綦江区一中2018-2019学年高三上学期11月月考数学试卷含答案
- 格式:doc
- 大小:295.50 KB
- 文档页数:6
黔江区一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 过抛物线C :x 2=2y 的焦点F 的直线l 交抛物线C 于A 、B 两点,若抛物线C 在点B 处的切线斜率为1,则线段|AF|=( )A .1B .2C .3D .42. 矩形ABCD 中,AD=mAB ,E 为BC的中点,若,则m=( )A.B.C .2D .33. “双曲线C 的渐近线方程为y=±x ”是“双曲线C的方程为﹣=1”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .不充分不必要条件4. 如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A. B .4 C. D .25.下面是关于复数的四个命题:p 1:|z|=2, p 2:z 2=2i ,p 3:z 的共轭复数为﹣1+i , p 4:z 的虚部为1. 其中真命题为( ) A .p 2,p 3 B .p 1,p 2C .p 2,p 4D .p 3,p 46. 函数f (x﹣)=x 2+,则f (3)=( ) A .8B .9C .11D .107. 自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )A .86210x y --=B .86210x y +-=C .68210x y +-=D .68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 若函数f (x )的定义域为R ,则“函数f (x )是奇函数”是“f (0)=0”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9. 已知定义在实数集R 上的函数f (x )满足f (1)=3,且f (x )的导数f ′(x )在R 上恒有f ′(x )<2(x ∈R ),则不等式f (x )<2x+1的解集为( )A .(1,+∞)B .(﹣∞,﹣1)C .(﹣1,1)D .(﹣∞,﹣1)∪(1,+∞)10.从一个边长为2的等边三角形的中心、各边中点及三个顶点这7个点中任取两个点,则这两点间的距离小于1的概率是( ) A .71 B .73 C .74 D .76 11.已知函数f (x )是(﹣∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图所示,则不等式xf (x )<0的解集是( )A .(﹣2,﹣1)∪(1,2)B .(﹣2,﹣1)∪(0,1)∪(2,+∞)C .(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D .(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)12.下列语句所表示的事件不具有相关关系的是( ) A .瑞雪兆丰年 B .名师出高徒 C .吸烟有害健康 D .喜鹊叫喜二、填空题13.若正数m 、n 满足mn ﹣m ﹣n=3,则点(m ,0)到直线x ﹣y+n=0的距离最小值是 .14.(x ﹣)6的展开式的常数项是 (应用数字作答).15.在三角形ABC 中,已知AB=4,AC=3,BC=6,P 为BC 中点,则三角形ABP 的周长为 .16.宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》卷中“茭草形段”第一个问题“今有茭草六百八十束,欲令‘落一形’埵(同垛)之.问底子在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,M 是BC 的中点,BM=2,AM=c ﹣b ,△ABC 面积的最大值为 .17.过点(0,1)的直线与x 2+y 2=4相交于A 、B 两点,则|AB|的最小值为 .18.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是_______元.三、解答题19.已知函数f(x)=x2﹣(2a+1)x+alnx,a∈R(1)当a=1,求f(x)的单调区间;(4分)(2)a>1时,求f(x)在区间[1,e]上的最小值;(5分)(3)g(x)=(1﹣a)x,若使得f(x0)≥g(x0)成立,求a的范围.20.某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强).(1)根据茎叶图中的数据完成22⨯列联表,并判断能否有95%的把握认为孩子的幸福感强与是否是留(2)从5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率.参考公式:22()()()()()n ad bcKa b c d a c b d-=++++附表:21.已知函数f(x)=•,其中=(2cosx,sin2x),=(cosx,1),x∈R.(1)求函数y=f(x)的单调递增区间;(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=,且sinB=2sinC,求△ABC的面积.22.设函数f(x)=a(x+1)2ln(x+1)+bx(x>﹣1),曲线y=f(x)过点(e﹣1,e2﹣e+1),且在点(0,0)处的切线方程为y=0.(Ⅰ)求a,b的值;(Ⅱ)证明:当x≥0时,f(x)≥x2;(Ⅲ)若当x≥0时,f(x)≥mx2恒成立,求实数m的取值范围.23.如图,在五面体ABCDEF中,四边形ABCD是边长为4的正方形,EF∥AD,平面ADEF⊥平面ABCD,且BC=2EF,AE=AF,点G是EF的中点.(Ⅰ)证明:AG⊥平面ABCD;(Ⅱ)若直线BF与平面ACE所成角的正弦值为,求AG的长.24.如图:等腰梯形ABCD,E为底AB的中点,AD=DC=CB=AB=2,沿ED折成四棱锥A﹣BCDE,使AC=.(1)证明:平面AED⊥平面BCDE;(2)求二面角E﹣AC﹣B的余弦值.黔江区一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号 1 2 3 4 5 6 7 8 9 10答案 A A C C C C D A A A题号11 12答案 D D13..14.﹣16015.7+16.2.17.218.1464三、解答题19.解:(1)当a=1,f(x)=x2﹣3x+lnx,定义域(0,+∞),∴…(2分),解得x=1或x=,x∈,(1,+∞),f′(x)>0,f(x)是增函数,x∈(,1),函数是减函数.…(4分)(2)∴,∴,当1<a<e时,∴f(x)min=f(a)=a(lna﹣a﹣1)当a≥e时,f(x)在[1,a)减函数,(a,+∞)函数是增函数,∴综上…(9分)(3)由题意不等式f(x)≥g(x)在区间上有解即x2﹣2x+a(lnx﹣x)≥0在上有解,∵当时,lnx≤0<x,当x∈(1,e]时,lnx≤1<x,∴lnx﹣x<0,∴在区间上有解.令…(10分)∵,∴x+2>2≥2lnx∴时,h′(x)<0,h(x)是减函数,x∈(1,e],h(x)是增函数,∴,∴时,,∴∴a的取值范围为…(14分)20.(1)有95%的把握认为孩子的幸福感强与是否留守儿童有关;(2)3 5 .21.22.23.24.。
綦江区高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 对于复数,若集合具有性质“对任意,必有”,则当时,等于 ( )A1 B-1 C0 D2. 若a <b <0,则下列不等式不成立是( )A.>B.>C .|a|>|b|D .a 2>b 23. 函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力.4. 已知变量,x y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则y x 的取值范围是( )A .9[,6]5B .9(,][6,)5-∞+∞ C .(,3][6,)-∞+∞ D .[3,6]5. 若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自 然数为( )A .11B .12C .13D .14 6. 某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( )A .4320B .2400C .2160D .13207. 已知是虚数单位,若复数)(3i a i +-(R a ∈)的实部与虚部相等,则=a ( )A .1-B .2-C .D .8. 函数f (x )=lnx﹣+1的图象大致为( )A.B.C.D.9. 若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数12z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力. 10.设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α; 其中正确命题的序号是( ) A .①②③④ B .①②③ C .②④ D .①③11.一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( ) A .2+B .1+C.D.12.O 为坐标原点,F为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )A .1B.C.D .2二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.等差数列{}n a 中,39||||a a =,公差0d <,则使前项和n S 取得最大值的自然数是________. 14.如图为长方体积木块堆成的几何体的三视图,此几何体共由 块木块堆成.15.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________.16.若点p (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为三、解答题(本大共6小题,共70分。
2017-2018学年重庆市綦江区高三(上)期中数学试卷(理科)一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.请将其编号选出,并涂在机读卡上的相应位置)1.(5分)若集合A={1,2,3,4,5,6},B={x|(x﹣3)(x﹣7)<0},则A∩B等于()A.{1,2,3}B.{4,5,6}C.{5,6,7}D.{3,4,5,6}2.(5分)若复数z1=3+i,z2=1﹣i,则复数z1•z2在平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)设向量,且,则实数m的值为()A.﹣10 B.﹣13 C.﹣7 D.44.(5分)与直线3x﹣4y+5=0关于y轴对称的直线方程是()A.3x+4y﹣5=0 B.3x+4y+5=0 C.3x﹣4y+5=0 D.3x﹣4y﹣5=05.(5分)下列选项中叙述错误的是()A.命题“若x=1,则x2﹣x=0”的逆否命题为真命题B.若p:∀x∈R,x2+x+1≠0,则¬p:∃x0∈R,x02+x0+1=0C.“x>1”是“x2﹣x>0”的充分不必要条件D.若“p∧q”为假命题,则“p∨q”为真命题6.(5分)函数y=x2﹣lnx的单调递减区间为()A.(﹣1,1]B.(0,1]C.[1,+∞)D.(0,+∞)7.(5分)由曲线y=x2,y=x3围成的封闭图形面积为()A.B.C.D.8.(5分)若平面向量,,两两所成的角相等,且||=3,||=||=1,则||等于()A.2 B.5 C.2或5 D.或9.(5分)已知函数f(x)=ln(﹣3x)+1,则f(lg(lg3)+f(lg(log310))=()A.﹣1 B.0 C.1 D.210.(5分)若a>1,设函数f(x)=a x+x﹣4的零点为m,g(x)=log a x+x﹣4的零点为n,则的取值范围()A.B.[1,+∞)C.(4,+∞)D.11.(5分)直线ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且△AOB是直角三角形(O是坐标原点),则点P(a,b)与点(0,1)之间距离的最大值为()A.+1 B.2 C.D.﹣112.(5分)已知定义在[1,16]上的函数f(x)=,则下列结论中错误的是()A.f(4)=0B.函数f(x)的值域为[﹣4,0]C.将函数f(x)的极值由大到小排列得到数列{a n},n∈N*,则{a n}的前n项和S n=﹣8D.对任意的x∈[1,16],不等式xf(x)+6≥0恒成立二.填空题(本大题共4小题,每小题5分,共20分)13.(5分)抛物线y=x2的焦点坐标是.14.(5分)tan25°+tan35°+tan25°tan35°=.15.(5分)若函数f(x)=﹣e ax(a>0,b>0)的图象在x=0处的切线与圆x2+y2=1相切,则a+b的最大值是.16.(5分)设f(x)=sin(ωx+φ)﹣cos(ωx+φ)(ω>0)是偶函数,A={x|f (x)=0},若A∩[﹣1,1]含有10个元素,则ω的取值范围是三.解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知,函数.(1)求f(x)的最小正周期,并求其图象对称中心的坐标;(2)当时,求函数f(x)的值域.18.(12分)在锐角三角形ABC中,a、b、c分别为角A、B、C所对的边,且a=2csin A.(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.19.(12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为6千元,设该容器的建造费用为y千元.(V球=,S球=4πR2)(1)写出y关于r的函数表达式,并求该函数的定义域;(2)求当r取多少时,该容器的建造费用最小?并求出其最小值.20.(12分)已知直线l与椭圆C:+=1(a>b>0)交于A(x1,y1),B(x2,y2)两点,又=(ax1,by1),=(ax2,by2),若⊥且椭圆的离心率e=,又椭圆经过点(,1),O为坐标原点.(Ⅰ)求椭圆的方程;(Ⅱ)试问△AOB的面积是否为定值?21.(12分)设定义在区间[x1,x2]上的函数y=f(x)的图象为C,点A、B的坐标分别为(x1,f(x1)),(x2,f(x2))且M(x,f(x))为图象C上的任意一点,O为坐标原点,当实数λ满足x=λx1+(1﹣λ)x2时,记向量恒成立,则称函数y=f(x)在区间[x1,x2]上可在标准k下线性近似,其中k是一个确定的正数.(Ⅰ)求证:A、B、N三点共线(Ⅱ)设函数f(x)=x2在区间[0,1]上可的标准k下线性近似,求k的取值范围;(Ⅲ)求证:函数g(x)=lnx在区间(e m,e m+1)(m∈R)上可在标准下线性近似.(参考数据:e=2.718,ln(e﹣1)=0.541)请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.[选修4-1:几何证明选讲]22.(10分)如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.(Ⅰ)证明:∠CBD=∠DBA;(Ⅱ)若AD=3DC,BC=,求⊙O的直径.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,直线l的参数方程为为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)写出圆C的直角坐标方程;(2)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.[选修4-5:不等式选讲]24.已知a>0,b>0,c>0,函数f(x)=|x+a|+|x﹣b|+c的最小值为4.(Ⅰ)求a+b+c的值;(Ⅱ)求的最小值.2017-2018学年重庆市綦江区高三(上)期中数学试卷(理科)参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.请将其编号选出,并涂在机读卡上的相应位置)1.(5分)若集合A={1,2,3,4,5,6},B={x|(x﹣3)(x﹣7)<0},则A∩B等于()A.{1,2,3}B.{4,5,6}C.{5,6,7}D.{3,4,5,6}【解答】解:集合A={1,2,3,4,5,6},B={x|(x﹣3)(x﹣7)<0}=(3,7),则A∩B={4,5,6},故选:B.2.(5分)若复数z1=3+i,z2=1﹣i,则复数z1•z2在平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵复数z1=3+i,z2=1﹣i,则z1•z2=(3+i)(1﹣i)=4﹣2i∴复数z1•z2平面内对应的点位于第四象限.故选:D.3.(5分)设向量,且,则实数m的值为()A.﹣10 B.﹣13 C.﹣7 D.4【解答】解:∵,∴=m﹣4=0,解得m=4.故选:D.4.(5分)与直线3x﹣4y+5=0关于y轴对称的直线方程是()A.3x+4y﹣5=0 B.3x+4y+5=0 C.3x﹣4y+5=0 D.3x﹣4y﹣5=0【解答】解:令x=0,则y=,可得直线3x﹣4y+5=0与y轴的交点.令y=0,可得x=﹣,可得直线3x﹣4y+5=0与x轴的交点,此点关于y 轴的对称点为.∴与直线3x﹣4y+5=0关于y轴对称的直线经过两点:,.其方程为:=1,化为:3x+4y﹣5=0.故选:A.5.(5分)下列选项中叙述错误的是()A.命题“若x=1,则x2﹣x=0”的逆否命题为真命题B.若p:∀x∈R,x2+x+1≠0,则¬p:∃x0∈R,x02+x0+1=0C.“x>1”是“x2﹣x>0”的充分不必要条件D.若“p∧q”为假命题,则“p∨q”为真命题【解答】解:对于A,“若x=1,则x2﹣x=0”的逆否命题为真命题,因为原命题是真命题,所以A正确;对于B,若p:∀x∈R,x2+x+1≠0,则p:∃x0∈R,x02+x0+1=0,符合全称命题与特称命题的否定,所以B正确.对于C,“x>1”是“x2﹣x>0”的充分不必要条件,满足充分不必要条件的判断,所以C正确;对于D,若“p∧q”为假命题,可能p、q两个命题都是假命题,此时“p∨q”为假命题,所以D不正确.故选:D.6.(5分)函数y=x2﹣lnx的单调递减区间为()A.(﹣1,1]B.(0,1]C.[1,+∞)D.(0,+∞)【解答】解:∵y=x2﹣lnx的定义域为(0,+∞),y′=,∴由y′≤0得:0<x≤1,∴函数y=x2﹣lnx的单调递减区间为(0,1].故选:B.7.(5分)由曲线y=x2,y=x3围成的封闭图形面积为()A.B.C.D.【解答】解:由题意得,两曲线的交点坐标是(1,1),(0,0)故积分区间是[0,1]所求封闭图形的面积为∫01(x2﹣x3)dx═,故选:A.8.(5分)若平面向量,,两两所成的角相等,且||=3,||=||=1,则||等于()A.2 B.5 C.2或5 D.或【解答】解:||2=+2+2+,∵平面向量,,两两所成的角相等,且||=3,||=||=1,∴平面向量,,两两所成的角为0°或平面向量,,两两所成的角为120°,当平面向量,,两两所成的角为0°时,||2=+2+2+=1+1+9+2+6+6=25,则||=5,当平面向量,,两两所成的角为120°时,||2=+2+2+=1+1+9﹣1﹣3﹣3=4,则||=2.综上,||等于2或5.故选:C.9.(5分)已知函数f(x)=ln(﹣3x)+1,则f(lg(lg3)+f(lg(log310))=()A.﹣1 B.0 C.1 D.2【解答】解:g(x)=ln(﹣3x),可知g(﹣x)=ln(+3x)=﹣ln (﹣3x)=﹣g(x),所以g(x)=ln(﹣3x)是奇函数,f(lg(lg3)+f(lg(log310))=f(lg(lg3)+f(﹣lg(lg3))=g(lg(lg3)+1+g(﹣lg(lg3))+1=g(lg(lg3)﹣g(lg(lg3))+2=2.故选:D.10.(5分)若a>1,设函数f(x)=a x+x﹣4的零点为m,g(x)=log a x+x﹣4的零点为n,则的取值范围()A.B.[1,+∞)C.(4,+∞)D.【解答】解:函数f(x)=a x+x﹣4的零点是函数y=a x与函数y=4﹣x图象交点A 的横坐标,函数g(x)=log a x+x﹣4的零点是函数y=log a x与函数y=4﹣x图象交点B的横坐标,由于指数函数与对数函数互为反函数,其图象关于直线y=x对称,直线y=4﹣x与直线y=x垂直,故直线y=4﹣x与直线y=x的交点(2,2)即是A,B的中点,∴m+n=4,∴,当m=n=2等号成立,而m+n=4,故+≥1,故所求的取值范围是[1,+∞).故选:B.11.(5分)直线ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且△AOB是直角三角形(O是坐标原点),则点P(a,b)与点(0,1)之间距离的最大值为()A.+1 B.2 C.D.﹣1【解答】解:由圆x2+y2=1,所以圆心(0,0),半径为1所以|OA|=|OB|=1,则△AOB是等腰直角三角形,得到|AB|=,则圆心(0,0)到直线ax+by=1的距离为==,∴2a2+b2=2,即a2+=1.因此所求距离为椭圆a2+=1上点P(a,b)到焦点(0,1)的距离,如图得到其最大值PF=+1故选:A.12.(5分)已知定义在[1,16]上的函数f(x)=,则下列结论中错误的是()A.f(4)=0B.函数f(x)的值域为[﹣4,0]C.将函数f(x)的极值由大到小排列得到数列{a n},n∈N*,则{a n}的前n项和S n=﹣8D.对任意的x∈[1,16],不等式xf(x)+6≥0恒成立【解答】解:∵函数f(x)=,∴f(4)=f(2)=﹣4+8×|2﹣|=0,故A正确;在区间[1,2]上,当x=时,函数取最小值﹣4,当x=1或2时,函数取最大值0,此时f(x)∈[﹣4,0],由2<x≤16时,f(x)=可得:在区间(2,4]上,f(x)∈[﹣2,0],在区间(4,8]上,f(x)∈[﹣1,0],在区间(8,16]上,f(x)∈[﹣,0],综上所述函数f(x)的值域为[﹣4,0],故B正确;将函数f(x)的极值由大到小排列得到数列{a n},则数列{a n}为:﹣4,0,﹣2,0,﹣1,0,﹣,则S n=﹣,故C错误;函数f(x)的图象不会出现在函数y=的下方,即f(x)≥恒成立,即xf(x)+6≥0恒成立,故选:C.二.填空题(本大题共4小题,每小题5分,共20分)13.(5分)抛物线y=x2的焦点坐标是.【解答】解:∵抛物线y=x2,即x2=2y,∴p=1,∴=,∴焦点坐标是.故答案为:.14.(5分)tan25°+tan35°+tan25°tan35°=.【解答】解:原式=tan(25°+35°)(1﹣tan25°tan35°)+tan25°tan35°=tan60°=.故答案为:.15.(5分)若函数f(x)=﹣e ax(a>0,b>0)的图象在x=0处的切线与圆x2+y2=1相切,则a+b的最大值是.【解答】解:求导数,可得f′(x)=﹣令x=0,则f′(0)=﹣又f(0)=﹣,则切线方程为y+=﹣,即ax+by+1=0∵切线与圆x2+y2=1相切,∴=1∴a2+b2=1∵a>0,b>0∴2(a2+b2)≥(a+b)2∴a+b≤∴a+b的最大值是.故答案为:.16.(5分)设f(x)=sin(ωx+φ)﹣cos(ωx+φ)(ω>0)是偶函数,A={x|f (x)=0},若A∩[﹣1,1]含有10个元素,则ω的取值范围是[,)【解答】解:f(x)=sin(ωx+φ)﹣cos(ωx+φ)=2[sin(ωx+φ)﹣cos (ωx+φ)]=2[cos sin(ωx+φ)﹣sin cos(ωx+φ)]=2sin(ωx+φ﹣).∵函数f(x)为偶函数,∴f(0)=2sin(φ﹣)=±2,∴φ=+kπ,k∈Z,∴f(x)=2sin(ωx+kπ)=2cos(ωx+kπ).f(x)=0,即cos(ωx+kπ)=0,ωx+kπ=+mπ,m∈Z,解得,x=,设n=m﹣k,则n∈Z,则x=,n∈Z.∵﹣1≤x≤1∴﹣1≤≤1,∴﹣≤n≤,∵A∩[﹣1,1]含有10个元素,∴4≤<5,即≤ω<.∴ω的取值范围是[,).故答案为:[,).三.解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知,函数.(1)求f(x)的最小正周期,并求其图象对称中心的坐标;(2)当时,求函数f(x)的值域.【解答】解:(1)∵f(x)=sinxcosx﹣cos2x+=sin2x﹣(cos2x+1)+=sin2x﹣cos2x=sin(2x﹣)…(2分)∴f(x)的最小正周期为π,令sin(2x﹣)=0,得2x﹣=kπ,∴x=+,(k∈Z).故所求对称中心的坐标为(+,0),(k∈Z)﹣…(4分)(2)∵0≤x≤,∴﹣<2x﹣≤…(6分)∴﹣≤sin(2x﹣)≤1,即f(x)的值域为[﹣,1]…(8分)18.(12分)在锐角三角形ABC中,a、b、c分别为角A、B、C所对的边,且a=2csin A.(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.【解答】解:(1)由a=2csin A及正弦定理得,==.因为sin A≠0,所以sin C=.因为△ABC是锐角三角形,所以C=.(2)因为c=,C=,由面积公式得:absin=,即ab=6.(i)由余弦定理得,a2+b2﹣2abcos=7,即a2+b2﹣ab=7.(ii)由(ii)变形得(a+b)2=3ab+7.(iii)将(i)代入(iii),得(a+b)2=25,可得:a+b=5.19.(12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为6千元,设该容器的建造费用为y千元.(V球=,S球=4πR2)(1)写出y关于r的函数表达式,并求该函数的定义域;(2)求当r取多少时,该容器的建造费用最小?并求出其最小值.【解答】解:(1)设容器的容积为V,由题意知,又,故l=,由于l≥2r,因此0<r≤2.∴建造费用y=(0<r≤2);(2)由y=,得y′=.当r∈(0,)时,y′<0,r∈(,2)时,y′>0.当r=时,该容器的建造费用最小,其最小值为千元.20.(12分)已知直线l与椭圆C:+=1(a>b>0)交于A(x1,y1),B(x2,y2)两点,又=(ax1,by1),=(ax2,by2),若⊥且椭圆的离心率e=,又椭圆经过点(,1),O为坐标原点.(Ⅰ)求椭圆的方程;(Ⅱ)试问△AOB的面积是否为定值?【解答】解:(Ⅰ)由题意的离心率e===,则a=2b,将(,1)代入,即,解得:b=1,则a=2,∴椭圆的标准方程为:;(Ⅱ)由⊥,则•=0,即4x1x2+y1y2=0,由于A(x1,y1),B(x2,y2)在椭圆上,则,两式相乘,(y12+4x12)(y22+4x22)=(y1y2)2+16(x1x2)2+4(x12y22+x22y12),=(4x1x2+y1y2)2+4(x1y2﹣x2y1)2=4(x1y2﹣x2y1)2=16,∴(x1y2﹣x2y1)2=4,∴△AOB的面积S△AOB=|x1y2﹣x2y1|=1,△AOB的面积为定值1.注S△AOB=||或过A,B分别作y轴的垂线转化为直角梯形,与直角三角形的面积问题即可.21.(12分)设定义在区间[x1,x2]上的函数y=f(x)的图象为C,点A、B的坐标分别为(x1,f(x1)),(x2,f(x2))且M(x,f(x))为图象C上的任意一点,O为坐标原点,当实数λ满足x=λx1+(1﹣λ)x2时,记向量恒成立,则称函数y=f(x)在区间[x1,x2]上可在标准k下线性近似,其中k是一个确定的正数.(Ⅰ)求证:A、B、N三点共线(Ⅱ)设函数f(x)=x2在区间[0,1]上可的标准k下线性近似,求k的取值范围;(Ⅲ)求证:函数g(x)=lnx在区间(e m,e m+1)(m∈R)上可在标准下线性近似.(参考数据:e=2.718,ln(e﹣1)=0.541)【解答】解:(Ⅰ)由得=λ,∴A、B、N三点共线.(Ⅱ)由x=λx1+(1﹣λ)x2 ,,得N 和M的横坐标相同.对于区间[0,1]上的函数f(x)=x2 ,A(0,0)、B(1,1),则有=x﹣x2=﹣﹣,∴∈[0,].再由恒成立,可得k≥.故k的取值范围为[,+∞).(Ⅲ)对定义在区间(e m,e m+1)(m∈R)上的函数函数g(x)=lnx,A (e m,m)、B(e m+1,m+1).AB的方程为y﹣m=(x﹣e m),其中x∈[e m,e m+1].令h(x)=lnx﹣m﹣(x﹣e m),则h′(x)=.由于导数h′(x)在x=e m+1﹣e m处的符号左正右负,故函数h(x)在x=e m+1﹣e m处取得极大值,再由x∈[e m,e m+1]时,极大值仅此一个,故此极大值是函数h(x)的最大值.故函数h(x)的最大值为h(e m+1﹣e m)=ln(e﹣1)﹣≈0.123<,即=h(x)当x∈[e m,e m+1]时,有成立,故要证的结论成立.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.[选修4-1:几何证明选讲]22.(10分)如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.(Ⅰ)证明:∠CBD=∠DBA;(Ⅱ)若AD=3DC,BC=,求⊙O的直径.【解答】证明:(Ⅰ)∵DE是⊙O的直径,则∠BED+∠EDB=90°,∵BC⊥DE,∴∠CBD+∠EDB=90°,即∠CBD=∠BED,∵AB切⊙O于点B,∴∠DBA=∠BED,即∠CBD=∠DBA;(Ⅱ)由(Ⅰ)知BD平分∠CBA,则=3,∵BC=,∴AB=3,AC=,则AD=3,由切割线定理得AB2=AD•AE,即AE=,故DE=AE﹣AD=3,即可⊙O的直径为3.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,直线l的参数方程为为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)写出圆C的直角坐标方程;(2)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.【解答】解:(1)圆C的极坐标方程为,可得直角坐标方程为x2+y2=2,即x2+(y﹣)2=3;(2)设P(3+,t),∵C(0,),∴|PC|==,∴t=0时,P到圆心C的距离最小,P的直角坐标是(3,0).[选修4-5:不等式选讲]24.已知a>0,b>0,c>0,函数f(x)=|x+a|+|x﹣b|+c的最小值为4.(Ⅰ)求a+b+c的值;(Ⅱ)求的最小值.【解答】解:(Ⅰ)因为f(x)=|x+a|+|x﹣b|+c≥|(x+a)﹣(x﹣b)|+c=|a+b|+c,当且仅当﹣a ≤x ≤b 时,等号成立, 又a >0,b >0,所以|a +b |=a +b , 所以f (x )的最小值为a +b +c , 所以a +b +c=4;(Ⅱ)由(Ⅰ)知a +b +c=4,由柯西不等式得,(a 2+b 2+c 2)(4+9+1)≥(•2+•3+c•1)2=(a +b +c )2=16, 即a 2+b 2+c 2≥,当且仅当==,即a=,b=,c=时,等号成立.所以a 2+b 2+c 2的最小值为.赠送—高中数学知识点【1.3.1】单调性与最大(小)值 (1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为yxo减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.第21页(共21页)③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。
綦江区高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 定义在R 上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f (7)=6,则f (x )( ) A .在[﹣7,0]上是增函数,且最大值是6 B .在[﹣7,0]上是增函数,且最小值是6 C .在[﹣7,0]上是减函数,且最小值是6 D .在[﹣7,0]上是减函数,且最大值是62. 设集合{}1234U =,,,,{}2540A x x x =∈-+<N ,则U C A 等于( )A .{}12,B .{}14,C .{}24,D .{}134,, 3. sin 15°sin 5°-2sin 80°的值为( )A .1B .-1C .2D .-24. 满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )A.()||x f e x =B.2()x x f e e =C.2(ln )ln f x x = D.1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.5. 已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .6. 椭圆22:143x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )A .31,42⎡⎤--⎢⎥⎣⎦ B .33,48⎡⎤--⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.7. 已知角α的终边经过点(sin15,cos15)-,则2cos α的值为( )A .12+ B .12 C. 34 D .08.已知向量=(﹣1,3),=(x ,2),且,则x=( )A.B.C.D.9. 从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( ) A.B.C.D.10.已知命题p :∀x ∈R ,32x+1>0,有命题q :0<x <2是log 2x <1的充分不必要条件,则下列命题为真命题的是( )A .¬pB .p ∧qC .p ∧¬qD .¬p ∨q11.设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =( )A .-2或-1B .1或2 C.1±或2 D .2±或-1 12.函数的零点所在区间为( )A .(3,4)B .(2,3)C .(1,2)D .(0,1)二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ .14.在空间直角坐标系中,设)1,3(,m A ,)1,1,1(-B ,且22||=AB ,则=m . 15.已知,x y 满足41y xx y x ≥⎧⎪+≤⎨⎪≥⎩,则22223y xy x x -+的取值范围为____________. 16.幂函数1222)33)(+-+-=m m xm m x f (在区间()+∞,0上是增函数,则=m .三、解答题(本大共6小题,共70分。
城区第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是()A .()1,10B .()1,+∞C .()0,1D .()10,+∞2. A 是圆上固定的一定点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,它的长度大于等于半径长度的概率为( )A .B .C .D .3. 已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3﹣2x 2,则x <0时,函数f (x )的表达式为f (x )=( )A .x 3+2x 2B .x 3﹣2x 2C .﹣x 3+2x 2D .﹣x 3﹣2x 24. 设函数对一切实数都满足,且方程恰有6个不同的实根,则这()y f x =x (3)(3)f x f x +=-()0f x =6个实根的和为( )A. B. C.D.181290【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.5. 将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为( )A .B .C .D .6. 若f (x )=x 2﹣2x ﹣4lnx ,则f ′(x )>0的解集为( )A .(0,+∞)B .(﹣1,0)∪(2,+∞)C .(2,+∞)D .(﹣1,0)7. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为()A .1B .2C .3D .48. 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为()A .B .C .D .9. 设a >0,b >0,若是5a 与5b 的等比中项,则+的最小值为()A .8B .4C .1D .10.(文科)要得到的图象,只需将函数的图象( )()2log 2g x x =()2log f x x =A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位11.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________1的半圆,则其侧视图的面积是( )A .B .C .1D .12.若命题p :∃x ∈R ,x ﹣2>0,命题q :∀x ∈R ,<x ,则下列说法正确的是()A .命题p ∨q 是假命题B .命题p ∧(¬q )是真命题C .命题p ∧q 是真命题D .命题p ∨(¬q )是假命题二、填空题13.已知圆的方程为,过点的直线与圆交于两点,若使C 22230x y y +--=()1,2P -C ,A B AB最小则直线的方程是 .14.已知线性回归方程=9,则b= .15.三角形中,,则三角形的面积为 .ABC 2,60AB BC C ==∠=oABC 16.椭圆+=1上的点到直线l :x ﹣2y ﹣12=0的最大距离为 .17.已知圆C 1:(x ﹣2)2+(y ﹣3)2=1,圆C 2:(x ﹣3)2+(y ﹣4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值 . 18.满足tan (x+)≥﹣的x 的集合是 .三、解答题19.如图,菱形ABCD 的边长为2,现将△ACD 沿对角线AC 折起至△ACP 位置,并使平面PAC ⊥平面ABC .(Ⅰ)求证:AC ⊥PB ;(Ⅱ)在菱形ABCD 中,若∠ABC=60°,求直线AB 与平面PBC 所成角的正弦值;(Ⅲ)求四面体PABC 体积的最大值.20.(本小题满分12分)已知椭圆,、分别为左、右顶点, 为其右焦点,是椭圆上异于、的C A B 2F P C A B 动点,且的最小值为-2.PA PB u u u r u u u rg (1)求椭圆的标准方程;C (2)若过左焦点的直线交椭圆于两点,求的取值范围.1F C M N 、22F M F N u u u u r u u u u rg 21.已知p :“直线x+y ﹣m=0与圆(x ﹣1)2+y 2=1相交”;q :“方程x 2﹣x+m ﹣4=0的两根异号”.若p ∨q 为真,¬p 为真,求实数m 的取值范围. 22.已知函数f (x )=log a (x 2+2),若f (5)=3;(1)求a 的值; (2)求的值;(3)解不等式f (x )<f (x+2).23.已知A、B、C为△ABC的三个内角,他们的对边分别为a、b、c,且.(1)求A;(2)若,求bc的值,并求△ABC的面积.24.计算下列各式的值:(1)(2)(lg5)2+2lg2﹣(lg2)2.城区第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】B 【解析】试题分析:函数有两个零点等价于与的图象有两个交点,当时同一坐标()f x 1xy a ⎛⎫= ⎪⎝⎭log a y x =01a <<系中做出两函数图象如图(2),由图知有一个交点,符合题意;当时同一坐标系中做出两函数图象如图(1),1a >由图知有两个交点,不符合题意,故选B.(1) (2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y fx =零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数的图象的()(),y g x y h x ==交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交(),y a y g x ==点个数的图象的交点个数问题.本题的解答就利用了方法③.2. 【答案】B【解析】解:在圆上其他位置任取一点B ,设圆半径为R ,则B 点位置所有情况对应的弧长为圆的周长2πR ,其中满足条件AB 的长度大于等于半径长度的对应的弧长为2πR ,则AB 弦的长度大于等于半径长度的概率P==.故选B .【点评】本题考查的知识点是几何概型,其中根据已知条件计算出所有基本事件对应的几何量及满足条件的基本事件对应的几何量是解答的关键. 3. 【答案】A【解析】解:设x <0时,则﹣x >0,因为当x >0时,f (x )=x 3﹣2x 2所以f (﹣x )=(﹣x )3﹣2(﹣x )2=﹣x 3﹣2x 2,又因为f (x )是定义在R 上的奇函数,所以f (﹣x )=﹣f (x ),所以当x <0时,函数f (x )的表达式为f (x )=x 3+2x 2,故选A . 4. 【答案】A.【解析】,∴的图象关于直线对称,(3)(3)()(6)f x f x f x f x +=-⇔=-()f x 3x =∴个实根的和为,故选A.63618⋅=5. 【答案】B 【解析】解:将函数的图象上所有的点向左平移个单位长度,得到函数,再把图象上各点的横坐标扩大到原来的2倍,得到函数.故选B .【点评】本题是基础题,考查函数的图象的平移与图象的伸缩变换,注意先平移后伸缩时,初相不变化,考查计算能力. 6. 【答案】C【解析】解:由题,f (x )的定义域为(0,+∞),f ′(x )=2x ﹣2﹣,令2x ﹣2﹣>0,整理得x 2﹣x ﹣2>0,解得x >2或x <﹣1,结合函数的定义域知,f ′(x )>0的解集为(2,+∞).故选:C . 7. 【答案】B【解析】解:设数列{a n }的公差为d ,则由a 1+a 5=10,a 4=7,可得2a 1+4d=10,a 1+3d=7,解得d=2,故选B . 8. 【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D 不正确;中间的棱在侧视图中表现为一条对角线,故C 不正确;而对角线的方向应该从左上到右下,故B 不正确故A 选项正确.故选:A .【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键. 9. 【答案】B【解析】解:∵是5a 与5b 的等比中项,∴5a •5b =()2=5,即5a+b =5,则a+b=1,则+=(+)(a+b )=1+1++≥2+2=2+2=4,当且仅当=,即a=b=时,取等号,即+的最小值为4,故选:B【点评】本题主要考查等比数列性质的应用,以及利用基本不等式求最值问题,注意1的代换. 10.【答案】C 【解析】试题分析:,故向上平移个单位.()2222log 2log 2log 1log g x x x x ==+=+考点:图象平移.11.【答案】B【解析】解:由三视图知几何体的直观图是半个圆锥,又∵正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,∴半圆锥的底面半径为1,高为,即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,故侧视图的面积是,故选:B .【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状. 12.【答案】 B【解析】解:∃x ∈R ,x ﹣2>0,即不等式x ﹣2>0有解,∴命题p 是真命题;x <0时,<x 无解,∴命题q 是假命题;∴p ∨q 为真命题,p ∧q 是假命题,¬q 是真命题,p ∨(¬q )是真命题,p ∧(¬q )是真命题;故选:B .【点评】考查真命题,假命题的概念,以及p ∨q ,p ∧q ,¬q 的真假和p ,q 真假的关系. 二、填空题13.【答案】30x y -+=【解析】试题分析:由圆的方程为,表示圆心在,半径为的圆,点到圆心的距C 22230x y y +--=(0,1)C ()1,2P -,小于圆的半径,所以点在圆内,所以当时,最小,此时()1,2P -AB CP ⊥AB ,由点斜式方程可得,直线的方程为,即.11,1CP k k =-=21y x -=+30x y -+=考点:直线与圆的位置关系的应用.14.【答案】 4 .【解析】解:将代入线性回归方程可得9=1+2b ,∴b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题. 15.【答案】【解析】试题分析:因为中,,,又ABC ∆2,60AB BC C ===︒2sin A=1sin 2A =,即,所以,∴,,.BC AB <A C <30C =︒90B =︒AB BC ⊥12ABCS AB BC ∆=⨯⨯=考点:正弦定理,三角形的面积.【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式.在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正ab 2b 2a 弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答.解三角形时.三角形面积公式往往根据不同情况选用不同形式,,,等等.1sin 2ab C 12ah 1()2a bc r ++4abc R16.【答案】 4 .【解析】解:由题意,设P (4cos θ,2sin θ)则P 到直线的距离为d==,当sin (θ﹣)=1时,d 取得最大值为4,故答案为:4.17.【答案】 5﹣4 .【解析】解:如图,圆C 1关于x 轴的对称圆的圆心坐标A (2,﹣3),半径为1,圆C 2的圆心坐标(3,4),半径为3,|PM|+|PN|的最小值为圆A 与圆C 2的圆心距减去两个圆的半径和,即:﹣4=5﹣4.故答案为:5﹣4.【点评】本题考查圆的对称圆的方程的求法,考查两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,考查数形结合的数学思想,属于中档题.18.【答案】 [kπ,+kπ),k∈Z .【解析】解:由tan(x+)≥﹣得+kπ≤x+<+kπ,解得kπ≤x<+kπ,故不等式的解集为[kπ,+kπ),k∈Z,故答案为:[kπ,+kπ),k∈Z,【点评】本题主要考查三角不等式的求解,利用正切函数的图象和性质是解决本题的关键.三、解答题19.【答案】【解析】解:(Ⅰ)证明:取AC中点O,连接PO,BO,由于四边形ABCD为菱形,∴PA=PC,BA=BC,∴PO⊥AC,BO⊥AC,又PO∩BO=O,∴AC⊥平面POB,又PB⊂平面POB,∴AC⊥PB.(Ⅱ)∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PO⊂平面PAC,PO⊥AC,∴PO⊥面ABC,∴OB,OC,OP两两垂直,故以O为原点,以方向分别为x,y,z轴正方向建立空间直角坐标系,∵∠ABC=60°,菱形ABCD 的边长为2,∴,,设平面PBC的法向量,直线AB与平面PBC成角为θ,∴,取x=1,则,于是,∴,∴直线AB与平面PBC成角的正弦值为.(Ⅲ)法一:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),∴,∴,当且仅当,即时取等号,∴四面体PABC体积的最大值为.法二:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),设,则,且0<t<1,∴,∴当时,V'PABC>0,当时,V'PABC<0,∴当时,V PABC取得最大值,∴四面体PABC体积的最大值为.法三:设PO=x,则BO=x,,(0<x<2)又PO⊥平面ABC,∴,∵,当且仅当x2=8﹣2x2,即时取等号,∴四面体PABC体积的最大值为.【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,直线与平面所成角的求法,几何体的体积的最值的求法,考查转化思想以及空间思维能力的培养. 20.【答案】(1);(2).22142x y +=22[2,7)F M F N ∈-u u u u r u u u u r g 【解析】试题解析:(1)根据题意知,即,c a =2212c a =∴,则,22212a b a -=222a b =设,(,)P x y ∵,(,)(,)PA PB a x y a x y =-----u u u r u u u r g g ,2222222221()222a x x a y x a x a =-+=-+-=-∵,∴当时,,a x a -≤≤0x =2min ()22a PA PB =-=-u u u r u u u r g ∴,则.24a =22b =∴椭圆的方程为.C 22142x y +=1111]设,,则,,11(,)M x y 22(,)N x y 12x x +=21224(1)12k x x k -=+∵,,211()F M x y =u u u u r 222()F N x y =u u u u r∴222121212)2(F M F N x x x x k x x =-++++u u u u r u u u u r g2221212(1))22k x x x x k =++-+++222224(1)(1)1)2212k k k k k -=++-+++g .29712k =-+∵,∴.2121k +≥210112k<≤+∴.297[2,7)12k -∈-+综上知,.22[2,7)F M F N ∈-u u u u r u u u u r g 考点: 1、待定系数法求椭圆的标准方程;2、平面向量的数量积公式、圆锥曲线中的最值问题.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.21.【答案】【解析】解:若命题p 是真命题:“直线x+y ﹣m=0与圆(x ﹣1)2+y 2=1相交”,则<1,解得1﹣;若命题q是真命题:“方程x2﹣x+m﹣4=0的两根异号”,则m﹣4<0,解得m<4.若p∨q为真,¬p为真,则p为假命题,q为真命题.∴.∴实数m的取值范围是或.【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题.22.【答案】【解析】解:(1)∵f(5)=3,∴,即log a27=3解锝:a=3…(2)由(1)得函数,则=…(3)不等式f(x)<f(x+2),即为化简不等式得…∵函数y=log3x在(0,+∞)上为增函数,且的定义域为R.∴x2+2<x2+4x+6…即4x>﹣4,解得x>﹣1,所以不等式的解集为:(﹣1,+∞)…23.【答案】【解析】解:(1)∵A、B、C为△ABC的三个内角,且cosBcosC﹣sinBsinC=cos(B+C)=,∴B+C=,则A=;(2)∵a=2,b+c=4,cosA=﹣,∴由余弦定理得:a2=b2+c2﹣2bccosA=b2+c2+bc=(b+c)2﹣bc,即12=16﹣bc,解得:bc=4,则S△ABC=bcsinA=×4×=.【点评】此题考查了两角和与差的余弦函数公式,余弦定理,以及三角形面积公式,熟练掌握公式及定理是解本题的关键.24.【答案】【解析】解:(1)=…==5…(2)(lg5)2+2lg2﹣(lg2)2=(lg5+lg2)(lg5﹣lg2)+2lg2…=.… 。
城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的()A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件2. 复数是虚数单位)的虚部为( )i iiz (21+=A .B .C .D .1-i -i 22【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.3. 设a ,b ∈R ,i 为虚数单位,若=3+b i ,则a -b 为( )2+a i1+iA .3B .2C .1D .04. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形②不存在点D ,使四面体ABCD 是正三棱锥③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上其中真命题的序号是( )A .①②B .②③C .③D .③④5. 已知双曲线的方程为﹣=1,则双曲线的离心率为( )A .B .C .或D .或6. 命题“存在实数x ,使x >1”的否定是( )A .对任意实数x ,都有x >1B .不存在实数x ,使x ≤1C .对任意实数x ,都有x ≤1D .存在实数x ,使x ≤17. 下列函数在(0,+∞)上是增函数的是( )A .B .y=﹣2x+5C .y=lnxD .y=8. 利用计算机在区间(0,1)上产生随机数a ,则不等式ln (3a ﹣1)<0成立的概率是( )A .B .C .D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 若函数则的值为( )1,0,()(2),0,x x f x f x x +≥⎧=⎨+<⎩(3)f -A .5B .C .D .21-7-10.已知向量=(1,1,0),=(﹣1,0,2)且k+与2﹣互相垂直,则k 的值是( )A .1B .C .D .11.已知是虚数单位,若复数在复平面内对应的点在第四象限,则实数的值可以是( )22aiZ i+=+A .-2 B .1C .2D .312.函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为()A .0<a ≤B .0≤a ≤C .0<a <D .a >二、填空题13.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若有三个零点,则实数m 的取值范围是________.()()g x f x m =-14.若函数为奇函数,则___________.63e ()()32ex x bf x x a =-∈R ab =【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力.15.若实数x ,y 满足x 2+y 2﹣2x+4y=0,则x ﹣2y 的最大值为 .16.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为2cm ,则其表面积为__________2cm .17.数列{a n }是等差数列,a 4=7,S 7= .18.在中,已知角的对边分别为,且,则角ABC ∆C B A ,,c b a ,,B c C b a sin cos +=B 为.三、解答题19.已知函数f (x )=x 2﹣mx 在[1,+∞)上是单调函数.(1)求实数m 的取值范围;(2)设向量,求满足不等式的α的取值范围.20.已知f(x)=log3(1+x)﹣log3(1﹣x).(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x∈[,]时,不等式f(x)≥g(x)有解,求k的取值范围.21.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点.(1)求证:AC⊥平面BDEF;(2)求二面角H﹣BD﹣C的大小.22.已知p:,q:x2﹣(a2+1)x+a2<0,若p是q的必要不充分条件,求实数a的取值范围.23.已知函数f (x )=(log 2x ﹣2)(log 4x ﹣)(1)当x ∈[2,4]时,求该函数的值域;(2)若f (x )>mlog 2x 对于x ∈[4,16]恒成立,求m 的取值范围.24.(本小题满分12分)已知函数.1()ln (42)()f x m x m x m x=+-+∈R (1)时,求函数的单调区间;当2m >()f x (2)设,不等式对任意的恒成立,求实数的[],1,3t s ∈|()()|(ln 3)(2)2ln 3f t f s a m -<+--()4,6m ∈a 取值范围.【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、运算求解能力.城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案A A D C C C C D111]D题号1112答案A B二、填空题13.7 14⎛⎤ ⎥⎝⎦,14.2016 15.1016.20 17.4918.4π三、解答题19.20.21.22.23.24.。
城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知||=3,||=1,与的夹角为,那么|﹣4|等于()A .2B .C .D .132. 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A .B .ln (x 2+1)>ln (y 2+1)C .x 3>y 3D .sinx >siny 3. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形②不存在点D ,使四面体ABCD 是正三棱锥③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上其中真命题的序号是( )A .①②B .②③C .③D .③④4. sin45°sin105°+sin45°sin15°=( )A .0B .C .D .15. 已知抛物线的焦点为,,点是抛物线上的动点,则当的值最小时,24y x =F (1,0)A -P ||||PF PA PAF ∆的面积为( )B. C.D. 24【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.6. 设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( )A .1B .2C .3D .47. 在△ABC 中,C=60°,AB=,AB 边上的高为,则AC+BC 等于()A .B .5C .3D .8. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题:(1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m ,班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________(3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β,其中正确命题是()A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4) 9. 在等差数列中,,公差,为的前项和.若向量,,{}n a 11a =0d ≠n S {}n a n 13(,)m a a u r =133(,)n a a r=-且,则的最小值为( )0m n u r r ×=2163n n S a ++A .B.C .D .432-92【命题意图】本题考查等差数列的性质,等差数列的前项和,向量的数量积,基本不等式等基础知识,意在n 考查学生的学生运算能力,观察分析,解决问题的能力.10.常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底数)得lny=g (x )lnf (x ),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x ){g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是( )A .h ()B .h ()C .h ()D .h ()11.已知命题“如果﹣1≤a ≤1,那么关于x 的不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .1个C .2个D .4个12.已知等比数列{a n }的前n 项和为S n ,若=4,则=()A .3B .4C .D .13二、填空题13.如图,在棱长为的正方体中,点分别是棱的中点,是侧1111D ABC A B C D -,E F 1,BC CC P 面内一点,若平行于平面,则线段长度的取值范围是_________.11BCC B 1AP AEF 1A P 14.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 .15.已知过球面上 ,,A B C 三点的截面和球心的距离是球半径的一半,且2AB BC CA ===,则球表面积是_________.16.设函数,其中[x]表示不超过x的最大整数.若方程f(x)=ax有三个不同的实数根,则实数a的取值范围是 .17.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全19.0校学生中抽取1名学生,抽到高二年级女生的概率为,先采用分层抽样(按年级分层)在全校抽取100人,则应在高三年级中抽取的人数等于.18.以抛物线y2=20x的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为 .三、解答题19.已知函数f(x)=.(1)求函数f(x)的最小正周期及单调递减区间;(2)当时,求f(x)的最大值,并求此时对应的x的值.20.已知函数f(x)=ax2+lnx(a∈R).(1)当a=时,求f(x)在区间[1,e]上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g (x)为f1(x),f2(x)的“活动函数”.已知函数+2ax.若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.21.如图,⊙O的半径为6,线段AB与⊙相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O相交于点.(1)求BD 长;(2)当CE ⊥OD 时,求证:AO=AD .22.已知定义域为R 的函数f (x )=是奇函数.(Ⅰ)求b 的值;(Ⅱ)判断函数f (x )的单调性;(Ⅲ)若对任意的t ∈R ,不等式f (t 2﹣2t )+f (2t 2﹣k )<0恒成立,求k 的取值范围. 23.(本小题满分10分)已知函数.()|||2|f x x a x =++-(1)当时,求不等式的解集;3a =-()3f x ≥(2)若的解集包含,求的取值范围.()|4|f x x ≤-[1,2]24.(本小题满分13分)在四棱锥中,底面是直角梯形,,,.P ABCD -ABCD //AB DC 2ABC π∠=AD =33AB DC ==(Ⅰ)在棱上确定一点,使得平面;PB E //CE PAD (Ⅱ)若,,求直线与平面所成角的大小.PA PD ==PB PC =PA PBC ABCDP城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案C C DCBADBAB题号1112答案CD二、填空题13.14. (x ﹣1)2+(y+1)2=5 .15.649π16. (﹣1,﹣]∪[,) . 17.2518. (x ﹣5)2+y 2=9 .三、解答题19.20. 21. 22.23.(1)或;(2).{|1x x ≤8}x ≥[3,0]-24.。
城区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 使得(3x 2+)n (n ∈N +)的展开式中含有常数项的最小的n=( )A .3B .5C .6D .102. 已知lga+lgb=0,函数f (x )=a x 与函数g (x )=﹣log b x 的图象可能是()A .B .C .D .3. 已知集合表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P 的坐标满足不等式x 2+y 2≤2的概率为( )A .B .C .D .4. 四棱锥的底面为正方形,底面,,若该四棱锥的所有顶点都在P ABCD -ABCD PA ⊥ABCD 2AB =体积为同一球面上,则( )24316πPA =A .3 B . C .D .7292【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.5. 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知三个社区分别有低收入家C B A ,,庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从社C 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题.6. 在正方体中,是线段的中点,若四面体的外接球体积为,1111ABCD A B C D -M 11AC M ABD -36p 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力.7. 已知,若不等式对一切恒成立,则的最大值为2,0()2, 0ax x x f x x x ⎧+>=⎨-≤⎩(2)()f x f x -≥x R ∈a ( )A .B .C .D .716-916-12-14-班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为()A .B .C .D .9. 在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )A .20种B .22种C .24种D .36种10.在等比数列中,,前项和为,若数列也是等比数列,则等于( )A .B .C .D .11.设f (x )=e x +x ﹣4,则函数f (x )的零点所在区间为()A .(﹣1,0)B .(0,1)C .(1,2)D .(2,3)12.设复数z 满足z (1+i )=2(i 为虚数单位),则z=( )A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i二、填空题13.【泰州中学2018届高三10月月考】设二次函数(为常数)的导函数为()2f x ax bx c =++,,a b c ,对任意,不等式恒成立,则的最大值为__________.()f x 'x R ∈()()f x f x ≥'222b a c+14.已知数列的前项和为,且满足,(其中,则.}{n a n n S 11a =-12n n a S +=*)n ∈N n S =15.图中的三个直角三角形是一个体积为20的几何体的三视图,则__________.h =16.在△ABC 中,A=60°,|AB|=2,且△ABC 的面积为,则|AC|= .17.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .18.在中,已知,则此三角形的最大内角的度数等ABC ∆sin :sin :sin 3:5:7A B C =于__________.三、解答题19.【启东中学2018届高三上学期第一次月考(10月)】设,函数.1a >()()21xf x x ea =+-(1)证明在上仅有一个零点;((2)若曲线在点处的切线与轴平行,且在点处的切线与直线平行,(O 是坐标原点),证明:1m ≤-20.选修4﹣5:不等式选讲已知f (x )=|ax+1|(a ∈R ),不等式f (x )≤3的解集为{x|﹣2≤x ≤1}.(Ⅰ)求a 的值;(Ⅱ)若恒成立,求k 的取值范围.21.已知函数f(x)=•,其中=(2cosx,sin2x),=(cosx,1),x∈R.(1)求函数y=f(x)的单调递增区间;(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=,且sinB=2sinC,求△ABC的面积.22.求函数f(x)=﹣4x+4在[0,3]上的最大值与最小值.23.已知函数f(x)=2x﹣,且f(2)=.(1)求实数a的值;(2)判断该函数的奇偶性;(3)判断函数f(x)在(1,+∞)上的单调性,并证明.24.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图所示的几何体(Ⅰ)求几何体的表面积(Ⅱ)判断在圆A上是否存在点M,使二面角M﹣BC﹣D的大小为45°,且∠CAM为锐角若存在,请求出CM 的弦长,若不存在,请说明理由.城区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:(3x2+)n(n∈N+)的展开式的通项公式为T r+1=•(3x2)n﹣r•2r•x﹣3r=•x2n﹣5r ,令2n﹣5r=0,则有n=,故展开式中含有常数项的最小的n为5,故选:B.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题. 2.【答案】B【解析】解:∵lga+lgb=0∴ab=1则b=从而g(x)=﹣log b x=log a x,f(x)=a x与∴函数f(x)与函数g(x)的单调性是在定义域内同增同减结合选项可知选B,故答案为B3.【答案】D【解析】解:作出不等式组对应的平面区域如图,则对应的区域为△AOB,由,解得,即B(4,﹣4),由,解得,即A(,),直线2x+y﹣4=0与x轴的交点坐标为(2,0),则△OAB的面积S==,点P的坐标满足不等式x2+y2≤2区域面积S=,则由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为=,故选:D【点评】本题考查的知识点是几何概型,二元一次不等式(组)与平面区域,求出满足条件A 的基本事件对应的“几何度量”N (A ),再求出总的基本事件对应的“几何度量”N ,最后根据几何概型的概率公式进行求解. 4. 【答案】B【解析】连结交于点,取的中点,连结,则,所以底面,则,AC BD E PC O OE OE PA P OE ⊥ABCD O到四棱锥的所有顶点的距离相等,即球心,均为,所以由球的体积O 12PC ==可得,解得,故选B .34243316ππ=72PA =5. 【答案】C【解析】根据分层抽样的要求可知在社区抽取户数为.C 2492108180270360180108=⨯=++⨯6. 【答案】C7. 【答案】C【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.当(如图1)、(如图2)时,不等式不可能恒成立;当时,如图3,直线与0a >0a =0a <2(2)y x =--函数图象相切时,,切点横坐标为,函数图象经过点时,,2y ax x =+916a =-832y ax x =+(2,0)12a =-观察图象可得,选C .12a ≤-8. 【答案】D【解析】解:∵f (x )=y=2x 2﹣e |x|,∴f (﹣x )=2(﹣x )2﹣e |﹣x|=2x 2﹣e |x|,故函数为偶函数,当x=±2时,y=8﹣e 2∈(0,1),故排除A ,B ; 当x ∈[0,2]时,f (x )=y=2x 2﹣e x ,∴f ′(x )=4x ﹣e x =0有解,故函数y=2x 2﹣e |x|在[0,2]不是单调的,故排除C ,故选:D 9. 【答案】C【解析】解:根据题意,分2种情况讨论:①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有=12种推荐方法;②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有=12种推荐方法;故共有12+12=24种推荐方法;故选:C . 10.【答案】D 【解析】设的公比为,则,,因为也是等比数列,所以,即,所以因为,所以,即,所以,故选D答案:D11.【答案】C【解析】解:f (x )=e x +x ﹣4,f (﹣1)=e ﹣1﹣1﹣4<0,f (0)=e 0+0﹣4<0,f (1)=e 1+1﹣4<0,f (2)=e 2+2﹣4>0,f (3)=e 3+3﹣4>0,∵f (1)•f (2)<0,∴由零点判定定理可知,函数的零点在(1,2).故选:C . 12.【答案】A【解析】解:∵z (1+i )=2,∴z===1﹣i .故选:A .【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题. 二、填空题13.【答案】2-【解析】试题分析:根据题意易得:,由得:在R()'2f x ax b =+()()'f x f x ≥()220ax b a x c b +-+-≥上恒成立,等价于:,可解得:,则:{ 0a >≤V ()22444b ac a a c a ≤-=-,令,,222222241441c b ac a a a c a c c a ⎛⎫- ⎪-⎝⎭≤=++⎛⎫+ ⎪⎝⎭1,(0)c t t a =->24422222t y t t t t ==≤=-++++故的最大值为.222b ac +2-考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用14.【答案】13n --【解析】∵,∴,12n n a S +=12n n n S S S +-=∴∴,.13n n S S +=11133n n n S S --=⋅=15.【答案】【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱底面,且为直角三角形,且VA ⊥ABC ABC ∆,所以三棱锥的体积为,解得.5,,6AB VA h AC ===115652032V h h =⨯⨯⨯==4h =考点:几何体的三视图与体积.16.【答案】 1 .【解析】解:在△ABC 中,A=60°,|AB|=2,且△ABC 的面积为,所以,则|AC|=1.故答案为:1.【点评】本题考查三角形的面积公式的应用,基本知识的考查. 17.【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >->⇒-<<-考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.18.【答案】120o【解析】考点:解三角形.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据,根据正弦定理,可设,即可利用余弦定理求解最大角的余弦,sin :sin :sin 3:5:7A B C =3,5,7a b ===熟记正弦、余弦定理的公式是解答的关键.三、解答题19.【答案】(1)在上有且只有一个零点(2)证明见解析f x ()∞+∞(﹣,)【解析】试题分析:试题解析:(1),,()()()22211xx f x ex x e x +='=++()0f x ∴'≥在上为增函数.()()21xf x x ea ∴=+-(),-∞+∞,,1a >Q ()010f a ∴=-<又,()1fa a =-=-,即,0,1>∴>Q 0f>由零点存在性定理可知,在上为增函数,且,()f x (),-∞+∞()00f f⋅<在上仅有一个零点。
城区一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为( )A .B .C .D .2. 设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q=2,S k+2﹣S k =48,则k 等于( )A .7B .6C .5D .43. 如图,从点M (x 0,4)发出的光线,沿平行于抛物线y 2=8x 的对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射向抛物线上的点Q ,再经抛物线反射后射向直线l :x ﹣y ﹣10=0上的点N ,经直线反射后又回到点M ,则x 0等于()A .5B .6C .7D .84. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(1,+∞)B .(0,1)C .(﹣1,0)D .(﹣∞,﹣1)5. 已知全集,,,则有( )U R ={|239}xA x =<≤{|02}B y y =<≤A . B .C .D .A ØB A B B =I ()R A B ≠∅I ð()R A B R=U ð6. 已知,其中i 为虚数单位,则a+b=()A .﹣1B .1C .2D .37. 已知函数,其中,对任意的都成立,在122()32f x x ax a =+-(0,3]a ∈()0f x ≤[]1,1x ∈-和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为,则( )T T =A .B .C .D .20152201532015232015228. 如图所示,在三棱锥的六条棱所在的直线中,异面直线共有( )111]P ABC -A .2对B .3对C .4对D .6对班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 由两个1,两个2,两个3组成的6位数的个数为( )A .45B .90C .120D .36010.(2011辽宁)设sin (+θ)=,则sin2θ=()A .﹣B .﹣C .D .11.函数f (x )=log 2(x+2)﹣(x >0)的零点所在的大致区间是( )A .(0,1)B .(1,2)C .(2,e )D .(3,4)12.如图,长方形ABCD 的长AD=2x ,宽AB=x (x ≥1),线段MN 的长度为1,端点M 、N 在长方形ABCD 的四边上滑动,当M 、N 沿长方形的四边滑动一周时,线段MN 的中点P 所形成的轨迹为G ,记G 的周长与G 围成的面积数值的差为y ,则函数y=f (x )的图象大致为()A .B .C .D .二、填空题13.若非零向量,满足|+|=|﹣|,则与所成角的大小为 .14.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .15.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .16.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且,B=45°,面积S=2,则b 等于 .17.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线上xC y e :=一点,直线经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________.20l x y c :++=18.已知函数f (x )的定义域为[﹣1,5],部分对应值如下表,f (x )的导函数y=f ′(x )的图象如图示. x ﹣1045f (x )1221下列关于f(x)的命题:①函数f(x)的极大值点为0,4;②函数f(x)在[0,2]上是减函数;③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)﹣a有4个零点;⑤函数y=f(x)﹣a的零点个数可能为0、1、2、3、4个.其中正确命题的序号是 .三、解答题19.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v (x)可以达到最大,并求出最大值.(精确到1辆/小时).20.已知函数f(x)=|2x+1|+|2x﹣3|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)﹣log2(a2﹣3a)>2恒成立,求实数a的取值范围.21.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,BC⊥CF,,EF=2,BE=3,CF=4.(Ⅰ)求证:EF⊥平面DCE;(Ⅱ)当AB的长为何值时,二面角A﹣EF﹣C的大小为60°.22.19.已知函数f(x)=ln.23.已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.24.在中,,,.(1)求的值;(2)求的值。
城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如果定义在R 上的函数满足:对于任意,都有)(x f 21x x ≠)()(2211x f x x f x +,则称为“函数”.给出下列函数:①;②)()(1221x f x x f x +>)(x f H 13++-=x x y ;③;④,其中“函数”的个数是( ))cos sin (23x x x y --=1+=xe y ⎩⎨⎧=≠=000||ln x x x y H A . B . C . D .43212. 已知定义在区间[0,2]上的函数y=f (x )的图象如图所示,则y=f (2﹣x )的图象为()A .B .C .D .3. 若等式(2x ﹣1)2014=a 0+a 1x+a 2x 2+…+a 2014x 2014对于一切实数x 都成立,则a 0+1+a 2+…+a 2014=()A .B .C .D .04. 下列说法正确的是()A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.5. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3B .2C .3D .46. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ()A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是()A .60°B .45°C .90°D .120°8. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要9. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( )A .1B .2C .3D .410.下列各组函数中,表示同一函数的是()A 、x 与B 、 与()f x =()f x =2x x()1f x x =-()f x =C 、与D 、与()f x x =()f x =()f x x =2()f x =11.已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)12.在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111]A .(0,6πB .[,)6ππ C. (0,]3πD .[,)3ππ二、填空题13.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2;②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值;④当x=﹣1时,(i ,j )有2种不同取值;⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号) 14.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全校学生中抽取1名学生,抽到高二年级女生的概率为,先采用分层抽样(按年级分层)在全校抽取19.0100人,则应在高三年级中抽取的人数等于 .15.如图,在三棱锥中,,,,为等边三角形,则P ABC -PA PB PC ==PA PB ⊥PA PC ⊥PBC △PC与平面所成角的正弦值为______________.ABC【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.16.图中的三个直角三角形是一个体积为20的几何体的三视图,则__________.h =17.运行如图所示的程序框图后,输出的结果是 18.已知一组数据,,,,的方差是2,另一组数据,,,,()1x 2x 3x 4x 5x 1ax 2ax 3ax 4ax 5ax 0a >的标准差是,则.a =三、解答题19.(本小题满分12分)设函数()()2741201x x f x a a a --=->≠且.(1)当a =时,求不等式()0f x <的解集;(2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.20.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量(毫克)与时间(小时)成正比;药物释放完毕后,与的函数关系式为(为常数),y t y t 1()16t ay -=a如图所示.据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;y t (2)据测定,当空气中每立方米的含药量降低到毫克以下时,学生方可进教室。
綦江区一中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )
A .20,2
B .24,4
C .25,2
D .25,4 2. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )
A
.6103515++ B .610+35+14 C .6103515++ D .4103515++
【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力. 3.
+(a ﹣4)0有意义,则a 的取值范围是( )
A .a ≥2
B .2≤a <4或a >4
C .a ≠2
D .a ≠4
4. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )
A
.1
B .2
C .3
D
.4
5. 下列函数中,定义域是R 且为增函数的是( )
A.x
y e -= B.3y x = C.ln y x = D.y x =
6. “双曲线C 的渐近线方程为y=±x ”是“双曲线C 的方程为﹣=1”的( )
A .充要条件
B .充分不必要条件
C .必要不充分条件
D .不充分不必要条件
7. 抛物线y=﹣8x 2的准线方程是( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .y=
B .y=2
C .x=
D .y=﹣2
8. 四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在
体积为
24316
π
同一球面上,则PA =( )
A .3
B .72
C .
D .9
2
【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力. 9. 设函数f (x )=,f (﹣2)+f (log 210)=( )
A .11
B .8
C .5
D .2
10.不等式x (x ﹣1)<2的解集是( )
A .{x|﹣2<x <1}
B .{x|﹣1<x <2}
C .{x|x >1或x <﹣2}
D .{x|x >2或x <﹣1} 11.已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b
a
的 取值范围是( )
A .(1,)-+∞
B .(1,0)- C. (2,)-+∞ D .(2,0)- 12.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A )∩(∁U B )=( ) A .{5,8}
B .{7,9}
C .{0,1,3}
D .{2,4,6}
二、填空题
13.设变量x ,y 满足约束条件,则的最小值为 .
14.已知实数x ,y 满足
,则目标函数z=x ﹣3y 的最大值为
15.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2
132n n S S n n ++=+,若对n N *∀∈,1n n a a +<
恒成立,则m 的取值范围是_______.
【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.
16.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()2
2
a c
b d -+-的最小值为 ▲ .
17.
= .
18.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是 .
三、解答题
19.在数列{a n}中,a1=1,a n+1=1﹣,b n=,其中n∈N*.
(1)求证:数列{b n}为等差数列;
(2)设c n=b n+1•(),数列{c n}的前n项和为T n,求T n;
(3)证明:1+++…+≤2﹣1(n∈N*)
20.如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2﹣6x﹣91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线.
21.(本小题满分12分)某市拟定2016年城市建设,,
A B C三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对,,
A B C三项重点工程竞标成功的概率分
别为a,b,1
4()
a b
,已知三项工程都竞标成功的概率为
1
24
,至少有一项工程竞标成功的概率为3
4
.
(1)求a与b的值;
(2)公司准备对该公司参加,,
A B C三个项目的竞标团队进行奖励,A项目竞标成功奖励2万元,B项目竞标成功奖励4万元,C项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.
【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.
22.(本小题满分10分)选修4-4:坐标系与参数方程 已知椭圆C 的极坐标方程为2
22
12
3cos 4sin ρθθ
=
+,点12,F F
为其左、右焦点,直线的参数方程为222
x t y t ⎧=+⎪⎪⎨
⎪=⎪⎩(为参数,
t R ∈). (1)求直线和曲线C 的普通方程; (2)求点12,F F 到直线的距离之和.
23.设0<a <1,集合A={x ∈R|x >0},B={x ∈R|2x 2﹣3(1+a )x+6a >0},D=A ∩B . (1)求集合D (用区间表示)
(2)求函数f (x )=2x 3﹣3(1+a )x 2
+6ax 在D 内的极值点.
24.已知函数f (x )=2|x ﹣2|+ax (x ∈R ). (1)当a=1时,求f (x )的最小值;
(2)当f (x )有最小值时,求a 的取值范围;
(3)若函数h (x )=f (sinx )﹣2存在零点,求a 的取值范围.
綦江区一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
13. 4 .
14. 5
15.15(,)43
-
16.5 17. 2 .
18. 50π
三、解答题
19. 20.
21.
22.(1)直线的普通方程为2y x =-,曲线C 的普通方程为22
143
x y +=;(2) 23.
24.。