九年级圆知识点北师大
- 格式:docx
- 大小:37.32 KB
- 文档页数:4
《圆》章节知识点复习一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系<⇒点C在圆内;1、点在圆内⇒d r=⇒点B在圆上;2、点在圆上⇒d r>⇒点A在圆外;3、点在圆外⇒d r三、直线与圆的位置关系>⇒无交点;1、直线与圆相离⇒d r=⇒有一个交点;2、直线与圆相切⇒d r<⇒有两个交点;3、直线与圆相交⇒d r四、圆与圆的位置关系>+;外离(图1)⇒无交点⇒d R r=+;外切(图2)⇒有一个交点⇒d R r-<<+;相交(图3)⇒有两个交点⇒R r d R r=-;内切(图4)⇒有一个交点⇒d R r<-;内含(图5)⇒无交点⇒d R r五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
九年级数学圆知识点总结北师大版点的连线与切线所夹角为直角.1.垂径定理及推论:在一个圆中,如果一条直线通过圆心且垂直于另一条直线,则这条直线被称为垂径,而另一条直线被称为弦。
根据垂径定理,垂径平分弦,并且中垂定理、中径定理和弧径定理都可以由垂径定理推导而来。
2.平行线夹弧定理:当两条平行弦穿过一个圆时,它们所夹的弧是相等的。
3.“角、弦、弧、距”定理:在同一个圆或等圆中,如果两个角相等,则它们所对的弦也相等;如果两个弦相等,则它们所对的角也相等;如果两个角相等,则它们所对的弧也相等;如果两个弧相等,则它们所对的角也相等;如果两个弦的弦心距相等,则它们也相等。
4.圆周角定理及推论:圆周角的度数等于它所对的弧的度数的一半;一条弧所对的圆周角等于它所对的圆心角的一半;如果两个弧相等,则它们所对的角也相等;如果两个角相等,则它们所对的弧也相等;如果一个三角形的一条边的中线等于这条边的一半,则这个三角形是直角三角形。
5.圆内接四边形性质定理:圆内接四边形的对角线互补,并且任何一个外角都等于它的内对角。
6.切线定理及性质:如果一条直线通过圆的外部一点并且与圆相切,则这条直线被称为切线。
根据切线定理,经过半径的外端并且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点且垂直于切线的直线必经过圆心。
7.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等;圆心和这一点的连线与切线所夹角为直角。
点的连线平分两条切线的夹角。
因为AB是切线,所以OC垂直于AB。
(3)几何表达式举例:因为PA、PB是切线,所以PA=PB。
因为PO过圆心,所以∠APO=∠BPO。
弦切角定理及其推论:(1)弦切角等于它所夹的弧对的圆周角;(2)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等;(3)弦切角的度数等于它所夹的弧的度数的一半。
(如图)相交弦定理及其推论:(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等;(2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项。
九年级数学下册第三章圆知识总结北师大版年级:姓名:圆的知识总结24.1 圆定义:(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。
(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
圆心:(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。
(3)圆任意两条对称轴的交点为圆心。
(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。
直径一般用字母d 表示。
半径:连接圆心和圆上任意一点的线段,叫做圆的半径。
半径一般用字母r表示。
圆的直径和半径都有无数条。
圆是轴对称图形,每条直径所在的直线是圆的对称轴。
在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。
计算时,通常取它的近似值,π≈3.14。
直径所对的圆周角是直角。
90°的圆周角所对的弦是直径。
圆的面积公式:圆所占平面的大小叫做圆的面积。
πr2,用字母S表示。
一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。
周长计算公式1.、已知直径:C=πd 2、已知半径:C=2πr 3、已知周长:D=c\π4、圆周长的一半:1\2周长(曲线)5、半圆的长:1\2周长+直径 面积计算公式:1、已知半径:S=πr 平方2、已知直径:S=π(d\2)平方3、已知周长:S=π(c\2π)平方24.2 点和圆、直线和圆的位置关系1. 点和圆的位置关系① 点在圆内⇔点到圆心的距离小于半径 ② 点在圆上⇔点到圆心的距离等于半径③ 点在圆外⇔点到圆心的距离大于半径2. 过三点的圆不在同一直线上的三个点确定一个圆。
北师大版九年级数学教材中的圆包括以下内容:
1. 圆的定义:圆是由平面上到一个点的距离都相等的点的集合。
其中,这个点叫做圆心,距离叫做半径。
2. 圆的性质:
- 圆心角:以圆心为顶点的角叫做圆心角。
圆心角的度数等于其所对的弧的度数。
- 弧长和扇形面积:圆的弧长是圆周上任意两点间的弧长。
扇形是由圆心、圆周上的两个点和与之相连的弧组成的图形。
计算弧长和扇形面积需要使用圆周率π。
- 切线与切点:切线是与圆只有一个交点的直线,这个交点叫做切点。
切线与半径垂直。
- 弦和弦长:弦是圆上的两个点之间的线段。
弦的中垂线经过圆心,并且将弦分成两等分,弦长等于两等分部分长度之和的一半。
- 相交弧的性质:如果两个圆相交,那么它们相交弧的度数和为360°。
3. 圆的相关公式:
- 圆的周长:圆的周长等于圆周上一整个弧长,即2πr(其中r为半径)。
- 圆的面积:圆的面积等于πr^2。
以上是北师大版九年级数学教材中关于圆的主要内容。
通过学习这些知识,学生可以理解圆的定义、性质和相关公式,进而应用到解决与圆相关的问题中。
1。
北师大版数学九年级下册:圆盘知识点总结本文档总结了北师大版数学九年级下册关于圆盘的知识点。
下面是各个知识点的简要概述:1. 圆的定义和性质- 圆是由平面上到一个定点距离为定值的点的全体组成。
圆的性质包括:圆上任意两点与圆心的连线相等、圆心到圆上任意一点的距离相等。
- 圆的半径是圆心到圆上任意一点的距离,直径是通过圆心的直线段,直径是半径的2倍,弦是圆上的任意两点间的线段,弦的长度小于或等于直径。
- 弧是沿圆周的一段,圆的周长也可以称为圆周长。
2. 圆的面积和周长计算公式- 圆的面积公式为:面积= π × 半径的平方。
- 圆的周长公式为:周长= 2 × π × 半径。
3. 圆心角、弧度和弧长的关系- 圆心角是指两条射线,以圆心为顶点的角度。
弧度是衡量角度大小的一个单位,1弧度等于圆心角恰好为半径的一条弧长。
弧长是弧上的一段弧的长度。
- 圆周角是指整个圆的圆心角,它的度数是360°,弧度是2π。
4. 切线与弦的关系- 切线是指与圆交于一点且与圆垂直的直线。
切线与半径的关系包括:切线与半径垂直、切线与半径的夹角是直角。
- 弦是圆上的任意两点间的线段。
弦和切线的关系包括:切线与弦的夹角等于弦所对圆心角的一半。
5. 相交弦与切线的性质- 如果两条弦在圆内相交,则它们的弦所对的圆心角互补(和为180°)。
- 相交弦与切线交于圆上的点时,切线与弦所对的圆心角相等。
这些是北师大版数学九年级下册关于圆盘的主要知识点总结。
希望能对你的学习有所帮助!。
北师大版九年级下册数学第 13 讲《圆的对称性》知识点梳理【学习目标】1.理解圆的对称性;并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法;理解弦、弧、半圆、优弧、劣弧、等弧等与圆有关的概念,理解概念之间的区别和联系;2.通过探索、观察、归纳、类比,总结出垂径定理等概念,在类比中理解深刻认识圆中的圆心角、弧、弦三者之间的关系;3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、圆的对称性圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴.圆是中心对称图形,对称中心为圆心.要点诠释:圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB 是⊙O 的直径,CD 是⊙O 中任意一条弦,求证:AB≥CD.证明:连结OC、OD2. 弧 ∵AB=AO+OB=CO+OD ≥CD(当且仅当 CD 过圆心 O 时,取“=”号) ∴直径 AB 是⊙O 中最长的弦.弧:圆上任意两点间的部分叫做圆弧,简称弧.以 A 、B 为端点的弧记作 ,读作“圆弧 AB ”或“弧 AB ”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3. 等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.要点三、垂径定理1. 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2. 推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1) 垂径定理是由两个条件推出两个结论,即(2) 这里的直径也可以是半径,也可以是过圆心的直线或线段.要点四、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)要点五、弧、弦、圆心角的关系1.圆心角与弧的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.2.圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意关系中不能忽视“同圆或等圆”这一前提.3.圆心角的度数与它所对的弧的度数相等.【典型例题】类型一、应用垂径定理进行计算与证明1.(2015•巴中模拟)如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D,若AC=8cm,DE=2cm,求OD 的长.【答案与解析】解:∵E 为弧AC 的中点,∴OE⊥AC,∴AD= AC=4cm,∵OD=OE﹣DE=(OE﹣2)cm,OA=OE,∴在Rt△OAD 中,OA2=OD2+AD2 即OA2=(OE﹣2)2+42,又知0A=OE,解得:OE=5,∴OD=OE﹣DE=3cm.【总结升华】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形.举一反三:【变式】如图,⊙O 中,弦AB⊥弦CD 于E,且AE=3cm,BE=5cm,求圆心O 到弦CD 距离。
第9讲圆的相关概念及基本性质目标导航知识精讲知识点01 圆的定义1)圆:描述性定义:在平面内,线段OA绕它固定的一个端点O旋转一周,另一端点A所形成的轨迹。
记作:“O”,读作:“圆O”,其中端点O叫作圆心集合性定义:圆是平面内所有到定点的距离等于定长的点的集合,定点是圆心,定长是半径。
2)基本概念①半径:线段OA叫作圆的半径(OB、OC也是圆的半径)②弦:圆上任意两点间的线段(半径是特殊的弦)③直径:经过圆心的弦(如AB)④弧:圆上任意两点间的部分(如)⑤半圆:圆的任一直径的两个端点将圆分成两条弧,每条弧叫作半圆⑥等圆:两个圆能完全重合(即全等,即半径r相等)3)确定一个圆的两要素(圆心、半径)4)圆的任一半径长度都相等5)圆的任一直径长度都相等,且直径长度=2倍的半径长度6)等弧:能够完全重合的两段弧是等弧。
也可说在同圆或等圆中,等长弧对应的弧相等;7)C=2r S=注:①直径是弦,但弦不一定是直径,直径是圆中最长的弦;②半圆是弧,但弧不一定是半圆。
通常将大于半圆的弧称为优弧,小于半圆的弧称为劣弧;③等弧必须以“等圆或同圆”为前提,等弧是全等的(能完全重合),不仅指弧长相等,弧度也相等。
【知识拓展】(2021·山西晋中市·)如图,在中,点B、O、C和点A、O、D分别在同一条直线上,则图中有()条弦.A.2 B.3 C.4 D.5【即学即练1】(2021·山东九年级期中)下列说法:①弦是直径;②半圆是弧;③过圆心的线段是直径;④圆心相同半径相同的两个圆是同心圆,其中错误的有。
(填序号)【即学即练2】(2021·安徽定远县第一初级中学初三月考)下列说法中,正确的是( )A.两个半圆是等弧 B.同圆中优弧与半圆的差必是劣弧C.长度相等的弧是等弧 D.同圆中优弧与劣弧的差必是优弧【即学即练3】(2021·江苏中考真题)如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3:1,则圆的面积约为正方形面积的()A.27倍B.14倍C.9倍D.3倍【即学即练4】(2021·广东)如图,在等腰Rt ABC中,32==,点P在以斜边AB为直径的半圆AC BC上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是________.知识点02 弧、弦、圆心角之间的关系1)圆心角:顶点在圆心的角叫作圆心角2)规定旋转一周为360°,即圆周角为360°3)①C=2r ②半圆弧长=C ③弧长=(n为圆心角)4)等圆(半径相同)或同圆中,圆心角相等,则对应弧长、弦长相等;5)前提条件:在同圆或等圆中,①圆心角相等;②对应的弦长相等;③对应的弧长相等。
圆?章节学问点复习一、圆的概念集合形式的概念:1、圆可以看作是到定点的间隔等于定长的点的集合;2、圆的外部:可以看作是到定点的间隔大于定长的点的集合;3、圆的内部:可以看作是到定点的间隔小于定长的点的集合轨迹形式的概念:1、圆:到定点的间隔等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端间隔相等的点的轨迹是这条线段的垂直平分线〔也叫中垂线〕;3、角的平分线:到角两边间隔相等的点的轨迹是这个角的平分线;4、到直线的间隔相等的点的轨迹是:平行于这条直线且到这条直线的间隔等于定长的两条直线;5、到两条平行线间隔相等的点的轨迹是:平行于这两条平行线且到两条直线间隔都相等的一条直线。
二、点及圆的位置关系<⇒点C在圆内;1、点在圆内⇒d r=⇒点B在圆上;2、点在圆上⇒d r>⇒点A在圆外;3、点在圆外⇒d r三、直线及圆的位置关系>⇒无交点;1、直线及圆相离⇒d r=⇒有一个交点;2、直线及圆相切⇒d r<⇒有两个交点;3、直线及圆相交⇒d r四、圆及圆的位置关系>+;外离〔图1〕⇒无交点⇒d R r=+;外切〔图2〕⇒有一个交点⇒d R r-<<+;相交〔图3〕⇒有两个交点⇒R r d R r=-;内切〔图4〕⇒有一个交点⇒d R r<-;内含〔图5〕⇒无交点⇒d R r五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:〔1〕平分弦〔不是直径〕的直径垂直于弦,并且平分弦所对的两条弧; 〔2〕弦的垂直平分线经过圆心,并且平分弦所对的两条弧;〔3〕平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中随意2个条件推出其他3个结论。
圆圆一章中在近年的考试中有所弱化,从分值上由原来的20分降到10分左右;从难度上看,只需垂径定理、圆心角、圆周角、弧、弦、弦心距间的关系定理,直径与圆周角的性质的简单运用。
所以,教师复习时,要在难易方面有所体现。
1、理解圆及其有关概念,了解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系。
2、探索圆的性质:垂径定理,圆心角、圆周角、弧、弦、弦心距间的关系定理,直径与圆周角的性质。
3、探索切线与过切点的半径之间的关系;能判定一直线是否为圆的切线;会过圆上一点画圆的切线。
124、了解三角形的内心、外心。
5、a 、h 、r 、d 中,知二求二6、会计算弧长及扇形的面积,阴影图形面积,圆锥的侧面积和全面积。
三、技能和方法1、能正确利用用辅助线解决圆的证明和计算(已知r ,作弦;与弦有关作弦心距;与切线有关作半经)2、能用比较、分析、综合、数形结合、化归、建模等数学思想方法解答比较简单的综合性、实际性问题。
3、充分感受数学与现实生活的紧密联系。
四、例题解析 1.己知:⊙O1和⊙O2直径分别是10和8,O1O2=7,则两圆的位置关系是: ; 2.己知⊙O1和⊙O2内切,且⊙O1的半经为6 cm ,两圆的圆心距为3 cm ,那么⊙O2的半径长为: ;3.己知:直角三角形的两直角边分别为3和4cm ,求以一条直角边为轴旋转所得图形的表面积。
4.如图,AB 是⊙O 的一条弦,OC ⊥AB 于点C ,OA = 5,AB = 8,求OC 的长。
5.如图,AB 是的直径,BD 是的弦,延长BD 到C ,使CA = AB 。
BD 与CD 的大小有什么关系?为什么?五、练习拓展3.1 车轮为什么做成圆形1.⊙O 外一点P 和⊙O 上一点的距离最小3cm ,最大为8cm ,则这圆的半径是_________.2.⊙O 的半径为5,圆心O 的坐标为O (0,0),点A 的坐标为A (4,2位置关系是( )A.点A 在⊙O 内B.点A 在⊙O 上C.点A 在⊙O 外D.点A 在⊙O 内或在⊙O 上3.如图,一根绳子长4 m ,一端拴着一只羊,另一端拴在 墙BC 边A 处的柱子上,请画出羊的活动区域.4.如图,已知在同心圆O 中,大圆的弦AB 交小圆于C 、D 两点.求证:∠AOC3.2 圆的对称性(一)1.若⊙O 的直径为10厘米,弦AB 的弦心距为3厘米,则弦AB 的长为________.2.已知⊙O 的半径为8cm ,OP =5cm ,则在过点P 的所有弦中,最短的弦长为最长的弦长为___________3.已知⊙O 的半径为5cm ,则垂直平分半径的弦长为__________.4.已知圆的两弦AB 、CD 的长分别是18和24,且AB ∥CD ,又两弦之间的距离为的半径长是( ) A.12 B.15 C.12或15 D.215.如图,直径为1000mm 的圆柱形水管有积水(阴影部分),3水面的宽度AB 为800mm ,求水的最大深度CD .3.2 圆的对称性(二)1.在⊙O 中,60°的圆心角所对的弦长为5cm ,则这个圆的半径为_________.2.若⊙O 的弦AB 的长为8cm ,O 到AB的距离为,弦AB 所对的圆心角为__________.3.下列结论中正确的是( )A.长度相等的两条弧相等 B.相等的圆心角所对的弧相等 C.圆是轴对称图形 D.平分弦的直径垂直于弦4.如图,三点A 、B 、C 在⊙O 上.(1)已知:∠ABC =∠ACB ,求证:AB=AC ;(2)已知:AB=AC ,求证:∠ABC =∠ACB 3.3 圆周角和圆心角的关系(一)1.如图,点A 、B 、C 在⊙O 上.(1)若∠AOB =70°,则∠ACB =_____°;(2)若∠ACB =40°,则∠AOB =________°. 2.如图,⊙O 的直径AB 和弦CD 的延长线相交于点P ,∠AOC =64°,∠BOD =16°, 则∠APC 的度数为______°.3.如图,⊙O 的直径AD =6,∠BAC =30°,则弦BC 的长为 ( )A.3B. C.6D.(第3题)4.在同圆或等圆中,同一弦所对的两个圆( )A.相等B.互补C.互余D.相等或互补3.3 圆周角和圆心角的关系(二)1.如图,⊙O 的弦AB ,CD 相交于点E ,AC 所对的圆心角是100°,弧AB 所对的圆心角是50°.则∠AEC =_______.2.下列命题中,①顶点在圆上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90°的圆周角所对的弦是直径;④直径所对的角是直角;⑤同弧或等弧所对的圆周角相等.正确的个数为 ( ) A.1个 B.2个 C.3个 D.4个3.4 确定圆的条件1.____________________的三个点确定一个圆.2.锐角三角形的外心位于三角形的_______,直角三角形的外心在_________,钝角三角形的外心位于三角形的__________.3.等腰直角三角形外接圆半径为3,则这个三角形三边的长为____________.4.直角三角形两条直角边长为6和8,则外接圆面积为________.5.下列四个命题中,①直径是弦;②经过三点可以作圆;③三角形的外心到各顶点的距离都相等;④钝角三角形的外心在三角形的外部.正确的有 ( )CD4A.个B.2个C.3个D.4个6. 如图,以⊙O 的半径OA 为直径作⊙D ,⊙O 的弦AB 与⊙D 相交于点C ,已知AB =20,求AC 的长.3.5 直线和圆的位置关系(一)1.在Rt △ABC 中,∠C =Rt ∠,AB =5cm ,BC =3cm ,以A 为圆心,4cm 为半径作圆,则:(1)直线BC 与⊙A 的位置关系是_________;(2)直线AC 与⊙A 的位置关系是_________.(3)以C 为圆心,半径为________的圆与直线AB 相切.2.半径等于3的⊙P 与x 轴相切,且OP 与x 轴正半轴的夹角为30°,则点P 的坐标为_______.3.如果直线l 与⊙O 有公共点,那么直线l 与⊙O 的位置关系是 ( ) A.相交 B.相切 C.相离 D.相切或相交3.5 直线和圆的位置关系(二)1.如图,⊙O 是Rt △ABC 的内切圆,D 、E 、F 分别是切点,∠ACB =90°,∠BOC =115°,则∠A =______,∠ABC =_______.2.如图,⊙I 是Rt △ABC 的内切圆,D 、E 、F 分别是切点,∠ACB =90°,AB =5cm ,BC =4cm ,则⊙I 的半径IE 的长为_______.3.如图,直线l 1、l 2、 l 3表示三条相互交叉的公路,现在要建一个货物中转站,要求它到三条公路距离相等,则可选择的地址有 ( )A.一处B.两处C.三处D.四处4.如图,已知AB 是⊙O 的直径,BC 是⊙O的切线,切点为B ,OC 平行于弦AD .求证:DC 是⊙O 的切线.3.6 圆和圆的位置关系1.课本上的奥运五环图中,红环与绿环的位置关系是______,红环与黑环的位置关系是____.2.已知两圆的半径分别是2,3,圆心距是d ,若两圆有公共点,则下列结论正确的是( )A.d =1B.d =5C.1≤d ≤5D.1<d <5 3.半径分别为1和2的两个圆外切,那么与这两个圆都相切,且半径为3的圆的个数有( ) A.1个 B.3个 C.5个 D.6个4.如图,⊙O 1和⊙O 内切于点A ,AB 为⊙O 的直径,点O 1在OA 上,⊙O 的弦BC 切⊙O 1于点D ,两圆的半径R =4,r =3.A(第1第2题 C l 1l 3l 2 B5(1)求BD 的长(2)求CD 的长3.7 弧长及扇形的面积1.如图,当半径为30cm 的转动轮转过120 的角时,传送带上的物体A 平移的距离为________cm .2.水平放置的一个水管的截面半径为10厘米,其中有水部分的水面宽103厘米.求截面上有水部分的面积.3.如图,AB 是半⊙O 的直径,C 、D 是半圆的三等分点,半圆的半径为R .(1)CD 与AB 平行吗?为什么? (2)求阴影部分的面积.4.如图,⊙O 1和⊙O 2外切于点C ,并且分别与⊙O 内切于A 、B ,若⊙O 的半径为3,⊙O 1和⊙O 2的半径都为1.求阴影部分的面积和周界长.3.8圆锥的侧面积1.粮仓的顶部是一个底面直径为4m ,母线长为3m 的圆锥,为防雨需在粮仓的顶部铺上油毡,那么这块油毡的面积至少为 ( )A.6m 2B.6πm 2C.12m 2D.12πm 2 2.用铁皮做一个圆锥形的烟囱帽(图中上部),它的底面直径是80cm , 高是30cm ,不计加工余料,求需用铁皮的面积.3.如图,在半径为40米的圆形广场中央点O 的上空安装了一个照明光源S ,S 射向地面的光束呈圆锥形,其轴截面(经过圆锥的轴的截面)ASB 的顶角为60°,求光源离地面的高度SO (精确到0.1米).C DOO CAB O 2 O 1·OABSO CA B O 2O 1·64.如图,这是一个滚珠轴承的平面示意图,若滚珠轴承的内外半径分别为6cm 和8cm ,那么该轴承内最多能放________颗半径为1cm 的滚珠.5.如图,在正方形纸板上剪下一个扇形和圆,围成一个圆锥模 型,设围成的圆锥底面半径为r ,母线长为R ,则r 与R 之间 的关系为 ( )A.2R r =B.49R r =C.3R r =D.4R r =6.如图,A 、B 、C 在直角坐标系中的坐标分别为A (1,0),B (3,0),C (0,1).求△ABC绕y 轴旋转一周所得几何体的表面积.7.如图,⊙P 与扇形OAB 的半径OA 、OB 分别相切于点C 、D ,与弧AB 相切于点E ,已知OA =15cm ,∠AOB =60°,求图中阴影部分的面积.8.如图,一根木棒(AB )的长为2米,斜靠在与地面(OM )垂直的墙壁(ON )上,与地面的倾角为60°,若木棒A 端沿NO 下滑,B 端沿OM 向右滑行,于是木棒的中点P 也随之运动,已知A 端下滑到A ′时,AA ′P 随之运动的路线有多长圆锥O B DP ′· ·N MOBA B ′ A ′ P。
九年级圆知识点北师大
圆是几何学中的一个重要概念,也是中学数学中常见的一个知识点。
在九年级数学课程中,我们将学习有关圆的定义、性质以及与圆相关的定理和公式。
本文将为大家详细介绍九年级圆的知识点,以及北师大对于这些知识点的教学要求。
一、圆的定义与性质
在九年级数学课程中,我们首先学习到了圆的定义与性质。
圆是平面上所有到一个固定点距离相等的点的集合,这个固定点就是圆心,而到圆心的距离称为半径。
圆的性质包括:
1. 圆上任意两点到圆心的距离相等。
2. 圆的直径是通过圆心的任意两点,并且它的长度是半径的两倍。
3. 圆的周长公式为C=2πr,其中C表示圆的周长,r表示圆的半径,π是一个常数,约等于3.14。
4. 圆的面积公式为A=πr²,其中A表示圆的面积,r表示圆的半径。
二、圆的定理与公式
除了圆的定义与性质外,九年级还将学习一些和圆相关的定理与公式。
这些定理与公式可以帮助我们推导出更多的几何关系,解决实际问题。
1. 相交弦定理:如果一个圆上有两条弦相交,那么它们的交点到圆心的距离乘积等于弦的分割线段的乘积。
2. 位于圆上的角定理:圆内接四边形的一个对角线所对的角,等于由圆心角所对的弦所对的角。
3. 弧长公式:如果一个圆上的弧所对的圆心角是θ度,那么这个弧的长度为s=2πr(θ/360°)。
4. 扇形面积公式:如果一个圆上的扇形所对的圆心角是θ度,那么这个扇形的面积为A=(θ/360°)πr²。
5. 切线定理:如果一条直线与一个圆相切,那么这条直线与半径的连线垂直。
三、北师大对于九年级圆的教学要求
旨在帮助学生全面理解和掌握九年级圆的知识,北师大对于九年级圆的教学要求如下:
1. 理解圆的定义与性质,能够准确给出圆的定义,以及圆的直径、周长和面积的计算公式。
2. 掌握圆的定理与公式,能够准确应用相交弦定理、位于圆上的角定理、弧长公式、扇形面积公式和切线定理解决相关问题。
3. 能够分析和解决与圆相关的实际问题,灵活运用所学的知识和方法。
4. 鼓励学生参与团队合作与讨论,培养学生的创新思维和解决问题的能力。
总结:
通过对九年级圆的知识点的学习,可以帮助我们深入理解圆的定义与性质,掌握圆的相关定理与公式,并能够解决与圆相关的实际问题。
北师大在九年级数学教学中,注重培养学生的逻辑思维和问题解决的能力,通过实际问题的讨论与合作,提高学生的数学素养和创新精神。
希望同学们在学习九年级圆的知识时,能够充分利用教材和教师提供的资源,勤思考、多实践,不断提升自己的数学水平。