列各式分解因式:(1)4x 3-6x 2; (2)2a 2b+5ab+b ; (3)6p(p+q)-4q(p+q);(4) (x -1)2-x+1; (5)-3a 2b +6ab 2-3ab.8.把下列各式分解因式:(1)236x y xy - (2)2332525x y x y -(4)3241626m m m -+- (4)22(3)3a a --+(5)23()2()m x y y x --- (6)2318()12()b a b a b ---(7)1532223520x y x y x y +- (8)6x(x+y)-4y(x+y)(8)()()()a x a b a x c x a -+--- (10)()()()()m n p q m n p q ++-+-9.把下列各式分解因式:(1)a(b -c)+c -b ; (2)15b(2a -b)2+25(b -2a)2.10.()()x x y y y x ---11.把下列各式分解因式:(1)2x 2-xy ; (2)-4m 4n +16m 3n -28m 2n.12.分解因式① -49a 2bc -14ab 2c+7ab ①(2a+b)(2a -3b)-8a(2a+b)13.分解因式:a(x +y -z)-b(z -x -y)-c(x -z +y).14.因式分解:(y ﹣x )(a ﹣b ﹣c )+(x ﹣y )(b ﹣a ﹣c )15.因式分解:12a 2b(x -y)-4ab(y -x).16.因式分解: 53242357a b c a b c a bc +-17.因式分解:26()2()()x y x y x y +-+-18.计算:(1)a (a+b )﹣b (a ﹣b ); (2)(x ﹣2y )(2y+x )+(2y+x )2﹣2x (x+2y )19.因式分解(1)-3x 2+6xy -3y 2 (2)a 2(x -y)+16(y -x)20.用提取公因式法将下列各式分解因式:(1)6xyz-3xz2;(2)x4y-x3z;(3)x(m-x)(m-y)-m(x-m)(y-m).参考答案1.(1)(x-y)(x+y);(2)-3x(2x-y)2;(3)(x+y)(x+y+m);(4)(x-a)(x+y)(ax+ay-bx+ab);(5)3(a-b)(5ax-5bx+y);(6)(a-3)(a-5);(7)-2q(m+n)【解析】试题分析:(1)运用提取公因式法因式分解即可;(2)运用提取公因式法因式分解即可,注意先提取负号;(3)先分组,提公因式,再利用整体法运用提取公因式法因式分解即可;(4)运用提取公因式法因式分解即可,注意整体思想的应用;(5)根据a-b与b-a互为相反数,利用整体法提取公因式法因式分解即可;(6)运用提取公因式法因式分解即可;(7)运用提取公因式法因式分解即可,注意符号变化.试题解析:(1)x(x-y)-y(y-x)=(x-y)(x+y)(2)-12x3+12x2y-3xy2=-3x(4x2-4xy+y2)=-3x(2x-y)2(3)(x+y)2+mx+my=(x+y)2+m(x+y)=(x+y)(x+y+m)(4)a(x-a)(x+y)2-b(x-a)2(x+y)=(x-a)(x+y)[a(x+y)-b(x-a)]=(x-a)(x+y)(ax+ay-bx+ab)(5)15x(a-b)2-3y(b-a)=15x(a-b)2+3y(a-b)=3(a-b)(5ax-5bx+y);(6)(a-3)2-(2a-6)=(a-3)2-2(a-3)=(a-3)(a-5);(7)(m+n)(p-q)-(m+n)(q+p)=(m+n)(p-q-q-p)=-2q(m+n)2.(1)x(3x﹣6y+1);(2)﹣4m(m2﹣4m+7);(3)6(a﹣b)2(3+2a﹣2b).【解析】【分析】(1)利用提取公因式法分解因式得出即可;(2)利用提取公因式法分解因式得出即可;(3)利用提取公因式法分解因式得出即可. 【详解】(1)解:3x 2﹣6xy+x=x (3x ﹣6y+1)(2)解:﹣4m 3+16m 2﹣28m=﹣4m (m 2﹣4m+7)(3)解:18(a ﹣b )2﹣12(b ﹣a )3=6(a ﹣b )2(3+2a ﹣2b ) 【点睛】考查因式分解,熟练掌握提取公因式法是解题的关键. 3.-2m(m 2-4m+6) 【解析】 【分析】直接运用提公因式法.即提出公因式-2m 即可. 【详解】解:-2m 3+8m 2-12m=-2m (m 2-4m+6) 【点睛】本题考核知识点:因式分解. 解题关键点:找出公因式. 4.()2658x y xy z --【解析】试题分析:根据提公因式法--因式分解,确定公因式后提取公因式即可. 试题解析:()32223048658x y x yz x y xy z -+=--.5.(1)-2b (2a+4b -5);(2)(n -m )(2n -m );(3)3y (a -b )[5a -5b+1];(4)6(n -m )2(m -n -2);(5)0 【解析】【分析】(1)直接提取公因式﹣2b 分解即可;(2)首先把m −n 变为−(m −n),再提取公因式n -m 分解即可; (3)首先把b −a 变为−(a -b ),再提取公因式a -b 分解即可;(4)首先把6(m −n)3变为−6(n −m)3,再提取公因式6(n −m)2分解即可;(5)首先把2x 2010+6x 2009+2x 2008变为2x 2008(x 2+3x +1) ,再把x 2+3x +1=0代入即可; 【详解】(1)−4ab −8b 2+10b = -2b (2a+4b -5);(2)2(n −m)2−m (m −n )=2(n −m )2+m (n −m )=(n -m )(2n -m );(3)15y(a −b)2−3y (b −a )=15y (a −b )2+3y (a −b )=3y (a −b )[5a −5b )+1] (4)6(m −n)3−12(n −m)2=6(m −n)3−12(m −n)2=6(m −n)2(m −n −2) (5)2x 2010+6x 2009+2x 2008=2x 2008(x 2+3x +1)=0 【点睛】本题主要考查了提取公因式法分解因式,正确找出公因式是解题关键. 6.225()(221)b a b a ab --- 【解析】分析:提取公因式法进行因式分解即可. 详解:原式()()32105,ab a b b a b =---()()2521.b a b a a b ⎡⎤=---⎣⎦ ()()225221.b a b a ab =---点睛:本题主要考查因式分解,常见的因式分解的方法有:提取公因式法,公式法,十字相乘法.注意:分解一定要彻底.7.(1)2x 2(2x -3);(2)b(2a 2+5a+1);(3)2(p+q)(3p -2q);(4)(x -1)(x -2);(5)-3ab(a -2b +1). 【解析】 【分析】(1)直接利用提取公因式法,提取公因式2x 2,进而分解因式得出答案; (2)直接利用提取公因式法,提取公因式b ,进而分解因式得出答案; (3)直接利用提取公因式法,提取公因式2(p +q ),进而分解因式得出答案; (4)直接利用提取公因式法,提取公因式(x ﹣1),进而分解因式得出答案. (5)直接利用提取公因式法,提取公因式﹣3ab ,进而分解因式得出答案. 【详解】(1)原式=222223x x x ⋅-⋅=22(23)x x -; (2)原式= b •2a 2+ b •5a + b •1=b (2a 2+5a +1); (3)原式=2(p +q )•3p -2(p +q )•2q =2(p +q )(3p -2q ); (4)原式=(x -1)2-(x -1)=(x -1)(x -1-1)= (x -1)(x -2);(5)原式=-3ab •a +(-3ab )•(-2b )+(-3ab )•1=-3ab (a -2b +1). 【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题的关键.8.(1)3xy(x -2); (2)225(5)x y y x -; (3)22(2813m m m --+); (4)3)(27)a a --(; (5)()(322)x y m x y --+; (6)26()(52a b b a --);(7) 225314)x y xy y +-(;(8)2(x+y)(3x -2y); (9)()()x a a b c ---; (10)2()q m n +.试题分析:都利用提公因式法分解因式即可.试题解析:(1)原式=3xy(x -2);(2)原式=()2255x y y x -;(3)原式=22(2813m m m --+);(4)()3)27a a =--原式(; (5)原式=()()322x y m x y --+;(6)原式=()26(52a b b a --);(7)原式= 225314)x y xy y +-(;(8)原式=2(x+y)(3x -2y);(9)原式=()()x a a b c ---;(10)原式=()2q m n +.9.(1)(b -c)(a -1)(2) 5(2a -b)2(3b +5)【解析】试题分析:(1)先确定公因式是(b -c ),将公因式(b -c )提到括号外,可得(b -c )(a -1) , (2)先确定公因式是5(2a -b )2,将公因式5(2a -b )2提到括号外,可得5(2a -b )2(3b +5).试题解析:(1)原式=a (b -c )-(b -c )=(b -c )(a -1),(2)原式=15b (2a -b )2+25(2a -b )2=5(2a -b )2(3b +5).10.()()x y x y -+试题分析:后一项变号后,提取公因式(x-y)即可.试题解析:解:原式=x(x-y)+y(x-y)=(x-y)(x+y).11.(1) x(2x-y)(2)-4m2n(m2-4m+7)【解析】试题分析:(1)先确定公因式,将公因式提到括号外,括号里为原多项式中每一项除以公因式所得结果, (2)先确定公因式,将公因式提到括号外,括号里为原多项式中每一项除以公因式所得结果.试题解析:(1)原式=x(2x-y),(2)原式=-4m2n(m2-4m+7).12.①-7ab(7ac+2bc-1);①-3(2a+b)2【解析】试题分析:本题考查了因式分解.①直接用提公因式-7ab即可;①把(2a+b)作为一个整体提取.①原式=-7ab(7ac+2bc-1)①原式=(2a+b)(2a-3b-8a)=(2a+b)(-6a-3b)=-3(2a+b) 213.(x+y-z)(a+b-c)【解析】试题分析:先确定公因式(x+y-z),提公因式可得: (x+y-z) (a+b-c),试题解析:原式=a(x+y-z)+b(x+y-z)-c(x+y-z)=(x+y-z) (a+b-c).14.2(y﹣x)(a﹣b)【解析】试题分析:先提取公因式(y-x)后,再提取公因式2即可.试题解析:原式=(y ﹣x )(a ﹣b ﹣c )﹣(y ﹣x )(b ﹣a ﹣c )=(y ﹣x )(a ﹣b ﹣c ﹣b+a+c )=2(y ﹣x )(a ﹣b ).15.4ab(x -y)(3a+1)【解析】【分析】直接提取公因式4ab (x -y ),即可求得答案.【详解】原式=12a 2b(x -y)+4ab(x -y)=4ab(x -y)(3a+1)【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.16.a 3bc (a 2b 2c+5ab -7)【解析】【分析】根据题意提取公因式即可.【详解】解:原式=322(57)a bc a b c ab +-【点睛】本题主要考查提取公因式,根据每个字母的最低次数提取即可.17.4(x +y )(x +2y ).【解析】首先提公因式2(x+y),再整理括号里面的3(x+y)﹣(x﹣y),再提公因式2即可.【详解】原式=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y).【点睛】本题考查了提公因式法分解因式,关键是公因式提取要彻底.18.(1)a2+b2;(2)0.【解析】【分析】(1)(2)按照先去括号,后合并同类项的步骤化简即可;【详解】解:(1)原式=a2+ab﹣ab+b2=a2+b2(2)法一:原式=x2﹣4y2+x2+4xy+4y2﹣2x2﹣4xy=(x2+x2﹣2x2)+(﹣4y2+4y2)+(4xy﹣4xy)=0法二:原式=(x+2y)(x﹣2y+2y+x﹣2x)=(x+2y)×0=0本题考查平方差公式、完全平方公式、提公因式等知识,解题的关键是灵活运用所学知识解决问题,记住平方差公式、完全平方公式.19.(1)−3(x−y)2(2)(x−y)(a−4)(a+4)【解析】试题分析:(1)先提取公因式-3,再对余下的多项式利用完全平方公式继续分解;(2)先提取公因式(x-y),再对余下的多项式利用完全平方公式继续分解.试题解析:(1)原式= −3(x2−2xy+y2)= −3(x−y)2(2)原式=a2(x−y)−16(x−y)=(x−y)(a2−16)=(x−y)(a−4)(a+4)【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20.(1) 3xz(2y-z);(2) x3(xy-z);(3)-(m-x)2(m-y).【解析】【分析】分别提取公因式3xz,x3,(m-x)(m-y)即可得答案,注意符号.【详解】解:(1)6xyz-3xz2=3xz(2y-z).(2)x4y-x3z=x3(xy-z).(3)x(m-x)(m-y)-m(x-m)(y-m)=x(m-x)(m-y)-m(m-x)(m-y)=(m-x)(m-y)(x-m)=-(m-x)2(m-y).【点睛】本题考查的知识点是提公因式,解题的关键是熟练的掌握提公因式.。
因式分解练习题免费一、提取公因式法1. \( 3a^2 + 6a \)2. \( 4x^3 8x^2 + 4x \)3. \( 5xy 15xz \)4. \( 9m^2n 12mn^2 + 3mn \)5. \( 16ab^2 24a^2b + 8ab \)二、公式法1. \( x^2 9 \)2. \( a^2 4b^2 \)3. \( x^3 27 \)4. \( 4x^2 12x + 9 \)5. \( 25y^2 20y + 4 \)三、分组分解法1. \( x^2 + 5x + 6 \)2. \( 2a^2 + 5a 3 \)3. \( 3x^2 7x 6 \)4. \( 4y^2 9y + 5 \)5. \( 5m^2 2m 7 \)四、十字相乘法1. \( x^2 + 6x + 9 \)2. \( a^2 4a + 4 \)3. \( 2x^2 8x + 8 \)4. \( 3y^2 + 12y + 12 \)5. \( 4m^2 10m + 6 \)五、综合运用1. \( x^3 3x^2 + 2x \)2. \( a^2 + 2ab + b^2 4 \)3. \( 2x^2 5x 3 \)4. \( 3y^4 9y^3 + 6y^2 \)5. \( 4m^3 12m^2 + 9m \)六、特殊因式分解法1. \( x^4 16 \)2. \( a^4 + 4a^2b^2 + 4b^4 \)3. \( x^6 y^6 \)4. \( 9m^2n^2 4p^2 \)5. \( 25x^2y^2 30xy + 9 \)七、多项式乘法逆运算1. \( (x + 2)(x 3) \)2. \( (a 4)(a + 5) \)3. \( (2x + 3y)(2x 3y) \)4. \( (3m 4n)(4m + 3n) \)5. \( (x + 1)(x^2 x + 1) \)八、含有复杂系数的因式分解1. \( 6x^2 + 5x 6 \)2. \( 4a^2 12a + 9 \)3. \( 3x^2 10x + 8 \)5. \( 7m^2 14m + 7 \)九、含有高次项的因式分解1. \( x^4 6x^3 + 9x^2 \)2. \( a^5 2a^4 + a^3 \)3. \( 2x^5 8x^4 + 8x^3 \)4. \( 3y^6 18y^4 + 27y^2 \)5. \( 4m^3 12m^2n + 9mn^2 \)十、实际应用题中的因式分解1. 一个长方形的面积为 \( 2x^2 5x 12 \) 平方单位,求其可能的长和宽。
因式分解-提公因式法精选题43道一.选择题(共19小题)1.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1B.x(x﹣2)+(2﹣x)C.x2﹣2x+1D.x2+2x+12.若m﹣n=﹣2,mn=1,则m3n+mn3=()A.6B.5C.4D.33.将﹣a2b﹣ab2提公因式﹣ab后,另一个因式是()A.a+2b B.﹣a+2b C.﹣a﹣b D.a﹣2b4.若长和宽分别是a,b的长方形的周长为10,面积为4,则a2b+ab2的值为()A.14B.16C.20D.405.把8x2y﹣2xy分解因式()A.2xy(4x+1)B.2x(4x﹣1)C.xy(8x﹣2)D.2xy(4x﹣1)6.把多项式m2(a﹣2)+m(2﹣a)分解因式等于()A.(a﹣2)(m2+m)B.(a﹣2)(m2﹣m)C.m(a﹣2)(m﹣1)D.m(a﹣2)(m+1)7.已知ab=﹣2,a+b=3,则a2b+ab2的值是()A.6B.﹣6C.1D.﹣18.计算(﹣2)2020+(﹣2)2021所得的结果是()A.﹣22020B.﹣22021C.22020D.﹣29.把多项式a2﹣9a分解因式,结果正确的是()A.a(a﹣9)B.(a+3)(a﹣3)C.a(a+3)(a﹣3)D.﹣a(a﹣9)10.设P=a2(﹣a+b﹣c),Q=﹣a(a2﹣ab+ac),则P与Q的关系是()A.P=Q B.P>Q C.P<Q D.互为相反数11.计算(﹣2)2021+(﹣2)2020的值是()A.﹣2B.﹣22020C.22020D.212.下列多项式中,能用提取公因式法分解因式的是()A.x2﹣y B.x2+2x C.x2+y2D.x2﹣xy+y213.把5(a﹣b)+m(b﹣a)提公因式后一个因式是(a﹣b),则另一个因式是()A.5﹣m B.5+m C.m﹣5D.﹣m﹣514.把多项式x2y5﹣xy n z因式分解时,提取的公因式是xy5,则n的值可能为()A.6B.4C.3D.215.把多项式3a2﹣9ab分解因式,正确的是()A.3(a2﹣3ab)B.3a(a﹣3b)C.a(3a﹣9b)D.a(9b﹣3a)16.分解因式2x2﹣4x的最终结果是()A.2(x2﹣2x)B.x(2x2﹣4)C.2x(x﹣2)D.2x(x﹣4)17.下列从左边到右边的变形中,因式分解正确的是()A.x2+1=x(x+)B.(x+5)(x﹣5)=x2﹣25C.x2+x+1=x(x+1)+1D.﹣2x2﹣2xy=﹣2x(x+y)18.如图,矩形的长、宽分别为a,b,周长为16,面积为15,则a2b+ab2的值为()A.120B.128C.240D.25019.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式m﹣1后,另一个因式为()A.m+1B.2m C.2D.m+2二.填空题(共17小题)20.因式分解:2x2﹣8=.21.因式分解:x(x﹣3)﹣x+3=.22.分解因式:x2+xy=.23.因式分解:x(x﹣2)﹣x+2=.24.因式分解:x2﹣3x=.25.因式分解:2x2﹣4x=.26.分解因式:a2﹣ab=.27.因式分解:a2﹣2a=.28.分解因式:2a2﹣ab=.29.因式分解3xy﹣6y=.30.因式分解:x2﹣x=.31.因式分解2x2y﹣8y=.32.因式分解:﹣3am2+12an2=.33.因式分解:x2﹣2x=.34.分解因式:m2﹣3m=.35.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b 均为整数,则a+3b的值为.36.因式分解:5x2﹣2x=.三.解答题(共7小题)37.因式分解(1)2a2b﹣8b(2)xy3﹣10xy2+25xy38.把下列各式因式分解:(1)mn(m﹣n)﹣m(n﹣m)2;(2)(x+1)(x+2)+.39.因式分解:(1)mx+my;(2)2x2+4xy+2y2.40.因式分解:(1)8m2n+2mn;(2)2a2x2+4a2xy+2a2y2.41.先阅读、观察、理解,再解答后面的问题:第1个等式:1×2=(1×2×3﹣0×1×2)=(1×2×3)第2个等式:1×2+2×3=(1×2×3﹣0×1×3)+(2×3×4﹣1×2×3)=(1×2×3﹣0×1×2+2×3×4﹣1×2×3)=(2×3×4)第3个等式:1×2+2×3+3×4=(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)=(1×2×3﹣0×1×3+2×3×4﹣1×2×3+3×4×5﹣2×3×4)=(3×4×5)(1)依次规律,猜想:1×2+2×3+3×4+……+n(n+1)=(直接写出结果);(2)根据上述规律计算:10×11+11×12+12×13+……+29×30.42.观察以下等式:第1个等式:2×1﹣12=1第2个等式:3×2﹣22=2第3个等式:4×3﹣32=3第4个等式:5×4﹣42=4第5个等式:6×5﹣52=5……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.43.(1)分解因式:2a(y﹣z)﹣3b(z﹣y);(2)解不等式﹣x≥1,并在数轴上表示解集.因式分解-提公因式法精选题43道参考答案与试题解析一.选择题(共19小题)1.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1B.x(x﹣2)+(2﹣x)C.x2﹣2x+1D.x2+2x+1【解答】解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意;B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故B选项不合题意;C、x2﹣2x+1=(x﹣1)2,故C选项不合题意;D、x2+2x+1=(x+1)2,故D选项符合题意.故选:D.2.若m﹣n=﹣2,mn=1,则m3n+mn3=()A.6B.5C.4D.3【解答】解:∵m﹣n=﹣2,mn=1,∴(m﹣n)2=4,∴m2+n2﹣2mn=4,则m2+n2=6,∴m3n+mn3=mn(m2+n2)=1×6=6.故选:A.3.将﹣a2b﹣ab2提公因式﹣ab后,另一个因式是()A.a+2b B.﹣a+2b C.﹣a﹣b D.a﹣2b【解答】解:﹣a2b﹣ab2=﹣ab(a+2b),﹣a2b﹣ab2提公因式﹣ab后,另一个因式是a+2b,故选:A.4.若长和宽分别是a,b的长方形的周长为10,面积为4,则a2b+ab2的值为()A.14B.16C.20D.40【解答】解:∵长和宽分别是a,b的长方形的周长为10,面积为4,∴2(a+b)=10,ab=4,∴a+b=5,则a2b+ab2=ab(a+b)=20.故选:C.5.把8x2y﹣2xy分解因式()A.2xy(4x+1)B.2x(4x﹣1)C.xy(8x﹣2)D.2xy(4x﹣1)【解答】解:原式=2xy(4x﹣1).故选:D.6.把多项式m2(a﹣2)+m(2﹣a)分解因式等于()A.(a﹣2)(m2+m)B.(a﹣2)(m2﹣m)C.m(a﹣2)(m﹣1)D.m(a﹣2)(m+1)【解答】解:m2(a﹣2)+m(2﹣a),=m2(a﹣2)﹣m(a﹣2),=m(a﹣2)(m﹣1).故选:C.7.已知ab=﹣2,a+b=3,则a2b+ab2的值是()A.6B.﹣6C.1D.﹣1【解答】解:因为ab=﹣2,a+b=3,所以a2b+ab2=ab(a+b)=﹣2×3=﹣6,故选:B.8.计算(﹣2)2020+(﹣2)2021所得的结果是()A.﹣22020B.﹣22021C.22020D.﹣2【解答】解:(﹣2)2020+(﹣2)2021=(﹣2)2020×(1﹣2)=﹣22020.故选:A.9.把多项式a2﹣9a分解因式,结果正确的是()A.a(a﹣9)B.(a+3)(a﹣3)C.a(a+3)(a﹣3)D.﹣a(a﹣9)【解答】解:a2﹣9a=a(a﹣9).故选:A.10.设P=a2(﹣a+b﹣c),Q=﹣a(a2﹣ab+ac),则P与Q的关系是()A.P=Q B.P>Q C.P<Q D.互为相反数【解答】解:P=﹣a2(a﹣b+c),Q=﹣a(a2﹣ab+ac)=﹣a2(a﹣b+c),P=Q,故选:A.11.计算(﹣2)2021+(﹣2)2020的值是()A.﹣2B.﹣22020C.22020D.2【解答】解:(﹣2)2021+(﹣2)2020=(﹣2)2020×(﹣2+1)=﹣22020.故选:B.12.下列多项式中,能用提取公因式法分解因式的是()A.x2﹣y B.x2+2x C.x2+y2D.x2﹣xy+y2【解答】解:A、不符合要求,没有公因式可提,故本选项错误;B、x2+2x可以提取公因式x,正确;C、不符合要求,没有公因式可提,故本选项错误;D、不符合要求,没有公因式可提,故本选项错误;故选:B.13.把5(a﹣b)+m(b﹣a)提公因式后一个因式是(a﹣b),则另一个因式是()A.5﹣m B.5+m C.m﹣5D.﹣m﹣5【解答】解:原式=5(a﹣b)﹣m(a﹣b)=(a﹣b)(5﹣m),另一个因式是(5﹣m),故选:A.14.把多项式x2y5﹣xy n z因式分解时,提取的公因式是xy5,则n的值可能为()A.6B.4C.3D.2【解答】解:把多项式x2y5﹣xy n z因式分解时,提取的公因式是xy5,则:n≥5,故选:A.15.把多项式3a2﹣9ab分解因式,正确的是()A.3(a2﹣3ab)B.3a(a﹣3b)C.a(3a﹣9b)D.a(9b﹣3a)【解答】解:3a2﹣9ab=3a(a﹣3b).故选:B.16.分解因式2x2﹣4x的最终结果是()A.2(x2﹣2x)B.x(2x2﹣4)C.2x(x﹣2)D.2x(x﹣4)【解答】解:2x2﹣4x=2x(x﹣2).故选:C.17.下列从左边到右边的变形中,因式分解正确的是()A.x2+1=x(x+)B.(x+5)(x﹣5)=x2﹣25C.x2+x+1=x(x+1)+1D.﹣2x2﹣2xy=﹣2x(x+y)【解答】解:A、原式不能分解,不符合题意;B、原式为多项式乘法,不符合题意;C、原式不能分解,不符合题意;D、原式=﹣2x(x+y),符合题意.故选:D.18.如图,矩形的长、宽分别为a,b,周长为16,面积为15,则a2b+ab2的值为()A.120B.128C.240D.250【解答】解:∵矩形的周长为16,面积为15,∴a+b=8,ab=15.∴a2b+ab2=ab(a+b)=15×8=120.故选:A.19.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式m﹣1后,另一个因式为()A.m+1B.2m C.2D.m+2【解答】解:(m+1)(m﹣1)+(m﹣1)=(m﹣1)(m+1+1)=(m﹣1)(m+2),所以,把多项式(m+1)(m﹣1)+(m﹣1)提取公因式m﹣1后,另一个因式为(m+2),故选:D.二.填空题(共17小题)20.因式分解:2x2﹣8=2(x+2)(x﹣2).【解答】解:2x2﹣8=2(x+2)(x﹣2).21.因式分解:x(x﹣3)﹣x+3=(x﹣1)(x﹣3).【解答】解:原式=x(x﹣3)﹣(x﹣3)=(x﹣1)(x﹣3),故答案为:(x﹣1)(x﹣3)22.分解因式:x2+xy=x(x+y).【解答】解:x2+xy=x(x+y).23.因式分解:x(x﹣2)﹣x+2=(x﹣2)(x﹣1).【解答】解:原式=x(x﹣2)﹣(x﹣2)=(x﹣2)(x﹣1).故答案为:(x﹣2)(x﹣1).24.因式分解:x2﹣3x=x(x﹣3).【解答】解:x2﹣3x=x(x﹣3).故答案为:x(x﹣3)25.因式分解:2x2﹣4x=2x(x﹣2).【解答】解:2x2﹣4x=2x(x﹣2).故答案为:2x(x﹣2).26.分解因式:a2﹣ab=a(a﹣b).【解答】解:a2﹣ab=a(a﹣b).27.因式分解:a2﹣2a=a(a﹣2).【解答】解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).28.分解因式:2a2﹣ab=a(2a﹣b).【解答】解:2a2﹣ab=a(2a﹣b).故答案为:a(2a﹣b).29.因式分解3xy﹣6y=3y(x﹣2).【解答】解:3xy﹣6y=3y(x﹣2).故答案为:3y(x﹣2).30.因式分解:x2﹣x=x(x﹣1).【解答】解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).31.因式分解2x2y﹣8y=2y(x+2)(x﹣2).【解答】解:2x2y﹣8y=2y(x2﹣4)=2y(x+2)(x﹣2)故答案为:2y(x+2)(x﹣2).32.因式分解:﹣3am2+12an2=﹣3a(m+2n)(m﹣2n).【解答】解:原式=﹣3a(m2﹣4n2)=﹣3a(m+2n)(m﹣2n).故答案为:﹣3a(m+2n)(m﹣2n).33.因式分解:x2﹣2x=x(x﹣2).【解答】解:原式=x(x﹣2),故答案为:x(x﹣2).34.分解因式:m2﹣3m=m(m﹣3).【解答】解:m2﹣3m=m(m﹣3).故答案为:m(m﹣3).35.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b 均为整数,则a+3b的值为﹣31.【解答】解:(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)=(3x﹣7)(2x﹣21﹣x+13)=(3x﹣7)(x﹣8),∵(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),∴(3x﹣7)(x﹣8)=(3x+a)(x+b),则a=﹣7,b=﹣8,故a+3b=﹣7+3×(﹣8)=﹣31.故答案为:﹣31.36.因式分解:5x2﹣2x=x(5x﹣2).【解答】解:5x2﹣2x=x(5x﹣2),故答案为:x(5x﹣2).三.解答题(共7小题)37.因式分解(1)2a2b﹣8b(2)xy3﹣10xy2+25xy【解答】解:(1)2a2b﹣8b=2b(a2﹣4)=2b(a﹣2)(a+2);(2)xy3﹣10xy2+25xy=xy(y2﹣10y+25)=xy(y﹣5)2.38.把下列各式因式分解:(1)mn(m﹣n)﹣m(n﹣m)2;(2)(x+1)(x+2)+.【解答】解:(1)mn(m﹣n)﹣m(n﹣m)2=mn(m﹣n)﹣m(m﹣n)2=m(m﹣n)[n﹣(m﹣n)]=m(m﹣n)(2n﹣m);(2)(x+1)(x+2)+=x2+3x+2+=(x+)2.39.因式分解:(1)mx+my;(2)2x2+4xy+2y2.【解答】解:(1)mx+my=m(x+y);(2)2x2+4xy+2y2=2(x2+2xy+y2)=2(x+y)2.40.因式分解:(1)8m2n+2mn;(2)2a2x2+4a2xy+2a2y2.【解答】解:(1)8m2n+2mn=2mn(4m+1);(2)2a2x2+4a2xy+2a2y2=2a2(x2+2xy+y2)=2a2(x+y)2.41.先阅读、观察、理解,再解答后面的问题:第1个等式:1×2=(1×2×3﹣0×1×2)=(1×2×3)第2个等式:1×2+2×3=(1×2×3﹣0×1×3)+(2×3×4﹣1×2×3)=(1×2×3﹣0×1×2+2×3×4﹣1×2×3)=(2×3×4)第3个等式:1×2+2×3+3×4=(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)=(1×2×3﹣0×1×3+2×3×4﹣1×2×3+3×4×5﹣2×3×4)=(3×4×5)(1)依次规律,猜想:1×2+2×3+3×4+……+n(n+1)=n(n+1)(n+2)(直接写出结果);(2)根据上述规律计算:10×11+11×12+12×13+……+29×30.【解答】解:(1)根据题意得:1×2+2×3+3×4+……+n(n+1)=n(n+1)(n+2);故答案为:n(n+1)(n+2);(2)原式=(1×2+2×3+3×4+4×5+5×6+6×7+7×8+8×9+9×10+……+29×30)﹣(1×2+2×3+3×4+4×5+5×6+6×7+7×8+8×9)=×29×30×31﹣×8×9×10=8990﹣240=8750.42.观察以下等式:第1个等式:2×1﹣12=1第2个等式:3×2﹣22=2第3个等式:4×3﹣32=3第4个等式:5×4﹣42=4第5个等式:6×5﹣52=5……按照以上规律,解决下列问题:(1)写出第6个等式:7×6﹣62=6;(2)写出你猜想的第n个等式:(n+1)×n=n2(用含n的等式表示),并证明.【解答】解:(1)第6个等式是7×6﹣62=6,故答案为:7×6﹣62=6;(2)猜想:第n个等式是(n+1)×n﹣n2=n,故答案为:(n+1)×n﹣n2=n,证明:∵左边=(n+1)×n﹣n2=n2+n﹣n2=n∵右边=n∴左边=右边,∴等式成立.43.(1)分解因式:2a(y﹣z)﹣3b(z﹣y);(2)解不等式﹣x≥1,并在数轴上表示解集.【解答】解:(1)原式=2a(y﹣z)+3b(y﹣z)=(y﹣z)(2a+3b);(2)去分母得:4x﹣1﹣3x≥3,解得:x≥4,如图所示:.。
因式分解专项练习题(一)提取公因式一、分解因式1、2x2y-xy2、6a2b3-9ab23、 x(a-b)+y(b-a)4、9m2n-3m2n25、4x2-4xy+8xz6、-7ab-14abx+56aby7、6m2n-15mn2+30m2n28、-4m4n+16m3n-28m2n9、x n+1-2x n-1 10、a n-a n+2+a3n11、p(a-b)+q(b-a) 12、a(b-c)+c-b13、(a-b)2(a+b)+(a-b)(a+b)2= 14、ab+b2-ac-bc15、3xy(a-b)2+9x(b-a) 16、(2x-1)y 2+(1-2x)2y17、6m(m-n)2-8(n-m)3 18、15b(2a-b)2+25(b-2a)319、a 3-a 2b+a 2c-abc 20、2ax +3am -10bx -15bm21、m (x -2)-n (2-x )-x +2 22、(m -a )2+3x (m -a )-(x +y )(a -m )23、 ab(c 2+d 2)+cd(a 2+b 2) 24、(ax+by)2+(bx-ay)225、-+--+++a x abx acx ax m m m m 2213 26、a a b a b a ab b a ()()()-+---32222 二、应用简便方法计算1、4.3×199.8+7.6×199.8-1.9×199.82、9×10100-101013、2002×20012002-2001×200220024、1368987521136898745613689872681368987123⨯+⨯+⨯+⨯三、先化简再求值(2x +1)2(3x -2)-(2x +1)(3x -2)2-x (2x +1)(2-3x )(其中,32x =)四、在代数证明题中的应用例:证明:对于任意正整数n ,323222n n n n ++-+-一定是10的倍数。
提取公因式法因式分解练习题
题组训练一:确定下列各多项式的公因式。
1.ay+ax^2,公因式为a。
2.3mx-6my^3,公因式为3m。
3.4a^2+10ab^4,公因式为2a。
4.15a^2+5a^5,公因式为5a^2.
5.x^2y-xy2/6,公因式为xy。
6.-9x^2y^2,公因式为3xy。
7.m(x-y)+n(x-y),公因式为(x-y)。
8.x(m+n)+y(m+n),公因式为(m+n)。
9.abc(m-n)^3-ab(m-n),公因式为ab(m-n)。
10.12x(a-b)^2-9m(b-a)^3,公因式为3(a-b)^2.
题组训练二:利用乘法分配律的逆运算填空。
1.2πR+2πr=2π(R+r)。
2.2πR+2πr=2π(R+r)/2.
3.gt^1/2+gt^2/2=(gt^1/2+gt^2/2)^2.
4.15a^2+25ab^2=5a(3a+5b^2)。
题组训练三:在下列各式左边的括号前填上“+”或“-”,使等式成立。
1.x+y=(x+y)。
2.b-a=-(a-b)。
3.-z+y=-(y-z)。
4.(y-x)=-(x-y)。
5.(y-x)^3=-(x-y)^3.
6.-(x-y)^4=(y-x)^4.
7.(a-b)^(2n)=(-1)^(2n)(b-a)^(2n)。
8.(a-b)^(2n+1)=(-1)^(2n+1)(b-a)^(2n+1)。
9.(1-x)(2-y)=-(1-x)(y-2)。
10.(1-x)(2-y)=(x-1)(y-2)。
11.(a-b)^2(b-a)=-(a-b)^3.
题组训练四:把下列各式分解因式。
1.n(x-y)。
2.a(a+b)^2.
3.2x(2x-3)。
4.2mn(4m+n)。
5.5x^2y^2(5y-3)。
6.3xy(4z-3x)。
7.3y(a-1)^2-3(a-1)y。
8.(a-b)(a-3b)。
9.-(x-3)(x+3)。
10.-4y(3x+2y)。
11.-3ma(m-4)(a+2)。
12.8x^2(-2x+7)。
题组训练五:把下列各式分解因式。
1.(a+b)(x-y)。
2.(5x+2y)(x-y)。
3.2q(3p-2q)。
4.(m+n)(p-q)。
5.(a-b)(a+b-1)。
6.(x-y)(x+y-1)。
7.(2a-b)(2a-3b-3a+3b)。
8.x(x-y)(x+y-1)。
1、简化多项式:p(x-y)-q(y-x)
p(x-y)-q(y-x)=p(x-y)+q(x-y)=(p+q)(x-y)
2、简化多项式:m(a-3)+2(3-a)
m(a-3)+2(3-a)=m(a-3)-2(a-3)=(m-2)(a-3)
3、简化多项式:(a+b)(a-b)-(b+a)
a+b)(a-b)-(b+a)=(a^2-b^2)-(a+b)=(a-b)(a+b-a-b)=-(a-b)^2
4、简化多项式:a(x-a)+b(a-x)-c(x-a)
a(x-a)+b(a-x)-c(x-a)=(a-b)(x-a)-c(x-a)=(a-b-c)(x-a)
5、简化多项式:3(x-1)3y-(1-x)3z
3(x-1)3y-(1-x)3z=27y(x-1)-27z(1-x)=27(x-1)(y+z)
6、简化多项式:-ab(a-b)2+a(b-a)2
ab(a-b)2+a(b-a)2=-ab(a-b)2-a(a-b)2=-a(a-b)(a+b)
7、简化多项式:mx(a-b)-nx(b-a)
mx(a-b)-nx(b-a)=(m+n)(a-b)
8、简化多项式:(a-2b)(2a-3b)-5a(2b-a)(3b-2a)
a-2b)(2a-3b)-5a(2b-a)(3b-2a)=-(a-b)^2(5a-6b)
9、简化多项式:(3a+b)(3a-b)+(a-b)(b-3a)
3a+b)(3a-b)+(a-b)(b-3a)=9a^2-b^2-(a-b)(3a+b-3a+b)=9a^2-b^2-(a-b)^2
10、简化多项式:a(x-y)2+b(y-x)
a(x-y)2+b(y-x)=a(x-y)^2-b(x-y)=(a-b)(x-y)^2
11、简化多项式:x(x-y)2-2(y-x)3-(y-x)2
x(x-y)2-2(y-x)3-(y-x)2=x(x-y)^2-2(y-x)^3-(y-x)^2=(x-
y)^2(x+2(y-x))-3(y-x)^2
12、简化多项式:(x-a)3(x-b)+(a-x)2(b-x)(y-x)2+x(x-y)3-(y-x)4
x-a)3(x-b)+(a-x)2(b-x)(y-x)2+x(x-y)3-(y-x)4=(x-a)3(x-b)-(a-x)(x-b)(y-x)2+x(x-y)^3-(y-x)^4=(x-a)(x-b)(x-a+x-b-2(y-x))-(y-x)^2(x-a-x+b)-(y-x)^4=(x-a-b)(x-a+x-b-2(y-x))-(y-x)^2(x-a-x+b)-(y-x)^4=(x-a-b)(2(x-y)-a-b)-(y-x)^2(2a-2x+b)-(y-x)^4
13、证明:当n为整数时,n2+n必能被2整除。
当n为偶数时,显然n2+n为偶数,能被2整除。
当n为奇数时,n2为奇数,n为奇数,n2+n为偶数,能被2整除。
14、证明:一个三位数的百位上数字与个位上数字交换位置,则所得的三位数与原数之差能被99整除。
设原三位数为abc,交换后为acb,则它们之差为(abc-acb)=99(a-c),能被99整除。
15、证明:-4×+10×能被7整除。
-4×+10×=7×4586,能被7整除。
16、已知a+b=-2,ab=5,求代数式2a2b+2ab2的值。
2a2b+2ab2=2ab(a+b)+2ab=(2ab-2)+2ab(a+b)=2ab-2-2ab=-2
17、已知a-b=-4,ab=-1,求代数式a3b2-a2b3-8a2b2的值。
a3b2-a2b3-8a2b2=a2b(ab-b^2)-8a^2b^2=a^2b-b^3-
8a^2b^2=a^2b-8a^2b^2-b^3=a(a-8b)(b^2)+b^3=a(a-8b)(-
a^2)+b^3=-a^3(a-8b)+b^3=8-(-1)(-4)^3=56
18、已知x+y=4,xy=3,求代数式(x-y)3+8y/(x-y)的值。
x-y)3+8y/(x-y)=(x^3-y^3)/(x-y)+8y/(x-
y)=(x^2+xy+y^2)+8y/(x-y)=16+3=19
19、已知2x+y=3,x-2y=5,求代数式x2+y2的值。
x2+y2=(2x+y)2-2(x-2y)2=3^2-2×5^2=-47
20、已知a+b+c=0,求代数式a3+b3+c3-3abc的值。
a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)=0×(a2+b2+c2-ab-ac-bc)=0
21、已知x+y+z=1,x2+y2+z2=3,求代数式xy+yz+zx的值。
xy+yz+zx=(x+y+z)2-(x2+y2+z2)/2=1-3/2=-1/2。