选修2-1__教材分析与教学建议
- 格式:ppt
- 大小:381.00 KB
- 文档页数:26
选修2—1教案第一章常用逻辑用语1.1命题及其关系1.1.1命题(一)教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若P,则q”的形式;2、过程与方法:多讣学住举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
(二)教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假(三)教学过程1.复习回顾初屮已学过命题的知识,请同学们回顾:什么叫做命题?2•思考、分析下列语旬的表述形式冇什么特点?你能判断他们的真假吗?(1)若直线&〃b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4 )若x2=l,则x=l.(5 )两个全等三角形的面积相等.(6 )3能被2整除.3•讨论、判断学牛通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。
具屮(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
4、抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度來加深対命题这一概念的理解.5、练习、深化判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3 )指数函数是增函数吗?(4 )若平面上两条直线不相交,则这两条直线平行.(5)何=_2.(6)x> 1 5 .让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断-个语句是不是命题,关键看两点: 第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。
教案:椭圆及其标准方程一、教学内容新课标人教版选修2-1第二章第二节第一课时内容:2.2.1椭圆及其标准方程二、教材分析教材的地位与作用⑴从知识上说,它是运用坐标法研究曲线的几何性质的又一次实际演练;⑵从方法上说,它为后面研究双曲线、抛物线提供了基本模式和理论基础.所以说,无论从教材内容,还是从教学方法上都起着承上启下的作用.本小节安排两课时:第一课时:椭圆的定义及标准方程的推导;第二课时:运用椭圆的定义求曲线的轨迹方程.三、课程目标⑴知识目标:①掌握椭圆的定义及其标准方程;②通过对椭圆标准方程的探求,熟悉求曲线方程的一般方法.⑵能力目标:通过自我探究、操作、数学思想(待定系数法)的运用等,从而提高学生实际动手、合作学习以及运用知识解决实际问题的能力.⑶情感目标:在教学中充分揭示“数”与“形”的内在联系,体会形数美的统一,激发学生学习数学的兴趣,培养学生勇于探索,勇于创新的精神.四、重点和难点重点:椭圆的定义及椭圆的标准方程;难点:椭圆标准方程的建立和推导.五、教学过程与方法目标(一)设置情景,导入新课1、(借助多媒体)先演示本章开头语中用一个倾斜平面截圆锥,可以得到截口曲线(椭圆);今天我们就着手研究这个内容.(进而出示本节研究的课题的教学目标)2、(借助多媒体)展示图片【设计意图】让学生明确椭圆与科研、生产以及人类生活有着紧密的关系,激发学生的求知欲.(二)尝试画图、形成感知1、动手画椭圆(1)请学生拿出课前准备的硬纸板、细线、铅笔,同桌一起合作画椭圆.(2)动画演示椭圆的形成过程.(动画1)2、同学们作完图、观察完演示后,思考下面问题:⑴.结合实验,你应如何给椭圆下定义?定义含有几个要点?⑵.在画出一个椭圆的过程中,细绳的两端的位置是固定的还是运动的?⑶.在画椭圆的过程中,绳子的长度变了没有?说明了什么?⑷.在画椭圆的过程中,绳子长度与两定点距离大小有怎样的关系?3、教师再进一步明确椭圆概念、焦点、焦距概念,强调形成椭圆的条件.(三)探究椭圆的标准方程1、复习求动点的轨迹方程的基本步骤 (由学生回答,不正确的教师给予纠正)2、椭圆标准方程的探求 ⑴建系让学生自己动手试一试如何恰当地建立坐标系.教师巡回察看各个同学的建系情况,然后让几个同学说出自己建系的依据,师生共评,寻找最佳方案.【学情预设】学生可能会建系如下几种情况: 方案一:把F 1、F 2建在x 轴上,以F 1F 2的中点为原点; 方案二:把F 1、F 2建在x 轴上,以F 1为原点; 方案三:把F 1、F 2建在x 轴上,以F 2原点;方案四:把F 1、F 2建在x 轴上,以F 1F 2与x 轴的左交点为原点; 方案五:把F 1、F 2建在x 轴上,以F 1F 2与x 轴的右交点为原点; 经过比较确定方案一.以两定点1F 、2F 所在的直线为x 轴,线段1F 2F 的垂直平分线为y 轴,建立平面直角坐标系(如图1).设c F F 221=()0>c ,则()01,c F -,()02,c F . 已知图形,建立直角坐标系的一般要求是什么?第一、充分利用图形的对称性;第二、注意图形的特殊性和一般性关系.⑵设点设()y x M ,为椭圆上的任意一点,M 与1F 、2F 的距离的和等于a 2(c a 22>).由定义得到椭圆上点M 的集合为{}a MF MF M P 221=+=. ⑶列式将条件式a MF MF 221=+代数化,得()()a y c x y c x 22222=+-+++ (*)(图1)⑷化简先让学生各自在练习本上自行化简,教师巡视.预测学生问题:①若学生采用两次平方的方法化简,最后应得到()()22222222c a a y a x c a-=+- (* *)在此过程中,教师一边巡视,一边给予指导和提示,然后选出1—2位学生的推导过程展示出来,并请学生本人作简要陈述.然后教师提出:有无较为简单的方法化简(*)式呢? 请学生观察式子()()a y c x y c x 22222=+-+++,引导学生联想等差中项的定义:“n p m ,,成等差数列p n m 2=+⇔”, 知()22y c x ++,a ,()22y c x +-成等差数列,可设 ()()⎪⎩⎪⎨⎧+=+--=++.,2222d a y c x d a y c x再设法消去d ,即可将(*)式化简为(* *)式.若学生先想到利用等差中项的概念式化简得(* *)式,则教师提出采用两次平方的方法请学生一试,也可得(* *)式.②b 的引入由椭圆的定义可知,c a 22>,022>-∴c a , 让点M 运动到y 轴正半轴上(如图2),由学生观察图形自行获得a ,c 的几何意义,进而自然引进b ,此时222c a b -=,于是得222222b a y a x b =+,两边同时除以22b a ,得椭圆的标准方程为:()012222>>=+b a by a x . ③教师对标准方程的说明ⅰ.椭圆的标准方程既简洁整齐,又对称和谐;ⅱ.上述方程表示焦点在x 轴上,中心在坐标原点的椭圆,其中222b ac -=;图2ⅲ.以上的推导过程,没有证明“以满足方程12222=+by a x 的实数对),(y x 为坐标的点都在椭圆上”,有兴趣的同学可在课后自行证明;ⅳ.如果椭圆的焦点在y 轴上,并且焦点为),0(),,0(21c F c F -,则椭圆方程为12222=+b x a y ()0>>b a ,这也是椭圆的标准方程,它可以看成将方程12222=+by a x 中的y x ,对换而得到的;ⅴ.对于给定的椭圆的标准方程,要判断焦点在哪个轴上,只需比较与2x 与2y 项分母的大小即可.若2x 项分母大,则焦点在x 轴上;若2y 项分母大,则焦点在y 轴上. ⅵ.对椭圆的两种标准方程,都有()0>>b a ,焦点都在长轴上,且a 、b 、c 始终满足222b a c -=(四)、实例演练例1 已知椭圆两个焦点的坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程.分析:有两种解题思路:思路1:利用椭圆定义(椭圆上的点⎪⎭⎫ ⎝⎛-2523,到两个焦点()20-,、()20,的距离之和为常数2a ,求出a 值,再结合已知条件和a 、b 、c 间的关系求出2b 的值,进而写出标准方程;思路2:先根据已知条件设出焦点在y 轴上的椭圆方程的标准方程12222=+b x a y ()0>>b a ,再将椭圆上点的坐标⎪⎭⎫⎝⎛-2523,代入此方程,并结合a 、b 、c 间的关系求出2a 、2b 的值,从而得到椭圆的标准方程为161022=+x y . (五)、回顾小结,归纳提炼1、先让学生思考,然后填表.建系设点-列等式-代坐标-化简方程 3、求椭圆方程常用方法:待定系数法 (六)达标检测1、判断下列各椭圆的焦点位置,并说出焦点坐标、焦距.(1) (2)2、已知F 1、F 2是椭圆 的两个焦点,过F 1的直线交椭圆于M 、N 两点,则四边形F 1MF 2N 的周长为 .3、若方程表示焦点在x 轴上的椭圆,则m 的取值范围是 .(七)、板书设计(八)布置作业练习:第42页1、2、3、4; 作业:第49页 习题2.2 中 2、322134x y +=22341x y += 192522=+y x 1162522=++-my m x。
本章小结建议引言本文是《北师大版选修2-1教案》的小结建议,旨在对本章的教学进行总结和建议。
本章主要内容为“人教版选修4《英美文学选读》(北师大版)第一册第三单元”以及“人教版选修5《英美文学选读》(北师大版)第一册第三单元”,主要涉及到的选文为Elizabeth Barrett Browning的《Sonnets from the Portuguese》和Robert Browning的《My Last Duchess》。
教学目标本章的教学目标主要有以下几个方面:1.加深学生对独白体的理解和应用;2.让学生了解英国维多利亚时期女性诗人的创作和价值;3.提高学生的文学欣赏和阅读能力;4.让学生能够通过对古典诗歌和现代诗歌的比较,理解现代诗歌的特点和意义。
教学内容1. Elizabeth Barrett Browning的《Sonnets from the Portuguese》该诗集由44首十四行诗组成,其中的“Sonnet 43”为著名的爱情诗歌,被收录在许多著名的诗歌集中。
教师在教学过程中应注重以下几点:1.让学生掌握十四行诗的基本格式和结构;2.分析诗歌中所使用的修辞手法,如隐喻、暗示、反问等;3.鼓励学生对文本进行个性化阅读,提供他们自己对诗歌的见解。
2. Robert Browning的《My Last Duchess》该诗是一首独白体的长诗,讲述了一位贵族对他去世的前妻的描述。
该诗的教学重点主要有:1.让学生了解独白体的定义和特点;2.分析诗歌主人公的心理特点和语言表达;3.让学生对全文进行情境分析和解读;4.引导学生探讨该诗的社会背景和主题意义。
教学方法教师在教学本章内容时,应该采用多种教学方法和手段,包括:1.知识讲解及学生提问;2.分组研讨或小组讨论,以提高学生的参与度和能动性;3.使用PPT和影视资料等多媒体手段,以增强教学效果。
教学评估为了对学生的教学效果进行评估,教师可以采用以下教学评估方法:1.课堂练习包括填空、选择题、判断题等;2.课堂展示和演讲;3.组织学生进行小型写作或创作。
2.4.1抛物线的标准方程●三维目标1.知识与技能(1)理解抛物线的定义,掌握抛物线的标准方程及其推导.(2)明确抛物线标准方程中p的几何意义,能解决简单的求抛物线标准方程问题.2.过程与方法(1)通过对抛物线和椭圆、双曲线离心率的比较,体会三种圆锥曲线内在的区别和联系.(2)熟练掌握求曲线方程的基本方法,通过四种不同形式标准方程的对比,培养学生分析、归纳的能力.3.情感、态度与价值观引导学生用运动变化的观点发现问题、探索问题、解决问题,培养学生的创新意识,体会数学的简捷美、和谐美.●重点难点重点:抛物线的定义及其标准方程的推导.通过学生自主建系和对方程的讨论突出重点.难点:抛物线概念的形成.通过条件e=1的画法设计、标准方程与二次函数的比较突破难点.●教学建议从本章来讲,这一节放在椭圆和双曲线之后,一方面是三种圆锥曲线统一定义的需要,抛物线是离心率e=1的特例.另一方面也是解析几何“用方程研究曲线”这一基本思想的再次强化.本节对抛物线定义的研究,与初中阶段二次函数的图像遥相呼应,体现了数学的和谐之美.教材的这种安排,是为了分散难点,符合认知的渐进性原则.为了充分调动学生的积极性,使学生变被动学习为主动学习,易采用“引导探究”式的教学模式,在课堂教学中,始终贯彻“教师为主导,学生为主体,探究为主线”的教学思想,通过引导学生实验、观察、比较、分析和总结,使学生充分地动手、动口、动脑,参与教学的全过程.本节课在实验画法的基础上,以问题为核心,创设情景,通过教师的适时引导,学生间、师生间的交流互动,启迪学生的思维,使学生通过自己的分析、反思、对比并形成抛物线的概念,构建自己的知识体系,尝试合作学习的快乐,体验成功的喜悦.●教学流程设置情景,导入新课.上课开始,用计算机出示太阳系九大行星运行图,以天文学热点事件“冥王星”的降级引入新课:同学们,最近在我们的太阳系发生了一件重大的事件,你们知道吗?⇒引导探究,获得新知(1)复习椭圆、双曲线的第二定义,椭圆和双曲线的离心率e 的取值范围各是什么?(2)离心率e=1是什么含义?你能据此设计一种方案,画出一个这样的点吗?(3)这条曲线是什么?⇒由学生自主建系,求出抛物线的标准方程.并根据焦点位置的不同,写出四种不同的标准方程.归纳标准方程、焦点坐标、准线方程的内在联系和对应关系.⇒通过例1及变式训练,使学生掌握抛物线标准方程的求法,先定位,再定量,利用待定系数法求抛物线的标准方程.⇒通过例2及变式训练,使学生掌握由标准方程求其焦点坐标和准线方程,达到数与形的准确转换.弄清一次项变量系数与焦点同名坐标的四倍关系,焦点坐标与准线方程的相反关系.⇒通过例3及变式训练,使学生掌握抛物线定义和标准方程的综合应用,抛物线上任一点到焦点的距离等于到准线的距离,二者可以灵活转化,在此基础上数形结合,解证有关问题.⇒通过易错易误辨析,体会抛物线标准方程的不同形式,焦点位置有多个,就会有不同的标准方程.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固基本知识,形成基本能力.课标解读1.掌握抛物线的标准方程,会求抛物线的标准方程.(重点)2.抛物线标准方程与定义的应用.(难点)3.抛物线标准方程、准线、焦点的对应.(易错点)抛物线的标准方程1.用《几何画板》画图,如图,点F是定点,l是不经过点F的定直线.H是l上任意一点,过点H作MH⊥l,线段FH的垂直平分线m交MH于点M.拖动点H,观察点M的轨迹.你能发现点M满足的几何条件吗?【提示】点M随着H运动的过程中,始终有|MF|=|MH|,即点M与定点F和定直线l的距离相等.2.比较椭圆、双曲线标准方程的建立过程,你认为应如何选择坐标系,使所建立的抛物线的方程更简单?【提示】根据抛物线的几何特征,我们取经过点F且垂直于直线l的直线为x轴,垂足为K,并使原点与线段KF的中点重合,建立直角坐标系xOy(如图所示).图形标准方程焦点坐标准线方程y2=2px(p>0)F(p2,0)x=-p2y2=-2px(p>0)F(-p2,0)x=p2x2=2py(p>0)F(0,p2)y=-p2 x2=-2py(p>0)F(0,-p2)y=p2求抛物线的标准方程已知抛物线的顶点在原点,试求满足下列条件的抛物线的标准方程:(1)过点(-3,2);(2)焦点在直线x-2y-4=0上;(3)焦点到准线的距离为52.【思路探究】对于(1),需要确定p的值和开口方向两个条件,∵点(-3,2)在第二象限,∴抛物线的标准方程可设为y2=-2px(p>0)或x2=2py(p>0);对于(2),∵标准方程下抛物线的焦点在坐标轴上,∴求出直线x-2y-4=0与坐标轴的两个交点(4,0)和(0,-2),即为所求抛物线两种情况下的焦点;而对于(3),由题意知,p=52,下一步需要讨论抛物线的开口方向.【自主解答】(1)∵点(-3,2)在第二象限,∴抛物线的标准方程可设为y2=-2px(p>0)或x2=2py(p>0).把点(-3,2)的坐标分别代入y2=-2px(p>0)和x2=2py(p>0),得4=-2p·(-3)或9=2p·2,即2p=43或2p=92.∴所求抛物线的标准方程为y2=-43x或x2=92y.(2)令x=0,得y=-2;令y=0,得x=4.∴抛物线的焦点为(4,0)或(0,-2).当焦点为(4,0)时,p2=4.∴2p =16,此时抛物线方程为y 2=16x . 当焦点为(0,-2)时,p2=2.∴2p =8,此时抛物线方程为x 2=-8y . 故抛物线方程为y 2=16x 或x 2=-8y .(3)由焦点到准线的距离为52,可知p =52,∴2p =5.∴所求抛物线方程为y 2=5x 或y 2=-5x 或x 2=5y 或x 2=-5y .1.只有顶点有原点,焦点在坐标轴上的抛物线才能将方程写成标准方程.2.求抛物线的标准方程,应当先定位,再定量,即先根据焦点位置设出方程形式,再利用题目条件求出待定字母的值.另外,若只知道焦点在x 轴上,可设抛物线标准方程为y 2=mx 的形式,若只知道焦点在y 轴上,可设抛物线标准方程为x 2=ny 的形式,避免分类讨论.一抛物线的焦点在y 轴上,抛物线上一点M (m ,-3)到焦点的距离为5,求抛物线的标准方程.【解】 设所求抛物线的方程为x 2=-2py (p >0),则其准线方程为y =p2.由抛物线的定义知点M 到焦点的距离等于点M 到准线的距离, ∴p2-(-3)=5,即p =4. ∴所求抛物线的方程为x 2=-8y .由标准方程求抛物线的焦点坐标和准线方程求下列抛物线的焦点坐标和准线方程:(1)y 2=20x ;(2)2y 2+5x =0;(3)y =ax 2(a ≠0). 【思路探究】抛物线方程化为标准形式→求p →求焦点坐标→求准线方程【自主解答】 (1)由方程可得抛物线开口向右,且2p =20,即p =10,所以抛物线的焦点坐标为(5,0),准线方程为x =-5.(2)将方程2y 2+5x =0变形为y 2=-52x ,焦点在x 轴的负半轴上,又2p =52,所以p =54,所以焦点坐标为(-58,0),准线方程为x =58.(3)将方程y =ax 2(a ≠0)化为x 2=1ay ,焦点在y 轴上.当a >0时,抛物线的焦点在y 轴的正半轴上,又2p =1a ,所以焦点坐标为(0,14a ),准线方程为y =-14a;当a <0时,抛物线的焦点在y 轴的负半轴上,又2p =-1a ,所以焦点坐标为(0,14a ),准线方程为y 1=-14a.1.本例中y =ax 2不是抛物线的标准方程,容易被误认为是标准形式,而将焦点写为F (a4,0).2.求焦点坐标与准线方程的基本方法:(1)一般思路是先将已知方程整理为标准方程,再求解,不可与初中二次函数混淆. (2)此类问题中无论a 取正与负,拋物线y 2=ax 的焦点坐标均为(a4,0),准线均为x =-a 4.无论a 取正与负,拋物线x 2=ay 的焦点坐标均为(0,a 4),准线均为y =-a 4.求下列抛物线的焦点坐标和准线方程: (1)y =-18x 2;(2)x 2=ay (a ≠0).【解】 (1)方程可化为:x 2=-8y ,∴F (0,-2),准线y =2. (2)F (0,a 4),准线y =-a4.抛物线标准方程及定义的应用图2-4-1如图2-4-1,已知点A (4,-2),F 为抛物线y 2=8x 的焦点,直线l为其准线,点M 在抛物线上移动,问M 的坐标是什么时,MA +MF 取得最小值,最小值是多少?【思路探究】 如图,过M 向准线l 引垂线ME ,则MF =ME ,转化为求MA +ME 的最小值.【自主解答】 由题意知,抛物线y 2=8x 的准线l 的方程为x =-2,过M 作ME ⊥l ,垂足为E ,由抛物线的定义知,ME =MF ,此时MA +MF =MA +ME ,当M 在抛物线上移动时,MA +ME 的值在变化,显然M 移动到与A ,E 共线时,MA +ME 取得最小值.此时,AM ∥x 轴,把y =-2代入y 2=8x 得x =12,∴M 点的坐标为(12,-2),距离最小值为6.1.解此类最值、定值问题时,首先要注意抛物线定义的转化应用,其次是注意平面几何知识的应用,例如两点之间线段最短,三角形中三边间的不等关系,点与直线上点的连线垂线段最短等.2.数形结合思想是求解几何最值的常用方法之一.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-3,那么PF=________.【解析】如图,由直线AF的斜率为-3,得∠AFH=60°,∠FAH=30°,∴∠PAF =60°.又由抛物线的定义知PA=PF,∴△PAF为等边三角形,由HF=4得AF=8,∴PF=8.【答案】8忽略对焦点位置的讨论而漏解顶点在原点,焦点在x轴上,过焦点作垂直于x轴的直线交抛物线于A,B两点,AB的长为8,求抛物线的方程.【错解】由于抛物线的顶点在原点,焦点在x轴上,因此设所求抛物线的方程为y2=2px(p>0).因为AB=2p=8,所以所求抛物线的方程为y2=8x.【错因分析】错解中只考虑焦点在x轴的正半轴上的情况,而忽略了焦点也可能在x 轴的负半轴上的情况,故出现漏解.【防范措施】抛物线有四种标准方程,每一种所对应的焦点,准线都不相同.因此,在求抛物线方程的有关问题时,要充分考虑各种情况,以免漏解.【正解】由于抛物线的顶点在原点,焦点在x轴上,因此设所求抛物线的方程为y2=2ax(a≠0).因为AB=|2a|=8,所以2a=±8.故所求抛物线的方程为y2=±8x.1.求抛物线的标准方程,一般利用待定系数法,求解时一般分两步,即先定位,再定量.2.由抛物线的方程求焦点坐标和准线方程,若方程不是标准形式应先化成标准形式,然后求焦点坐标和准线方程,应注意方程中一次变量是谁,焦点就在相应坐标轴上,且焦点的同名坐标是一次变量系数的14.3.抛物线的定义可将抛物线上一点到焦点的距离与到准线的距离相互转化,从而求解与抛物线有关的定值与最值问题.1.抛物线y 2=4x 的焦点坐标是________. 【解析】 ∵p =2,∴F (1,0). 【答案】 F (1,0)2.抛物线y =4x 2的准线方程为________. 【解析】 x 2=14y ,∴2p =14,p =18,∴准线方程为y =-116.【答案】 y =-1163.抛物线y 2=2px的准线经过双曲线x 23-y 2=1的左焦点,则p =________.【解析】 双曲线c 2=3+1=4,∴c =2,∴F 1(-2,0), ∴抛物线准线为x =-2,∴-p2=-2,∴p =4.【答案】 44.若圆x 2+y 2-6x =0的圆心恰是抛物线的焦点,求抛物线的标准方程及准线方程. 【解】 圆心为(3,0),∴p2=3,∴p =6,∴抛物线标准方程为y 2=12x ,准线方程为x =-3.一、填空题1.抛物线y 2=8x 的准线方程是________. 【解析】 ∵p =4,∴准线方程为x =-2. 【答案】 x =-22.顶点在原点,焦点在x 轴上的抛物线经过点(2,2),则此抛物线的方程为________. 【解析】 设抛物线方程为y 2=mx ,将(2,2)代入得m =2, ∴抛物线方程为y 2=2x . 【答案】 y 2=2x3.抛物线y 2=2x 上一点M 到焦点的距离为1,则点M 的横坐标是________. 【解析】 准线x =-12,∴x M +12=1,∴x M =12.【答案】 124.若动点P 在y =2x 2+1上,则点P 与点Q (0,-1)连线中点的轨迹方程是________.【解析】 设P (x 0,y 0),中点(x ,y ),则⎩⎪⎨⎪⎧x 0=2x y 0=2y +1.∵y 0=2x 20+1,∴2y +1=2(2x )2+1,∴y =4x 2.【答案】 y =4x 25.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是________.【解析】 由抛物线的方程得p 2=42=2,再根据抛物线的定义,可知所求距离为4+2=6.【答案】 6 6.若抛物线y 2=2px的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为________.【解析】 因为椭圆x 26+y 22=1的右焦点为(2,0),故抛物线的焦点为(2,0),所以p2=2,解得p =4.【答案】 47.已知直线y =3(x -2)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点,若AF →=λFB →,(|AF →|>|FB →|),则λ=________.【解析】 如图,设AF =n ,BF =m ,AA 1⊥l ,BB 1⊥l ,FN ⊥AA 1于N ,BM ⊥x 轴于M .则AN =n -4,FM =4-m .又∠AFN =∠FBM =30°,∴⎩⎨⎧ n -4=n 24-m =m 2.∴⎩⎪⎨⎪⎧n =8m =83,∴λ=n m =3. 【答案】 38.抛物线y =-14x 2上的动点M 到两定点(0,-1),(1,-3)的距离之和的最小值为________.【解析】 将抛物线方程化成标准方程为x 2=-4y ,可知焦点坐标为F (0,-1),因为-3<-14,所以点E (1,-3)在抛物线的内部,如图所示,设抛物线的准线为l ,过点E 作EQ ⊥l 于点Q ,过点M 作MP ⊥l 于点P ,所以MF +ME =MP +ME ≥EQ ,又EQ =1-(-3)=4,故距离之和的最小值为4.【答案】 4二、解答题9.求适合下列条件的拋物线方程.(1)顶点在原点,准线x =4;(2)拋物线的顶点是双曲线16x 2-9y 2=144的中心,焦点是双曲线的左顶点.【解】 (1)由题意p 2=4,∴p =8. ∴拋物线方程为y 2=-16x .(2)双曲线中心为(0,0),左顶点为(-3,0),∴拋物线顶点为(0,0),焦点为(-3,0),∴拋物线方程为y 2=-12x .图2-4-210.如图2-4-2所示,动圆P 与定圆C :(x -1)2+y 2=1外切且与y 轴相切,求圆心P 的轨迹.【解】 设P (x ,y ),动圆P 的半径为r .∵两圆外切,∴PC =r +1.又圆P 与y 轴相切,∴r =|x |(x ≠0),即x -12+y 2=|x |+1,整理得y 2=2(|x |+x ).当x >0时,得y 2=4x ;当x <0时,得y =0.∴点P 的轨迹方程是y 2=4x (x >0)和y =0(x <0),表示一条抛物线(除去顶点)和x 轴的负半轴.11.(1)已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,试给出FP 1,FP 2,FP 3之间的关系式;(2)设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若FA →+FB →+FC →=0,求|FA →|+|FB →|+|FC →|.【解】 (1)由抛物线方程y 2=2px (p >0)得准线方程为x =-p 2,则由抛物线的定义得FP 1=x 1+p 2,FP 2=x 2+p 2,FP 3=x 3+p 2,则FP 1+FP 3=x 1+p 2+x 3+p 2=x 1+x 3+p ,因为x 1+x 3=2x 2,所以FP 1+FP 3=2x 2+p =2(x 2+p 2)=2FP 2,从而FP 1,FP 2,FP 3之间的关系式为FP 1+FP 3=2FP 2.(2)设点A (x A ,y A ),B (x B ,y B ),C (x C ,y C ),由题意知2p =4,p =2,F (1,0),又FA →+FB →+FC →=0,则有x A -1+x B -1+x C -1=0,即x A +x B +x C =3.由抛物线的定义可知,|F A →|+|FB →|+|FC →|=(x A +p 2)+(x B +p 2)+(x C +p 2)=(x A +x B +x C )+3×p 2=3+3=6.已知圆A :(x +2)2+y 2=1与定直线l :x =1,且动圆P 和圆A 外切并与直线l 相切,求动圆的圆心P 的轨迹方程.【思路探究】 设点P 的坐标为(x ,y ),利用圆P 与圆A 外切及与直线l 相切建立x ,y 的方程,化简即得.【自主解答】 法一 设点P 的坐标为(x ,y ),圆P 半径为r ,由条件知AP =r +1, 即x +22+y 2=|x -1|+1,化简,整理得y 2=-8x .所以点P 的轨迹方程为y 2=-8x .法二 如图,作PK 垂直直线x =1,垂足为K ,PQ 垂直直线x =2,垂足为Q ,则KQ =1,所以PQ =r +1.又AP =r +1,所以AP =PQ ,故点P 到圆心A (-2,0)的距离和定直线x=2的距离相等,所以点P 的轨迹为抛物线,A (-2,0)为焦点,直线x =2为准线.所以p 2=2,所以p =4.所以点P 的轨迹方程为y 2=-8x .1.法一是利用直接法求曲线方程的方法确定点P 的轨迹方程,法二是利用抛物线的定义确定轨迹为抛物线,再根据抛物线的性质写出方程,即定义法,显然法二较为简洁.2.动圆圆心轨迹问题是一类常见问题,求解时一定要审清题意,究竟是外切,内切还是相切,都可能引起结果的不同.已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1,求动点P的轨迹C的方程.【解】设动点P的坐标为(x,y),由题意有x-12+y2-|x|=1,化简得y2=2x +2|x|.当x≥0时,y2=4x;当x<0时,y=0.所以,动点P的轨迹C的方程为y2=4x(x≥0)和y=0(x<0).。
课题研究-人教版选修2-1教案一、教学背景人教版选修2-1单元教学是高中英语必修课程的一部分,主要涵盖了文化背景、语言知识和语言技能的学习。
在教学中需要注重学生的兴趣和学习主题的重要性,帮助学生全面掌握语言知识和技能。
二、教学目标1.知识与能力1.了解美国维多利亚时代以及其对世界的影响;2.掌握英文中的比喻和类比的标准表达,如“as…as,”“not so/as…as,”“just a like”等;3.能够指出课文中的词汇意义及其运用方法;4.能根据提示或对话内容写出指定活动的宣传语。
2.情感态度和价值观1.增加对英语学习的兴趣和自信心;2.了解文化背景,拓宽知识面和理解力;3.培养学习团队合作和自主学习的意识。
三、教学重点和难点1.教学重点1.掌握英文中的比喻和类比的标准表达;2.能够指出课文中的词汇意义及其运用方法;3.能根据提示或对话内容写出指定活动的宣传语。
2.教学难点1.掌握比喻和类比的思想方式;2.运用词汇的巧妙运用方法;3.认识如何通过宣传语来有效地解决问题。
四、教学内容和方法1.教学内容a.教学内容组成1.Pre-reading activities: 通过与维多利亚时期相关的图片以及事件的对比学习美国维多利亚时期的文化、风俗、习惯以及宫廷政治。
让学生在了解文化背景的同时产生学习英语的兴趣。
2.While-reading activities: 学生读完课文之后,学习比喻和类比的运用,以及新词的用法和意义。
3.Post-reading activities: 通过宣传语活动培养学生的团队合作和创新能力。
b.教学内容详情•Pre-reading activities: 首先给学生展示一些与维多利亚时期相关的图片,通过图片与现代事件的对比来让学生对于维多利亚时期有一定的了解。
让学生从视觉上产生学习英语的兴趣。
•While-reading activities: 引导学生通过阅读和理解本单元文本,了解和掌握比喻和类比的思想方式。
小结与复习-湘教版选修2-1教案一、本单元的教学内容本单元的教学内容是读懂课文,并能够用正确的语境运用相关单词和语法知识。
本单元一共包含6个课时,分别是:1.第一课时:“高中学习体会”2.第二课时:“人口增长与家庭计划”3.第三课时:“城市与乡村发展差异分析”4.第四课时:“社区与社区建设”5.第五课时:“中学生自我评价与展望”6.第六课时:“词汇巩固复习”二、本单元的教学目标1.能够读懂本单元的课文,并掌握相关的单词和语法知识。
2.能够运用所学的知识,给予自己的高中学习体会,并且能够用所学知识分析人口增长与家庭计划、城市与乡村发展差异,以及社区与社区建设等相关问题。
3.能够在自我评价与展望中,运用所学的语言知识,表达自己的想法和看法。
三、教学方法和教学手段1.给学生讲解单词和语法知识,并让学生做相关的练习。
2.注重运用交互式教学方法,让学生在课堂上互相讨论,并且能够互相批评和表达观点。
3.在讲解社区与社区建设时,通过课外参观社区和调查社区的方式,让学生更好地体会社区建设的重要性和意义。
4.在课程结束时,通过复习和测试,让学生巩固所学的知识,并且提高学生的自学能力。
四、教学评估本单元的教学评估,主要是看学生能否掌握和运用所学的知识,并且能够在各个方面运用所学的语言知识。
教学评估包括以下几个方面:1.课堂练习和作业:通过课堂练习和作业,测试学生是否掌握所学的知识。
2.交互式讨论:通过交互式讨论,测试学生是否能够用所学的知识进行阐述和表达。
3.课外调查和参观:通过课外调查和参观,测试学生是否能够将所学的知识运用到实际问题中。
4.复习测试:通过复习和测试,测试学生是否能够巩固所学的知识。
五、小结本单元的教学主要是让学生通过阅读课文,了解相关的社会问题,并能够就此进行分析和讨论。
本单元的教学方法注重交互式教学,通过交互式教学,让学生在课堂上互相讨论,并且能够互相批评和表达观点。
在课外调查和参观社区方面,也能够更好地让学生体会社区建设的重要性和意义。
本章小结建议-北师大版选修2-1教案前言北师大版选修2-1教案的本章小结部分,是对整个教学过程的总结和回顾。
在本章小结中,需要对本章所学的知识点、重要观点、实验操作等内容进行概括和归纳,同时也需要对学生在学习过程中所遇到的问题进行总结和分析,为下一步的学习和教学提供参考。
本文旨在对北师大版选修2-1教案中的本章小结部分进行分析和建议,希望对相关教学工作者有所帮助。
知识点总结北师大版选修2-1教案的本章主要包括了以下知识点:1.光眼与视神经的结构2.光敏色素的种类与特性3.光信号的转换与传导4.调节环境光强的生理机制5.色觉现象的产生机理在本章的学习过程中,要求学生熟悉以上知识点,并能够较为清晰地解释其基本原理和关键观点。
同时,本章的学习还需要学生进行实验操作,通过实验来验证和加深对知识点的理解。
学习问题总结在本章的学习过程中,学生可能会遇到以下问题:1.对光学和生理学方面的专业术语不熟悉,理解起来比较困难。
2.实验操作技能不够熟练,操作结果出现偏差。
3.对实验结果的解释和分析不够深入,无法真正理解实验所示意的生理过程。
针对以上学习问题,建议教师可以在课堂上进行针对性的指导和解决,例如:1.这个问题需要教师在课堂上进行更为明确的解释,并通过实例分析等方式帮助学生更好地理解相关术语和概念,也可以通过课外阅读等方式进行补充。
2.实验操作技能需要通过实践来逐渐提高,教师可以在课堂上加强对实验步骤和注意事项的讲解,同时可以引导学生自行完成实验操作,以提高实验技能。
3.实验结果的解释和分析需要教师对实验过程和实验原理进行深入解释,并通过多样化的课堂教学方式,如讲述、讨论等,来激发学生的兴趣和思考,以帮助学生更好地理解相关生理过程和现象。
学习反思与建议针对本章的学习过程,可以有以下几点反思和建议:1.北师大版选修2-1教案的学习过程较为困难,需要给予学生足够的时间和资源来进行深入的学习和实验操作。
2.教师在讲授本章时需要关注学生的实际情况,根据不同的学生群体进行相应的教学策略,以满足学生的学习需要。
选修2-1课程标准与教材分析在本模块中,学生将学习常用逻辑用语、圆锥曲线与方程、空间中的向量(简称空间向量)与立体几何。
1.1.1 教材通过生活和数学中的丰富实例的分析,给出数学上对命题的定义,继而通过如何判断一个命题的真假的过程与步骤分析,使学生体味命题真假判断的思想,进一步引入了条件p 和结论q ,了解命题在数学中的含义。
1.1.2 教材通过对“若f(x)是正弦函数,则f(x)是周期函数”的条件与结论的互换及否定等具体例子的讨论,引入了命题的逆命题、否命题与逆否命题的定义,又加上教材引入了条件p 和结论q 结合了逆命题、否命题与逆否命题的分析,达到了标准的“了解命题的逆命题、否命题、逆否命题”要求。
1.1.3 教材通过对四种命题的相互关系框图的基本描述,以及四种命题的相互真假关系框图的介绍,续而通过例举“证明:若,022=+y x 则.0==y x ”的分析与证明,进一步使学生会分析四种命题的相互关系,理解和掌握四种命题及其相互关系,从而达到了标准的要求。
1.2.1 教材通过对“若p ,则q ”形式命题真假性的讨论,认识了充分条件和必要条件,对于充分条件,学生较易理解,对于必要条件概念的理解则是难点。
学生往往不清楚由p 推出q ,则p 是q 的充分条件,为什么p 又成了q 的必要条件了?这儿的必要性怎么理解?为此,教科书在边框中引入与不等式有关的例子,帮助学生从原命题与逆否命题的等价性角度去理解必要条件。
1.2.2 教材通过对“若p ,则q ”形式命题真假性的讨论,认识了充分条件和必要条件,并通过命题条件与结论间的相互推出关系,认识了充要条件,再给出了充要条件的定义。
紧接着教材采用了大量的数学实例,注重了知识间的前后联系,给学生提供了充分的思考和探究的空间。
1.3 教材在认识了命题,本节接着介绍命题间的联接词“或”、“且”、“非”。
这些联结词含义和用法的介绍,各部分内容的编排,一般是按照思考、探究、发现、归纳总结,最后给出数学结论的形式展开的,结合大量的数学实例,按照这种以学生为主体的思路设计的内容安排,可以增进本节内容的亲和性,增强学生学习本段内容的兴趣,更好的体会和理解本节内容的含义以及实际意义。
【新人教A版】高中数学选修2-1教案第一章常用逻辑用语1.1命题及其关系1.1.1 命题(一)教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
(二)教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假教具准备:与教材内容相关的资料。
教学设想:通过学生的参与,激发学生学习数学的兴趣。
(三)教学过程学生探究过程:1.复习回顾初中已学过命题的知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。
其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.练习、深化判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(=-2.(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。