初一数学有理数教案整章
- 格式:doc
- 大小:1009.50 KB
- 文档页数:60
初一数学第一章教案教学目标:正,负数的认知与有理数的认知与理解以及运用教学重难点:有理数中数轴,相反数绝和对值的掌握和运用教学内容:一、正负数1,正负数的定义:类似于3,2.5,0.0001,23,这样大于0的数叫正数,类似于—3,—2.5, —0.0001,—23,这样在正数前面加上符号“—”(负号)的数,叫做负数;通常在正数前加上“+”(正号),以示与负数的区别,一般情况下“+”省略不写总结:大于0的数时正数,小于0的数是负数,0既不是正数也不是负数2,用正负数表示生活意义上的量:例:今年中国上半年经济增长率为16.8%,美国上半年经济负增长率为3.52%;其中中国的经济增长率可以用+16.8%表示,美国经济增长率可以用—3.52%表示除了经济增长率,温度的升高与降低,海平面的上升与下降以外,其余表示相反意义的量都可以用正负数表示总结:正负数可以表示相反意义的量二、有理数1,有理数的定义:整数和分数统称为有理数(整数包括正负整数和0,分数包括正负分数以及小数)例:0,1.2,3,—1,—2.5,—89……这样的数都叫有理数2,最小的正整数:1,;最大的负整数:—1习题:将以下数字归类2.36,7.77777777777,0,—25.689,—29,389,26,956,—2.021整数()分数()正数()负数()三、数轴1,数轴的定义:可以用一条直线上的点表示任何一个数,这样的直线我们称它为数轴2,数轴满足的要求:①原点;②正方向;③单位长度①原点:在直线上任取原点一点表示数字0,这个点叫原点②正方向:通常规定原点的右侧(上方)为正方向,正方向的所有点代表的数都大于0③单位长度:选取适当的长度为单位长度,在直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3……;从原点向左,类似地依次表示—1,—2,—3……4,直线是由无数个点组成的,因此可以在数轴上表示任意数5,数轴右侧的数一定大于数轴左侧的数习题:在数轴上将下列各数表示出来2,—3.1,2.5,24,0,—4总结:当一个数为正数时,则这个数在数轴上表示时在原点右侧,当一个数为负数时,则这个数在数轴上表示时在原点左侧三、相反数1,定义:在数学上,表示相反意义的两个量;当两个数除了符号不同以外,数字都相同的情况下,我们称这两个数互为相反数例:5,—5;2,—2这样的数字,我们称这样的两个数互为相反数2,性质:⑴当数字a与—a互为相反数时,我们称a的相反数为—a(—a的相反数是a),这里的a可以代表任意数;特别地,0的相反数为0例:1的相反数为—1,—0.325的相反数是0.325……⑵两个互为相反数的数,相加的和为0;例:1+(—1)=0;—0.215+0.215=0……习题:说出以下数字的相反数计算以下相反数相加的和—25,2.01,325,0,309 —25+25= 2.4+(—2.4)=3,在数轴上表示相反数:距离原点相同长度的两个数,但分别在原点两侧总结:正数的相反数是负数,负数的相反数是正数四、绝对值1,定义:数学上通常表示一个数与原点之间的距离,叫做这个数的绝对值,绝对值的符号为“∣∣”例:2.5到原点的距离是2.5,所以∣2.5∣是2.5;—31到原点的距离是31,所以∣—31∣是312,性质:绝对值的值一定是一个非负数例:∣2∣= ∣—2.36∣= ∣0∣=①如果a>0,那么∣a∣=a;②如果a<0,那么∣a∣=—a;③如果a=0,那么∣a∣=0总结:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是03,比大小①:正数大于一切负数,并且一切正数都大于0(数轴知识第5小点)②:正数比较大小时,绝对值大的就大(越靠近原点越小)③:负数比较大小时,绝对值大的数反而小(越靠近原点越大)例:1,2.1与—2.56比较大小,;2,6与—6比较大小;3,—2.1与—5比较大小总结:同号比较大小,取决于绝对值的情况;异号比较大小,考虑正负4,在数轴上的一个范围内,比一个数大或小的整数有多少个?例,在—2.1~2之间,比2小的整数有多少个习题一、耐心填一填1、若太平洋最深处低于海平面11034米,记作-11034米,则珠穆朗玛峰高出海平面8848米,记作______。
初一数学上册第一章有理数复习教案最新3篇篇一:数学《有理数》教案篇一一、教材分析:(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。
在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。
“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。
通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。
所以本节课的学习具有一定的现实地位。
(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。
同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。
另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。
(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。
2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。
3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。
4、教学重点:会进行有理数的乘除法运算。
5、教学难点:有理数乘除法法则的探索与运用。
确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。
初一数学教案3篇:有理数的概念和表示方法教案有理数是初中数学中的一个重要知识点,全面掌握有理数的概念、表示方法以及各种基本运算规律,可以为我们后面的学习打下坚实的基础。
针对初一学生的教学情况,我们需要设计一些具体的教学方案,以便让学生更好地掌握有理数的相关知识。
一、教学目标了解有理数的概念,掌握有理数的表示方法和基本运算规律,培养学生的逻辑推理能力和应用能力。
二、教学内容1、有理数的概念有理数是可以用两个整数的比值来表示的数。
有理数包括正有理数、负有理数和零。
其中,正有理数和负有理数是有理数的两个主要部分。
2、有理数的表示方法有理数可以表示为分数的形式,也可以表示为小数的形式。
有理数在数轴上的位置,以及相邻数的大小关系可以用数轴上的位置关系来表示。
3、有理数的基本运算有理数的基本运算包括加、减、乘、除。
其中,加、减法要特别注意相反数的使用,乘、除法要注意分数的化简。
三、教学方法1、多种方法结合。
在教学中,可以采用多种方法相结合的方式,如图形辅助、举例说明、对比分析等方法,使学生能更好地理解和掌握有理数的概念和运算方法。
2、引导发现。
在教学中要引导学生发现问题,并尝试通过自主思考找到解决方法,培养学生的逻辑思维和应用能力。
3、启发式教学。
通过教师提出启示性问题,引导学生自主发现知识,并在学习中发现、探索和体验。
四、教学重点和难点1、教学重点教学重点是让学生掌握有理数的概念和运算方法,以及在数轴上的位置关系。
要重点讲解正有理数与负有理数的关系、绝对值的概念以及加减运算。
2、教学难点教学难点是让学生理解有理数的概念,掌握有理数符号的区别和运算规律,并在数轴上准确表示有理数的位置。
五、教学设计1、教学活动一:理解有理数的概念教学目标:让学生理解有理数的概念,掌握有理数的基本分类和符号。
教学内容:有理数的概念和基本分类。
教学步骤:(1)引入有理数的概念,介绍有理数的定义和特点。
(2)讲解有理数的基本分类:正有理数、负有理数、零。
数学初一上册第一章有理数的概念教学方案数学初一上册第一章教学方案教学目标:1. 理解有理数的概念,能够正确地判断一个数是有理数还是无理数;2. 掌握有理数的定义、比较和运算法则;3. 运用有理数的概念解决实际问题。
教学内容:1. 有理数的定义和表示方法;2. 有理数的比较和排序;3. 有理数的加减法运算;4. 有理数的乘除法运算;5. 有理数的应用问题解决。
教学步骤:一、导入(约5分钟)1. 教师介绍本节课的教学内容:数学初一上册第一章,有理数的概念;2. 引导学生回顾整数的概念和运算规则,为引入有理数的概念做铺垫;3. 提问学生:你们知道什么是有理数吗?请举例说明;4. 学生回答后,教师概括出有理数的定义,并引入本节课的学习内容。
二、讲解(约10分钟)1. 介绍有理数的定义:有理数是可以表示为两个整数的比值的数;2. 讲解有理数的表示方法:分数形式和小数形式;3. 引导学生理解有理数的概念,并提供几个示例进行说明。
三、练习(约15分钟)1. 学生用纸和笔,将给出的数用分数形式和小数形式表示;2. 学生互相交换答案,进行订正;3. 教师给出更多的数,要求学生进行表示;4. 学生进行练习,教师巡视指导、纠正。
四、展示与总结(约15分钟)1. 学生上台依次展示自己书写的分数和小数形式;2. 教师批评与表扬,并讲解一些易错点;3. 对比小数和分数形式,分析它们的优缺点;4. 引导学生总结有理数的表示方法,并进行小结。
五、拓展(约15分钟)1. 介绍有理数的比较和排序方法;2. 讲解有理数的加减法运算规则;3. 引导学生进行应用题的解答;4. 学生小组合作解答一些有理数应用问题;5. 学生展示解题过程和结果。
六、练习与巩固(约10分钟)1. 学生自主完成课后练习册上的有理数相关题目;2. 教师进行抽查和指导,对学生的答案进行评价;3. 总结本节课所学的知识点和技巧。
七、课堂反思(约5分钟)1. 教师与学生一起反思本节课的教学效果;2. 学生提出自己的意见和建议;3. 教师记录学生的反馈,为下一节课改进教学内容和方式。
第一章有理数1.1正数和负数教案课程导入在生活、生产和科研中,经常遇到数的表示问题例如:长春冬季里某一天的气温-20℃~6℃;某年,我国花生的产量比上一年增长 1.8%,油菜籽产量比上一年增加-2.7%;上面涉及的气温-20℃、增加-2.7%,都是这节我们要学习的负数。
正数、负数和零表示温度、产量增长率既要用到6,1.8%,还要用到-20,-2.7%等,他们的实际意义分别是,零下3摄氏度,减少-2.7%。
我们知道,像6,1.8% 这样大于零的数叫做正数。
而小于零的数,像-20,-2.7% 这样在正数前面加上符号“-”的数叫做负数。
有时为了明确表达意义,在正数前面加上“+”正好。
例如+6,+0.018…,就是6,0.018…。
一个数前面的“+”“-”号叫做它的符号。
0既不是正数,也不是负数。
我们来做一道例题,例,一个月内,小明体重增加2kg,小华体重减少了1kg,小强体重无变化,写出他们这个月的体重增长值。
解:这个月小明体重增长2kg,小华体重增长-1kg(也可表述为减少了1kg),小强体重增长了0kg(无变化)。
我们再做一道例题,例,如果把一个物体向右移动1m记作移动+1m,那么这个物体又移动了-1m是什么意思?如何描述这时物体的位置?解:物体移动了-1m的意思是物体向左移动了1m,物体先向右移动1m,又向左移动1m,这时的物体相当于回到了移动之前的原始位置。
归纳如果一个问题中出现相反意义的量,我们就可以用正数和负数分别表示它们。
像体重的增加还是减少,物体向左移动还是向右移动,都是问题出现了相反意义的量。
拓展思考把0以外的数分为正数和负数,它们表示具有相反意义的量。
随着对正数、负数意义人数的加深,正数和负数在实践中得到了广泛的应用。
在地形图上表示某地的高度时,需要以海平面为基准(规定海平面的海拔为0m),通常用正数表示高于海平面的海拔,用负数表示低于海平面的某地海拔。
例如,珠穆朗玛峰的海拔为8844.43m,吐鲁番盆地的海拔为-155m ,记账时,通常用正数表示收入款额,用负数表示支出款额。
2024年数学初一教案人教版初一数学教学教案教案主题:第一章《有理数》第一节《有理数的概念》教学目标:1.让学生理解有理数的定义和分类。
2.培养学生运用有理数进行简单运算的能力。
3.培养学生的数感和逻辑思维能力。
教学重点:1.有理数的定义和分类。
2.有理数的运算规则。
教学难点:1.正负数的理解。
2.有理数的运算。
教学准备:1.教学课件。
2.练习题。
教学过程:一、导入1.利用课件展示生活中的实例,如温度计、水位、身高、体重等,让学生观察这些实例中出现的数。
2.引导学生思考:这些数有什么共同特点?它们与自然数、整数有什么不同?二、新课讲解1.有理数的定义:整数和分数统称为有理数。
2.有理数的分类:正有理数、0、负有理数。
3.正负数的理解:以温度为例,零上温度为正数,零下温度为负数;以水位为例,水位高于标准水位为正数,低于标准水位为负数。
4.有理数的运算规则:a)同号相加,异号相减。
b)正负号相乘,同号为正,异号为负。
c)0乘任何数都等于0。
三、案例分析1.出示几个实例,让学生判断这些数是有理数还是无理数,并说明原因。
a)3.14b)√2c)5/2d)-√32.让学生举例说明有理数的分类。
四、课堂练习b)将下列有理数按照正负分类:5,-2,0,1/2,-3/4。
c)计算:3+(-2),-5+1,-12,0×(-3)。
2.老师针对学生的答案进行讲解和指导。
五、课堂小结1.回顾本节课学习的有理数的概念、分类和运算规则。
2.强调有理数在生活中的应用,培养学生的数感和实际应用能力。
六、课后作业(课后自主完成)b)将下列有理数按照正负分类:4,-1/2,0,3/4,-5。
c)计算:-3+2,2(-1),-1×(-2),0×5。
2.家长签字确认。
教学反思:1.在讲解有理数的分类时,可能过于简化,未能充分挖掘学生的思维能力。
2.课堂练习环节,部分学生可能因为紧张或理解不深,未能完成练习题。
“有理数”的复习课(2)的教学设计:【课题】“有理数”的复习课(2)【设计与执教者】:【教学时间】:【学情分析】:本设计面向平行班学生,在学生学习有理数全章书后,对有理数的运算法则已有初步的了解,能进行有理数的加减、乘除、乘方的运算,但如何才能做到准确进行运算,并能正确运用运算律简化运算等方面还需加强,因此,希望通过本节课的复习,使学生进一步掌握基本技能和基本方法,提高有理数加减、乘除、乘方的运算熟练程度和准确率。
【学情目标】:系统复习有理数加、减、乘、除、乘方的运算法则及运算律,熟练进行有理数的加、减、乘、除、乘方及混合运算;会运用运算律进行有理数的简便运算,提高解题的速度和准确性。
【教学重点】:熟练进行有理数加减、乘除、乘方的混合运算【教学难点】:准确进行有理数加减、乘除、乘方的混合运算【教学突破点】:通过实例帮助学生掌握有理数加、减、乘、除、乘方的运算法则,会运用运算律进行有理数的简便运算,提高解题的速度和准确性,设计分层练习,让各层次的学生能在课堂上得到有效的训练。
【教法、学法设计】:分层教学,讲授、练习相结合。
【教学过程】:练习与测评: 一、基础题(1))6514()537()6155()5213(-+--+-- (2) )21()43()32(6)3(42+÷-+-⨯--⨯- (3)11136(2)4912⎛⎫-⨯--÷-⎪⎝⎭(4)2)6(1)]43(361)2411[(-÷-+++ 二、中等题:1、某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的辆数为正数)①本周六生产了多少辆?②产量最多的一天比产量最少的一天多生产了多少辆? ③本周平均每天实际生产多少辆? 解:①周六生产了241辆②34辆周五生产了259辆,周日生产了225辆产量最多的一天比产量最少的一天多生产了34辆 ③247辆 2473250725894375250=-=--++-+-+2、将-15、-12、-9、-6、-3、0、3、6、9,填入下列 小方格里,使大方格的横、竖、斜对角的三个数字之和都相等。
初一数学有理数教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!初一数学有理数教案5篇教案的撰写过程促使教师思考教学目标,确保教学的针对性和有效性,为了提高教学质量,教案在撰写过程需要更加注重教学效果的评估,下面是本店铺为您分享的初一数学有理数教案5篇,感谢您的参阅。
初一上册数学《有理数》教案初一上册数学《有理数》教案初一上册数学《有理数》教案1《1.2有理数》教学设计【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类《1.2.1有理数》同步练习含答案5.对-3.14,下面说法正确的是(B)A.是负数,不是分数B.是负数,也是分数C.是分数,不是有理数D.不是分数,是有理数《1.2有理数》同步练习含答案解析8.如果a与1互为相反数,则|a|=( )A.2B.﹣2C.1D.﹣1【考点】绝对值;相反数.【分析】根据互为相反数的定义,知a=﹣1,从而求解.互为相反数的定义:只有符号不同的两个数叫互为相反数.【解答】解:根据a与1互为相反数,得a=﹣1.所以|a|=1.故选C.【点评】此题主要是考查了相反数的概念和绝对值的性质.9.若|1﹣a|=a﹣1,则a的取值范围是( )A.a>1B.a≥1C.a<1D.a≤1【考点】绝对值.【分析】根据|1﹣a|=a﹣1得到1﹣a≤0,从而求得答案.【解答】解:∵|1﹣a|=a﹣1,∴1﹣a≤0,∴a≥1,故选B.【点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大.初一上册数学《有理数》教案2教学目标1、掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3、体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类知识重点正确理解有理数的概念教学过程(师生活动)设计理念探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).问题1:观察黑板上的9个数,并给它们进行分类.学生思考讨论和交流分类的情况.学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.例如:对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.??…(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数.按照书本的说法,得出“整数”“分数”和“有理数”的概念.看书了解有理数名称的由来.“统称”是指“合起来总的名称”的意思.试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
第2章有理数一、教学目标:1.使学生体会具有相反意义的量,并能用有理数表示。
2.能在数轴上表示有理数,并借助数轴理解相反数和绝对值的意义。
3.能求有理数的相反数和绝对值(绝对值符号内不含字母)。
4.会比较有理数的大小。
5.了解乘方的意义,掌握有理数的加、减、乘、除法和乘方的运算法则,能进行有理数的加、减、乘、除法、乘方运算和简单的混合运算。
6.会用计算器进行有理数的简单运算。
7.理解有理数的运算律,并能用运算律简化运算。
8.能运用有理数的运算解决简单的问题。
9.了解近似数和有效数字的有关概念,能对较大的数字信息作合理的解释和推断。
二、教材的特点:1.本章教材注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。
教学中要注重让学生通过自己的活动来获取、理解和掌握这些知识。
2.与传统的教材相比,本章教材注意降低了对运算的要求,尤其是删去了繁难的运算。
本章教材注重使学生理解运算的意义,掌握必要的基本的运算技能。
同时引进了计算器来完成一些有理数的运算。
教学中要注意正确地把握。
3.数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。
4.本章的导图是天气预报图,是引入负数的实际情景。
应该结合教材内容,充分利用导图与导入语,使学生对相反意义的量,对负数有直观的认识。
三、课时安排:本章的教学时间大约需要23课时,建议分配如下:§2.1正数和负数---------------2课时§2.2数轴-------------------------2课时§2.3相反数------------------------1课时§2.4绝对值----------------------1课时§2.5有理数的大小比较----------1课时§2.6有理数的加法--------------2课时§2.7有理数的减法----------------1课时§2.8 有理数的加减法混合运算--------2课时§2.9 有理数的乘法----------------2课时§2.10有理数的除法----------------1课时§2.11有理数的乘方----------------1课时§2.12科学记数法------------------1课时§2.13有理数的混合运算---------2课时§2.14近似数和有效数字----------1课时§2.15用计算器进行数的简单运算-----1课时复习-----------------------------------2课时四、教学建议①整体把握基本概念和运算法则的引入;②整体把握基本运算能力的培养;③处理好笔算与使用计算器的尺度,避免繁、难的笔算。
第1课时:正数和负数(1)教学内容:教科书第16—17页,2.1正数和负数教学目的和要求:1.了解负数产生的背景是从实际需要产生的。
2.会判断一个数是正数还是负数。
3.会用正负数表示生活中常用的具有相反意义的量。
4.培养学生的数学应用意识,渗透对立统一的辩证思想。
教学重点和难点:重点:了解正数与负数是由实际需要产生的及会用正负数表示生活中常用的具有相反意义的量。
难点:学习负数的必要性,能准确地举出具有相反意义的量的典型例子。
教学工具和方法:工具:应用投影仪,投影片。
方法:分层次教学,讲授、练习相结合。
教学过程:一、复习引入:1.你看过电视或听过广播中的天气预报吗?中国地形图上的温度阅读。
(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温25ºC,10ºC,零下10ºC,零下30ºC。
为书写方便,将测量气温写成25,10,―10,―30。
2.让学生回忆我们已经学了哪些数?它们是怎样产生和发展起来的?在生活中为了表示物体的个数或事物的顺序,产生了数1,2,3,…;为了表示“没有”,引入了数0;有时分配、测量的结果不是整数,需要用分数(小数)表示。
总之,数是为了满足生产和生活的需要而产生、发展起来的。
二、讲授新课:1.相反意义的量:在日常生活中,常会遇到这样一些量(事情):例1:汽车向东行驶3千米和向西行驶2千米。
例2:温度是零上10℃和零下5℃。
例3:收入500元和支出237元。
例4:水位升高1.2米和下降0.7米。
例5:买进100辆自行车和买出20辆自行车。
①试着让学生考虑这些例子中出现的每一对量,有什么共同特点?(具有相反意义。
向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义)②你能举出几对日常生活中具有相反意义的量吗?2.正数和负数:①能用我们已经学的来很好的表示这些相反意义的量吗?例如,零上5℃用5来表示,零下5℃呢?也用5来表示,行吗?说明:在天气预报图中,零下5℃是用―5℃来表示的。
一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数来表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放一个“-”(读作“负”)号来表示。
拿温度为例,通常规定零上为正,于是零下为负,零上10℃就用10℃表示,零下5℃则用―5℃来表示。
②怎样表示具有相反意义的量呢?能否从天气预报出现的标记中,得到一些启发呢?在例1中,我们如果规定向东为正,那么向西为负。
汽车向东行驶3千米记作3千米,向西2千米应记作―2千米。
后面的例子让学生来说(注意词的表达)。
在以上的讨论中,出现了哪些新数?为了表示具有相反意义的量,上面我们引进了―5,―2,―237,―0.7等数。
像这样的一些新数,叫做负数(negative number)。
过去学过的那些数(零除外),如10,3,500,1.2等,叫做正数(positive number)。
正数前面有时也可放一个“+”(读作“正”),如5可以写成+5。
注意:零既不是正数,也不是负数。
3.课堂练习课本p18:1~4。
4.小资料:世界各国对负数的认识和接受也有一个过程。
如1484年法国数学家曾得到二次方程的一个负根,但他不承认它,说负数是荒谬的数。
1545年卡尔丹承认方程中可以有负根,但认为它是“假数”。
直到1831年还有数学家认为负数是“虚构”的,他还特意举了一个“特例”来说明他的观点:“父亲56岁,他儿子29岁,问什么时候父亲的岁数将是儿子的两倍?”,通过列方程解得x=―2,他认为这个结果是荒唐的,他不懂得x=―2正是说明两年前父亲的岁数将是儿子的两倍。
5.例题:例1:规定向前走为正,两个学生一组做游戏,如甲:向前走2步乙:2甲:向后走3步乙:―3甲:―4 乙:向后走4步甲:0 乙:原地不动注:通过设计类似的游戏活动使学生加深对负数的认识。
6.巩固练习:①―10表示支出10元,那么+50表示;如果零上5度记作5°C,那么零下2度记作;如果上升10m记作10m,那么―3m表示;太平洋中的马里亚纳海沟深达11034米,可记作海拔米(即低于海平面11034米)。
比海平面高50m的地方,它的高度记作海拨;比海平面低30m的地方,它的高度记作海拨;②下面说法正确的是()A.正数都带有“+”号B.不带“+”号的数都是负数C.小学数学中学过的数都可以看作是正数D.0既不是正数也不是负数③数学测验班平均分80分,小华85分,高出平均分5分记作+5,小松78分,记作。
④某物体向右运动为正,那么―2m表示,0表示。
⑤一种零件的内径尺寸在图纸上是10±0.05(单位mm),表示这种零件的标准尺寸是10mm,加工要求最大不超过标准尺寸,最小不超过标准尺寸。
三、课堂小结:正数和负数表示的是一对相反意义的量,哪种意义为正是可以任意规定的。
如果把一种意义规定为正,则相反意义的量规定为负。
常将“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负。
板书设计:教学后记:本节是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。
本节的重点是通过熟悉的实例引入负数的概念,使学生明确数学知识来源于实践又服务于实践。
能正确识别负数、用正负数表示具有相反意义的量是本节的难点。
教学中要特别强调“0”的特殊身份,明确“0”既不是正数,也不是负数,它是正、负数的分界点。
教学中应多结合实例加深对负数的认识。
第2课时:正数和负数(2)教学内容:教科书第18—21页,2.1正数和负数教学目的和要求:1.理解有理数的意义。
2.会根据要求把给出的有理数分类。
3.了解“0”在有理数分类中的作用。
4.培养学生分类讨论的数学思想及对立统一的辩证唯物主义的观点。
教学重点和难点:重点:了解有理数包括哪些数。
难点:要明确有理数分类的标准,分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
教学工具和方法:工具:应用投影仪,投影片。
方法:分层次教学,讲授、练习相结合。
教学过程:一、复习引入:1.填空:①正常水位为0m ,水位高于正常水位0.2m 记作 ,低于正常水位0.3m 记作 。
②乒乓球比标准重量重0.039g 记作 ,比标准重量轻0.019g 记作 ,标准重量记作 。
2.一个物体沿东西两个相反的方向运动时可以用正负数表示它们的运动,如果向东运动4m 记作4m ,向西运动8m 记作 ;如果―7m 表示物体向西运动7m ,那么6m 表明物体怎样运动?答案:1.+0.2;–0.3;+0.039;–0.019;2.–8m ;向东运动6m 。
二、讲授新课:1.数的扩充:数1,2,3,4,…叫做正整数;―1,―2,―3,―4,…叫做负整数;正整数、负整数和零统称为整数;数32,41,854,+5.6,…叫做正分数;―97,―76,―3.5,…叫做负分数;正分数和负分数统称为分数;整数和分数统称为有理数。
2.思考并回答下列问题:①“0”是整数吗?是正数吗?是有理数吗?②“―2”是整数吗?是正数吗?是有理数吗?③自然数就是整数吗?是正数吗?是有理数吗?要求学生区分“正”与“整”;小数可化为分数。
3.有理数的分类 不同的分类标准可以将有理数进行不同的分类:①先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分,即得如下分类表:{负分数正分数分数负整数正整数整数有理数0⎩⎨⎧⎩⎨⎧②先将有理数按“正”和“负”的属性分,再按每类数的“整”、“分”分,即得如下分类表:{{负分数负整数负有理数正分数正整数正有理数有理数0⎩⎨⎧ 注:①“0”也是自然数。