区间估计
- 格式:ppt
- 大小:624.50 KB
- 文档页数:39
一、概述总体参数的区间估计是统计学中一个重要的概念,在实际应用中具有广泛的应用。
区间估计的目的是利用样本数据对总体参数进行估计,以确定参数的取值范围。
在进行区间估计时,需要考虑三个重要的要素,以确保估计结果的准确性和可靠性。
二、总体参数的定义在统计学中,总体参数指的是对整个总体的某一特征进行描述的指标。
例如总体均值、总体比例等。
总体参数通常是未知的,需要通过样本数据来进行估计。
区间估计就是利用样本数据对总体参数进行估计,给出一个区间,以确定参数的取值范围。
三、区间估计的三个要素1. 置信水平置信水平是区间估计中非常重要的一个要素。
它指的是对总体参数估计的准确程度的度量,通常用1-α来表示,其中α称为显著性水平,通常取0.05或0.01。
置信水平越高,说明对总体参数的估计越可信。
在实际应用中,常用的置信水平为95或99。
2. 样本容量样本容量是另一个影响区间估计结果的重要要素。
样本容量的大小直接影响了估计结果的精确度。
通常来说,样本容量越大,估计结果越精确。
在进行区间估计时,一般需要根据置信水平和总体参数的方差来确定合适的样本容量。
3. 统计分布在进行区间估计时,需要考虑所使用的统计分布。
常用的统计分布包括正态分布、t分布、F分布等。
选择合适的统计分布对区间估计的结果具有重要影响。
通常在实际应用中,根据样本容量和总体参数的分布情况来选择合适的统计分布。
四、区间估计的计算方法区间估计的计算方法通常包括以下几个步骤:1. 确定置信水平,通常取95或99。
2. 根据置信水平和总体参数的分布情况,选择合适的统计分布。
3. 根据样本数据计算得到统计量的值。
比如样本均值、样本比例等。
4. 根据统计量的值,计算得到区间估计的上限和下限。
通常使用公式:点估计值±临界值×标准误差。
五、实际应用区间估计在实际应用中具有广泛的应用,比如医学研究、市场调研、经济预测等领域。
在这些领域中,通常需要对总体参数进行估计,以确定参数的取值范围。
数理统计11:区间估计,t分布,F分布在之前的⼗篇⽂章中,我们⽤了九篇⽂章的篇幅讨论了点估计的相关知识,现在来稍作回顾。
⾸先,我们讨论了正态分布两个参数——均值、⽅差的点估计,给出了它们的分布信息,并指出它们是相互独⽴的;然后,我们讨论到其他的分布族,介绍了点估计的评判标准——⽆偏性、相合性、有效性;之后,我们基于⽆偏性和相合性的讨论给出了常⽤分布的参数点估计,并介绍了两种常⽤于寻找点估计量的⽅法——矩法与极⼤似然法;最后,我们对点估计的有效性进⾏了讨论,给出了⼀些验证、寻找UMVUE的⽅法,并介绍了CR不等式,给出了⽆偏估计效率的定义。
以上就是我们在前九篇⽂章中提到的主要内容,还顺便介绍了⼀些常⽤的分布:Γ分布、β分布、χ2分布。
今天开始,我们将进⼊区间估计与假设检验部分。
由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:什么是区间估计区间估计同样是参数估计的⼀种⽅法,不同于点估计⽤样本计算出的⼀个统计量直接作为原始参数的估计,区间估计会根据抽取出的样本,计算出⼀个基于样本观测值的区间。
简单说来,如果对总体f(x;θ)中的参数θ作估计,则⾸先从总体中获得样本\boldsymbol{X}=(X_1,\cdots,X_n),并确定两个具有确定⼤⼩关系的统计量\hat g_1(\boldsymbol{X})\le \hat g_2(\boldsymbol{X}),根据样本观测值计算出的区间[\hat g_1(\boldsymbol{X}),\hat g_2(\boldsymbol{X})]就是待估参数\theta的区间估计。
由此,我们可以看出,区间估计依然是依赖于统计量的,并且往往需要不⽌⼀个统计量。
区间估计相⽐于点估计的特点是,区间估计给出了⼀个相对“粗糙”的范围,这就导致你需要使⽤这个参数时,不像点估计⼀样能直接把估计值拿来⽤;但是,区间估计具有涵盖参数真值的可能,因为当参数空间\Theta的取值连续时,点估计\hat\theta与真值相等的可能性\mathbb{P}(\hat\theta=\theta)=0,但是区间估计包含真值的可能性\mathbb{P}(\theta\in[\hatg_1(\boldsymbol{X}),\hat g_2(\boldsymbol{X})])>0,这使得区间估计⽐起点估计⽽⾔,增加了⼀定的可靠性。
点估计和区间估计的例子点估计和区间估计是统计学中常用的两种估计方法。
点估计是通过样本数据得到总体参数的一个估计值,而区间估计则是通过样本数据得到总体参数的一个估计范围。
本文将通过两个具体的例子来解释点估计和区间估计的概念,并探讨它们的使用方法和意义。
首先,我们来看一个关于人们平均身高的例子。
假设我们想要估计某个国家的平均身高,我们可以选择一个代表性的样本,并通过测量样本中的个体身高来得到一个点估计值。
通过对样本中人们身高的测量,我们可以计算出平均值,并将其视为总体的一个估计。
这个估计值就是点估计。
然而,仅仅通过一个点估计并不能准确描述总体参数的真实情况。
我们需要进一步确定一个置信水平,来构建一个区间估计。
区间估计是通过计算一个区间,将总体参数的真实值估计在该区间内的概率控制在一定的范围内。
例如,我们可以通过计算样本平均值的标准差和样本容量来构建一个区间估计。
这个区间会告诉我们,以一定的置信水平,总体参数的真实值有很大的可能性在该区间内。
举一个具体的例子,假设我们想要估计某个国家男性的平均年收入。
我们可以选择一个包含100位男性的样本,并记录他们的年收入。
通过计算这个样本的平均值,我们可以得到一个点估计值。
然而,仅仅通过这个点估计,并不能告诉我们有多大的把握相信这个估计值是准确的。
因此,我们可以使用区间估计来进一步确定总体参数的估计范围。
假设我们选择95%的置信水平,我们可以计算出一个区间范围,告诉我们有95%的把握相信总体参数的真实值在这个区间内。
点估计和区间估计在统计学中有着广泛的应用。
它们可以帮助我们从一个样本中,对总体参数进行准确的估计和推断。
在实际应用中,我们经常使用区间估计来描述总体参数的真实情况,并通过选择合适的置信水平来控制估计的准确性。
区间估计的概念也帮助我们理解样本统计量的不确定性,以及如何通过增加样本容量来提高估计的准确性。
总之,点估计和区间估计是统计学中重要的估计方法。
点估计通过计算样本数据得到总体参数的一个估计值,而区间估计则通过计算一个区间来确定总体参数的估计范围。
区间估计的名词解释区间估计是统计学中一种常用的推断方法,用于根据样本数据对总体参数进行估计,给出一个包含真实参数值可能范围的区间。
区间估计的目的是在不完全了解总体参数的情况下,通过样本数据来推断总体参数的值范围。
在进行区间估计时,首先需要选择一个适当的置信水平(confidence level),通常选择的置信水平为95%或99%。
置信水平代表了对总体参数估计的可信程度,例如95%的置信水平意味着有95%的可能性真实参数位于构建的区间内。
区间估计的步骤如下:1. 收集样本数据。
从总体中随机抽取样本,获取样本数据。
2. 选择合适的估计方法。
根据问题的具体情况,选择适合的估计方法,如均值估计、比例估计、标准差估计等。
3. 计算样本统计量。
使用选择的估计方法,计算得到样本的统计量,如样本均值、样本比例、样本标准差等。
4. 确定置信水平。
选择适当的置信水平,通常选择95%或99%。
5. 确定临界值。
根据置信水平和样本量,查找临界值。
临界值以正态分布或t分布的分位数形式给出。
6. 计算估计区间。
使用样本统计量和临界值,计算得到估计区间。
估计区间的计算公式根据不同的估计方法而定。
7. 解释估计结果。
根据计算得到的估计区间,给出估计结果的解释。
例如,可以说在95%置信水平下,总体参数的真实值有95%的可能性位于估计区间内。
区间估计的优点是可以提供对总体参数的估计范围,以及估计结果的可信程度。
通过给出一个区间,可以更全面地理解总体参数的不确定性。
但区间估计也存在一定的局限性,例如需要大样本量才能得到较窄的估计区间,对总体分布的假设要求较高等。
因此,区间估计只能提供对总体参数的近似估计,而无法给出准确的参数值。
区间估计法在统计分析中,区间估计法是一种常用的方法,它可以通过一个样本来推断总体的特征。
区间估计法通常被用于描述某个总体的性质,例如总体平均数、总体比例等。
与点估计法不同,区间估计法提供了一个某一参数的估计区间,这个区间内有一定置信度我们可以认为总体参数落在这个区间内。
在进行区间估计的时候,我们需要考虑两个重要因素:置信度和样本大小。
置信度是指我们对估计结果的信心程度,通常用一个百分数来表示,比如95%、99%等。
样本大小则是指我们用来做估计的观测值的数量,样本大小越大,结果的精度也越高。
区间估计最常见的应用就是对一个总体的平均值进行估计。
当我们要估计一个总体的平均值时,我们需要知道这个总体的标准差。
然后,通过对样本的平均值和标准差以及置信度进行一些计算,我们就可以得到这个总体平均值的区间估计。
例如,当我们用95%的置信度对某个总体的平均值进行估计的时候,我们可以说这个总体的真实平均值有95%的可能性在我们计算出来的区间范围内。
除了对平均值进行估计之外,区间估计法还可以用来对总体比例、总体方差、总体标准差等进行估计。
对于总体比例的估计,我们需要知道样本中具有某种属性的比例,然后通过计算这个比例的方差和样本大小等可以得到总体比例的区间估计。
在实际应用中,区间估计法的应用非常广泛。
比如在市场调研中,我们可以通过样本来估计某一产品的受欢迎程度;在医学研究中,我们可以通过样本来估计某种治疗方法的有效性等。
值得注意的是,在使用区间估计法进行数据分析时,我们需要注意样本大小和置信度的选择。
样本量越大,我们得出的结论就越准确;置信度越高,我们得出的结论就越可靠。
但是,高置信度往往需要更大的样本量,这个在实际应用中需要谨慎考虑。
总之,区间估计法是一种非常有用的数据分析方法,它可以使我们通过少量的观测数据来推断总体的性质,为我们进行科学研究和决策提供了有力的支持。
在实际应用中,我们需要灵活使用区间估计法,并在进行数据分析时注意样本大小和置信度的选择,以达到更准确的结果。
总体参数的区间估计公式摘要:1.总体参数的区间估计概述2.区间估计公式的推导3.区间估计在统计学中的应用正文:一、总体参数的区间估计概述总体参数的区间估计是统计学中一种重要的参数估计方法。
在实际问题中,我们通常需要对总体的某个未知参数进行估计,例如均值、方差等。
由于样本数据的随机性,我们需要通过一定的方法来估计总体参数的真实值,区间估计就是其中一种常用的方法。
区间估计的核心思想是利用样本数据计算出一个区间,该区间内包含总体参数真实值的概率在一定范围内。
这个概率范围通常用置信水平来表示,置信水平越高,所估计的区间范围就越宽,包含总体参数真实值的可能性就越大。
二、区间估计公式的推导设总体X 的概率密度函数为f(x),样本容量为n,样本均值为x,样本标准差为s,我们要估计总体均值μ。
根据中心极限定理,当n 充分大时,样本均值的分布近似于正态分布,即:x ~ N(μ, σ/n)其中,σ为总体方差。
为了估计总体均值μ,我们可以构造一个置信区间。
设α为置信水平,对应的Z 值为Zα,那么:μ的置信区间为:x ± Zα * s / √n其中,s / √n 为样本标准差除以√n,它实际上是总体标准差σ的估计。
三、区间估计在统计学中的应用区间估计在统计学中有广泛的应用,主要包括以下几个方面:1.对总体参数的单个估计:通过构造置信区间,我们可以估计总体参数的单个值,如均值、方差等。
2.对总体参数的统计推断:通过比较不同置信水平下的置信区间,我们可以对总体参数进行统计推断,如判断总体参数是否等于某个值等。
3.对样本容量的估计:在实际问题中,我们通常需要根据样本数据来估计总体参数,而样本容量的大小直接影响到估计的准确性。
通过构造置信区间,我们可以估计合适的样本容量。
点估计和区间估计的例子以点估计和区间估计为主题,以下是十个例子:1. 假设一家餐馆想要估计每天晚上的客流量,他们可以通过随机抽样,选择几个晚上记录客人的数量,并以此为基础估计整个晚上的客流量。
这个估计就是点估计。
2. 一家电子公司想要估计他们新产品的销售额,他们可以通过随机调查一部分消费者,询问他们是否有兴趣购买该产品以及他们预计的购买数量。
通过统计这些调查结果,他们可以得出一个销售额的点估计。
3. 一家医院想要估计某种疾病的发病率,他们可以通过抽取一部分患者的病历,统计患有该疾病的人数,并以此为基础估计整个人群的发病率。
这个估计也是一个点估计。
4. 一家市场调研公司想要估计某个市场上某种产品的平均价格,他们可以通过抽取一部分商家的价格信息,并计算这些价格的平均值作为估计值。
这个估计就是一个点估计。
5. 一家投资公司想要估计某个股票的未来收益率,他们可以通过研究该股票的历史数据,计算出平均收益率作为估计值。
这个估计也是一个点估计。
6. 假设一家制造公司想要估计他们生产的某个产品的平均寿命,他们可以随机抽取一些产品,进行寿命测试,并以测试结果的平均值作为估计值。
这个估计就是一个点估计。
7. 一家保险公司想要估计某个年龄段人群的平均医疗费用,他们可以通过抽取一部分被保险人的医疗费用信息,并计算这些费用的平均值作为估计值。
这个估计也是一个点估计。
8. 假设一家零售商想要估计某个商品的月销售量,他们可以通过随机抽取几个销售点,记录每个销售点的销售量,并以此为基础估计整个销售网络的销售量。
这个估计就是一个点估计。
9. 一家航空公司想要估计某个航班的平均延误时间,他们可以通过抽取一部分乘客的行程信息,记录他们的起飞和到达时间,并计算这些时间差的平均值作为估计值。
这个估计也是一个点估计。
10. 假设一家汽车制造公司想要估计某个车型的平均燃油效率,他们可以随机抽取一些车辆,测试它们的燃油消耗量,并以测试结果的平均值作为估计值。
总体方差的区间估计例题
摘要:
1.总体方差的区间估计概念
2.区间估计的基本原理
3.计算总体方差区间估计的例题
4.例题解析
正文:
一、总体方差的区间估计概念
总体方差是指一个总体的所有观测值的离差平方和的平均值。
总体方差的区间估计,就是在没有给出总体方差的确切值的情况下,通过对样本数据的分析,得到一个包含总体方差真实值的区间范围。
二、区间估计的基本原理
区间估计是基于抽样分布理论的一种统计推断方法。
其基本原理是:由样本数据计算出某个统计量的抽样分布,然后根据这个分布的性质,确定出一个包含总体参数真实值的区间范围。
三、计算总体方差区间估计的例题
假设我们有一个包含n 个观测值的样本,其均值为μ,标准差为σ,我们要估计总体方差。
根据中心极限定理,样本均值的分布近似于正态分布,其方差为总体方差除以n。
因此,我们可以通过构建一个包含样本均值和标准差的区间,来估计总体方差。
具体的计算公式为:
方差区间= [μ- z*σ, μ+ z*σ]
其中,z 是标准正态分布的分位数,对应于1-α的置信水平。
α是显著性水平,一般取0.05。
四、例题解析
假设我们有一个包含5 个观测值的样本,其均值为10,标准差为3,我们要估计总体方差。
首先,计算z 值,对应于1-α=0.95 和n=5,查表得到z=1.96。
正态分布N (μ,σ)参数区间估计允许μ为任意的实数,σ为任意的正实数。
基于Wolfram Mathematica ,给出了正态分布N (μ,σ)抽样定理,从而得到参数μ,σ2,σ的区间估计。
在σ已知和未知情形下,通过均值分布、中位值分布、卡方分布三种方法估计总体均值μ,区间长度均值分布最短,卡方分布次之,中位值分布最长,但当样本量n 较大时,区间长度趋于接近。
在μ已知和未知情形下,通过卡方分布可以估计总体方差的置信区间,通过卡分布、卡方分布可以估计总体标准差的置信区间。
最后给出不同情形下不同方法的MMA 程序及运行结果。
◼抽样分布定理引理1:X Ν(μ,σ)⇔X -μσΝ 0,1 .转换分布TransformedDistributionX -μσ,X 正态分布NormalDistribution [μ,σ]NormalDistribution [0,1]转换分布TransformedDistribution [μ+X σ,X 正态分布NormalDistribution [],假设Assumptions →σ>0]NormalDistribution [μ,σ]引理2:X χ(ν)⇔X 2 χ2(ν).转换分布TransformedDistribution X 2,X 卡分布ChiDistribution [ν]ChiSquareDistribution [ν]转换分布TransformedDistribution X ,X 卡方分布ChiSquareDistribution [ν]ChiDistribution [ν]引理3:X Ν 0,1 ,Y χ2(n )⇒Xt (n ).=转换分布TransformedDistributionX,{X 正态分布NormalDistribution [],Y 卡方分布ChiSquareDistribution [n ]} ;概率密度函数PDF [ ,x ]==⋯PDF [学生t 分布StudentTDistribution [n ],x ]//幂展开PowerExpand //完全简化FullSimplify [#,n >0&&x ≠0]&True定理1:X i Ν(μ,σ)⇒X -Νμ,σn⇔X --μσnΝ 0,1 .CharacteristicFunction NormalDistribution [μ,σ],t nn;特征函数CharacteristicFunction 正态分布NormalDistribution μ,σn,t ;%⩵%%//完全简化FullSimplify [#,n >0&&n ∈整数域Integers ]&True定理2:X i Ν(μ,σ)⇒ i =1nX i -μσ2=∑i =1n (X i -μ)2σ2χ2(n )⇔σχ(n ).转换分布TransformedDistributionX [i ]-μσ,X [i ] 正态分布NormalDistribution [μ,σ]NormalDistribution [0,1]n =7;=转换分布TransformedDistribution i =1nY [i ]2,数组Array [Y,n ] 联合分布ProductDistribution [{正态分布NormalDistribution [],n }]ChiSquareDistribution [7]定理3:X i Ν(μ,σ)⇒(n -1)S 2σ2χ2 n -1⇔σχ n -1 .令Y i =X i -μσ,则(n -1)S 2σ2=i =1n2=i =1n-= i =1nY i -Y 2= i =1nY i 2-2Y Y i +Y 2= i =1nY i 2-2Y i =1nY i +n Y 2= i =1nY i 2-n Y 2χ2n -1 ⇒σχ n -1 .2 正态分布\\正态分布统计分析\\正态分布参数区间估计.nbn =n0=35;=转换分布TransformedDistribution i =1nY [i ]2-1ni =1nY [i ]2,数组Array [Y,n ] 联合分布ProductDistribution [{正态分布NormalDistribution [],n }] ;Block {n =n0},显示Show 直方图Histogram 伪随机变数RandomVariate ,2×106 ,500,"概率密度函数PDF" ,绘图Plot [⋯PDF [卡方分布ChiSquareDistribution [n -1],x ],{x,5,65},绘图样式PlotStyle →粗Thick ]定理4:X i Ν(μ,σ)⇒X --μSnt n -1 .根据定理1,得X iΝ(μ,σ)⇒X --μσnΝ 0,1 ,根据定理3,得(n -1)S 2σ2χ2 n -1 ,根据引理3,X --μσn=X --μSnt n -1 .定理5:F Xn +12=正则化的不完全贝塔函数BetaRegularized12补余误差函数Erfc-x +μ2σ ,1+n2,1+n 2,n =2k +1.次序分布OrderDistribution {正态分布NormalDistribution [μ,σ],n },n +12;累积分布函数CDF [%,x ]//完全简化FullSimplifyBetaRegularized 12Erfc ,1+n 2,1+n 2推论:μ=x +2σ反互补误差函数InverseErfc 2正规化不完全贝塔函数的逆InverseBetaRegularized q,1+n 2,1+n 2.In[2]:=解方程Solve 正则化的不完全贝塔函数BetaRegularized12补余误差函数Erfc-x +μ2σ ,1+n 2,1+n 2⩵q,μOut[2]=μ→x +2σInverseErfc 2InverseBetaRegularized q,1+n 2,1+n 2定理6:-2 i =1n对数Log12补余误差函数Erfc-X i +μ2σχ2 2n .正态分布\\正态分布统计分析\\正态分布参数区间估计.nb3In[5]:=转换分布TransformedDistribution -2对数Log12补余误差函数Erfc-X +μ2σ,X 正态分布NormalDistribution [μ,σ] ;概率密度函数PDF [%,x ]⩵⋯PDF [卡方分布ChiSquareDistribution [2],x ]//完全简化FullSimplify [#,x >0]&Out[6]=True**参数区间估计**In[7]:=需要Needs ["HypothesisTesting`"]μ0=20;σ0=3;X =伪随机变数RandomVariate [正态分布NormalDistribution [μ0,σ0],10001];n =长度Length [X ];S =标准偏差StandardDeviation [X ];α=0.01;"参数的极大似然估计:"清除Clear [μ,σ]{μ1,σ1}={μ,σ}/.求分布参数FindDistributionParameters [X,正态分布NormalDistribution [μ,σ]]"一、总体均值μ的区间估计""(一)均值分布U =X --μσnN(0,1)——σ已知"σ=σ0;Sw =σn ;m =平均值Mean [X ];"1.计算法"Q =分位数Quantile 正态分布NormalDistribution [0,1],1-α 2 ;{m -Sw Q,m +Sw Q }"2.MeanCI"MeanCI X,KnownVariance →σ2,置信级别ConfidenceLevel →1-α"3.NormalCI"NormalCI [m,Sw ,置信级别ConfidenceLevel →1-α]"区间长度:"L =2Sw Q"相对区间长度:"r =L /m "(二)均值分布T =X -μSnt (n -1)——σ未知""1.计算法"Sw =S n ;m =平均值Mean [X ];Q =分位数Quantile 学生t 分布StudentTDistribution [n -1],1-α 2 ;{m -Sw Q,m +Sw Q }4 正态分布\\正态分布统计分析\\正态分布参数区间估计.nb"2.MeanCI"MeanCI [X,KnownVariance →无None,置信级别ConfidenceLevel →1-α]"3.StudentTCI"StudentTCI [m ,Sw ,n -2,置信级别ConfidenceLevel →1-α]"区间长度:"L =2Sw Q"相对区间长度:"r =L /m"(三)均值近似分布U =X --μσn~N[0,1]——σ未知""1.计算法"σ=σ1;Sw =σn ;m =平均值Mean [X ];Q =分位数Quantile 正态分布NormalDistribution [0,1],1-α 2 ;{m -Sw Q,m +Sw Q }"2.MeanCI"MeanCI X,KnownVariance →σ12,置信级别ConfidenceLevel →1-α"3.NormalCI"NormalCI [m,Sw ,置信级别ConfidenceLevel →1-α]"区间长度:"L =2Sw Q"相对区间长度:"r =L /m"(四)中位值分布F Xn +12=正则化的不完全贝⋯BetaRegularized [12补余误差函数Erfc [-x +μ2σ],1+n 2,1+n2],n =2k +1——σ已知""1.等尾区间:"σ=σ0;x =中位数Median [X ];μL =x +2σ反互补误差函数InverseErfc 2正规化不完全贝塔函数的逆InverseBetaRegularized 1-α 2,1+n 2,1+n 2;μU =x +2σ反互补误差函数InverseErfc 2正规化不完全贝塔函数的逆InverseBetaRegularized α 2,1+n 2,1+n 2;{μL,μU }"等尾区间长度:"L =μU -μL"相对区间长度:"r =2L μU +μL "(五)中位值分布F Xn +12=正则化的不完全贝⋯BetaRegularized [12补余误差函数Erfc [-x +μ2σ ],1+n 2,1+n2],n =2k +1——σ未知""1.等尾区间:"σ=σ1;x =中位数Median [X ];正态分布\\正态分布统计分析\\正态分布参数区间估计.nb5中位数μL =x +2σ反互补误差函数InverseErfc 2正规化不完全贝塔函数的逆InverseBetaRegularized 1-α 2,1+n 2,1+n 2;μU =x +2σ反互补误差函数InverseErfc 2正规化不完全贝塔函数的逆InverseBetaRegularized α 2,1+n 2,1+n 2;{μL,μU }"等尾区间长度:"L =μU -μL"相对区间长度:"r =2L μU +μL"(六)卡方分布-2 i =1n对数Log [12补余误差函数Erfc [-X i +μ2σ]] χ2(2n )——σ已知"清除Clear [μ]σ=σ0;x =-2 i =1n对数Log12补余误差函数Erfc-X i +μ2σ;F =卡方分布ChiSquareDistribution [2n ];μL =μ/.求根FindRoot 累积分布函数CDF [F,x ]==α2,{μ,μ1} ;μU =μ/.求根FindRoot 累积分布函数CDF [F,x ]⩵1-α2,{μ,μ1} ;{μL,μU }"等尾区间长度:"L =μU -μL"相对区间长度:"r =2L μU +μL"(七)卡方分布-2 i =1n对数Log [12补余误差函数Erfc [-X i +μ2σ ]]~χ2(2n )——σ未知"清除Clear [μ]σ=σ0;x =-2 i =1n对数Log12补余误差函数Erfc-X i +μ2σ;F =卡方分布ChiSquareDistribution [2n ];μL =μ/.求根FindRoot 累积分布函数CDF [F,x ]==α2,{μ,μ1} ;μU =μ/.求根FindRoot 累积分布函数CDF [F,x ]⩵1-α2,{μ,μ1} ;{μL,μU }"等尾区间长度:"L =μU -μL"相对区间长度:"6 正态分布\\正态分布统计分析\\正态分布参数区间估计.nbr =2L μU +μL"二、总体方差σ2的区间估计""(一)卡方分布χ2=∑i =1n (X i -μ)2σ2χ2(n )——μ已知"μ=μ0;T =n 平均值Mean (X -μ)2 ;F =卡方分布ChiSquareDistribution [n ];"1.等尾区间:"QL =分位数Quantile F,1-α 2 ;QU =分位数Quantile F,α 2 ;VL =T QL;VU =T QU;{VL,VU }"等尾区间长度:"L =VU -VL"相对区间长度:"r =2L VL +VU "(二)卡方分布χ2=(n -1)S 2σ2χ2(n -1)——μ未知"T = n -1 S 2;F =卡方分布ChiSquareDistribution [n -1];"1.等尾区间:"QL =分位数Quantile F,1-α 2 ;QU =分位数Quantile F,α 2 ;VL =T QL;VU =T QU;{VL,VU }"等尾区间长度:"L =VU -VL"相对区间长度:"r =2L VL +VU "(三)卡方分布χ2=∑i =1n (X i -μ )2σ2~χ2(n )——μ未知"μ=μ1;T =n 平均值Mean (X -μ)2 ;F =卡方分布ChiSquareDistribution [n ];"1.等尾区间:"QL =分位数Quantile F,1-α 2 ;QU =分位数Quantile F,α 2 ;VL =T QL;VU =T QU;{VL,VU }"等尾区间长度:"L =VU -VL"相对区间长度:"r =2L VL +VU"三、总体标准差σ的区间估计""(一)卡分布χ(n )——μ已知"μ=μ0;T =n Mean (X -μ)2 ;F =卡分布ChiDistribution [n ];"1.等尾区间:"正态分布\\正态分布统计分析\\正态分布参数区间估计.nb7QL =分位数Quantile F,1-α 2 ;QU =分位数Quantile F,α 2 ;σL =T QL;σU =T QU;{σL,σU }"等尾区间长度:"L =σU -σL"相对区间长度:"r =2L σL +σU "(二)卡分布χ(n -1)——μ未知"T =n -1S;F =卡分布ChiDistribution [n -1];"1.等尾区间:"QL =分位数Quantile F,1-α 2 ;QU =分位数Quantile F,α 2 ;σL =T QL;σU =T QU;{σL,σU }"等尾区间长度:"L =σU -σL"相对区间长度:"r =2L σL +σU "(三)卡分布χχ(n )——μ未知"μ=μ1;T =n Mean (X -μ)2 ;F =卡分布ChiDistribution [n ];"1.等尾区间:"QL =分位数Quantile F,1-α 2 ;QU =分位数Quantile F,α 2 ;σL =T QL;σU =T QU;{σL,σU }"等尾区间长度:"L =σU -σL"相对区间长度:"r =2L σL +σU "(四)卡方分布-2 i =1n对数Log [12补余误差函数Erfc [-X i +μ2σ]] χ2(2n )——μ已知"清除Clear [σ]μ=μ0;x =-2 i =1n对数Log12补余误差函数Erfc-X i +μ2σ;F =卡方分布ChiSquareDistribution [2n ];σL =σ/.求根FindRoot 累积分布函数CDF [F,x ]⩵1-α2,{σ,σ1} ;σU =σ/.求根FindRoot 累积分布函数CDF [F,x ]⩵α2,{σ,σ1} ;{σL,σU }8 正态分布\\正态分布统计分析\\正态分布参数区间估计.nb"等尾区间长度:"L =σU -σL"相对区间长度:"r =2L σL +σU"(五)卡方分布-2 i =1n对数Log [12补余误差函数Erfc [-X i +μ2σ]] χ2(2n )——μ未知"清除Clear [σ]μ=μ1;x =-2 i =1n对数Log12补余误差函数Erfc-X i +μ2σ;F =卡方分布ChiSquareDistribution [2n ];σL =σ/.求根FindRoot 累积分布函数CDF [F,x ]⩵1-α2,{σ,σ1} ;σU =σ/.求根FindRoot 累积分布函数CDF [F,x ]⩵α2,{σ,σ1} ;{σL,σU }"等尾区间长度:"L =σU -σL"相对区间长度:"r =2L σL +σUOut[11]=参数的极大似然估计:Out[13]={19.9803,3.00134}Out[14]=一、总体均值μ的区间估计Out[15]=(一)均值分布U =X --μσnN(0,1)——σ已知Out[17]=1.计算法Out[19]={19.9031,20.0576}Out[20]=2.MeanCIOut[21]={19.9031,20.0576}Out[22]=3.NormalCIOut[23]={19.9031,20.0576}Out[24]=区间长度:Out[25]=0.154542Out[26]=相对区间长度:Out[27]=0.00773471Out[28]=(二)均值分布T =X -μSn t (n -1)——σ未知正态分布\\正态分布统计分析\\正态分布参数区间估计.nb9Out[29]= 1.计算法Out[32]={19.903,20.0577} Out[33]= 2.MeanCIOut[34]={19.903,20.0577} Out[35]= 3.StudentTCIOut[36]={19.903,20.0577} Out[37]=区间长度:Out[38]=0.154648Out[39]=相对区间长度:Out[40]=0.00774003Out[41]=(三)均值近似分布U=X--μσ n~N[0,1]——σ未知Out[42]= 1.计算法Out[45]={19.903,20.0576} Out[46]= 2.MeanCIOut[47]={19.903,20.0576} Out[48]= 3.NormalCIOut[49]={19.903,20.0576} Out[50]=区间长度:Out[51]=0.154611Out[52]=相对区间长度:Out[53]=0.00773817Out[54]=(四)中位值分布F X n+12=BetaRegularized[12Erfc,1+n2,1+n2],n=2k+1——σ已知Out[55]= 1.等尾区间:Out[59]={19.8529,20.0466} Out[60]=等尾区间长度:Out[61]=0.193686Out[62]=相对区间长度:Out[63]=0.00970872Out[64]=(五)中位值分布F X n+12=BetaRegularized[12Erfc,1+n2,1+n2],n=2k+1——σ未知Out[65]= 1.等尾区间:Out[69]={19.8529,20.0466}Out[70]=等尾区间长度:10正态分布\\正态分布统计分析\\正态分布参数区间估计.nbOut[71]=0.193773Out[72]=相对区间长度:Out[73]=0.00971306Out[74]=(六)卡方分布-2 i =1n Log [12Erfcχ2(2n )——σ已知Out[78]={19.9015,20.0722}Out[79]=等尾区间长度:Out[80]=0.170753Out[81]=相对区间长度:Out[82]=0.00854324Out[83]=(七)卡方分布-2 i =1n Log [12Erfcχ2(2n )——σ未知Out[87]={19.9015,20.0722}Out[88]=等尾区间长度:Out[89]=0.170753Out[90]=相对区间长度:Out[91]=0.00854324Out[92]=二、总体方差σ2的区间估计Out[93]=(一)卡方分布χ2=∑i =1n (X i -μ)2σ2 χ2(n )——μ已知Out[95]= 1.等尾区间:Out[98]={8.68869,9.34535}Out[99]=等尾区间长度:Out[100]=0.656658Out[101]=相对区间长度:Out[102]=0.0728243Out[103]=(二)卡方分布χ2=(n -1)S 2σ2 χ2(n -1)——μ未知Out[105]= 1.等尾区间:Out[108]={8.68917,9.3459}Out[109]=等尾区间长度:Out[110]=0.656728Out[111]=相对区间长度:Out[112]=0.0728279Out[113]=(三)卡方分布χ2=∑i =1n (X i -μ )2σ2~χ2(n )——μ未知正态分布\\正态分布统计分析\\正态分布参数区间估计.nb 11Out[115]= 1.等尾区间:Out[118]={8.68832,9.34495}Out[119]=等尾区间长度:Out[120]=0.65663Out[121]=相对区间长度:Out[122]=0.0728243Out[123]=三、总体标准差σ的区间估计Out[124]=(一)卡分布χ(n )——μ已知Out[126]= 1.等尾区间:Out[129]={2.94766,3.05702}Out[130]=等尾区间长度:Out[131]=0.109358Out[132]=相对区间长度:Out[133]=0.0364242Out[134]=(二)卡分布χ(n -1)——μ未知Out[136]= 1.等尾区间:Out[139]={2.94774,3.05711}Out[140]=等尾区间长度:Out[141]=0.109366Out[142]=相对区间长度:Out[143]=0.0364261Out[144]=(三)卡分布χχ(n )——μ未知Out[146]= 1.等尾区间:Out[149]={2.9476,3.05695}Out[150]=等尾区间长度:Out[151]=0.109355Out[152]=相对区间长度:Out[153]=0.0364242Out[154]=(四)卡方分布-2 i =1n Log [12Erfcχ2(2n )——μ已知Out[158]={2.89486,3.15965}Out[159]=等尾区间长度:12 正态分布\\正态分布统计分析\\正态分布参数区间估计.nbOut[160]=0.264793Out[161]=相对区间长度:Out[162]=0.0874698Out[163]=(五)卡方分布-2 i =1n Log [12Erfcχ2(2n )——μ未知Out[167]={2.86679,3.12718}Out[168]=等尾区间长度:Out[169]=0.260386Out[170]=相对区间长度:Out[171]=0.0868828正态分布\\正态分布统计分析\\正态分布参数区间估计.nb 13。