2020中考数学压轴题全揭秘精品专题17 二次函数的面积问题(附答案解析)
- 格式:pdf
- 大小:339.11 KB
- 文档页数:10
2020-2021中考数学二次函数-经典压轴题及答案解析一、二次函数1.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题2.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y 轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.【答案】(1)y=﹣x2﹣2x+3;y=﹣x+1;(2)当x=﹣12时,△APC的面积取最大值,最大值为278,此时点P的坐标为(﹣12,154);(3)在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为102【解析】【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式可得出S△APC=﹣32x2﹣32x+3,再利用二次函数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论.【详解】(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:10423b c b c -++=⎧⎨--+=⎩,解得:23b c =-⎧⎨=⎩, ∴抛物线的函数关系式为y =﹣x 2﹣2x +3; 设直线AC 的函数关系式为y =mx +n (m ≠0), 将A (1,0),C (﹣2,3)代入y =mx +n ,得:023m n m n +=⎧⎨-+=⎩,解得:11m n =-⎧⎨=⎩, ∴直线AC 的函数关系式为y =﹣x +1.(2)过点P 作PE ∥y 轴交x 轴于点E ,交直线AC 于点F ,过点C 作CQ ∥y 轴交x 轴于点Q ,如图1所示.设点P 的坐标为(x ,﹣x 2﹣2x +3)(﹣2<x <1),则点E 的坐标为(x ,0),点F 的坐标为(x ,﹣x +1),∴PE =﹣x 2﹣2x +3,EF =﹣x +1,EF =PE ﹣EF =﹣x 2﹣2x +3﹣(﹣x +1)=﹣x 2﹣x +2. ∵点C 的坐标为(﹣2,3), ∴点Q 的坐标为(﹣2,0), ∴AQ =1﹣(﹣2)=3, ∴S △APC =12AQ •PF =﹣32x 2﹣32x +3=﹣32(x +12)2+278. ∵﹣32<0, ∴当x =﹣12时,△APC 的面积取最大值,最大值为278,此时点P 的坐标为(﹣12,154). (3)当x =0时,y =﹣x 2﹣2x +3=3, ∴点N 的坐标为(0,3). ∵y =﹣x 2﹣2x +3=﹣(x +1)2+4, ∴抛物线的对称轴为直线x =﹣1. ∵点C 的坐标为(﹣2,3), ∴点C ,N 关于抛物线的对称轴对称.令直线AC 与抛物线的对称轴的交点为点M ,如图2所示. ∵点C ,N 关于抛物线的对称轴对称, ∴MN =CM ,∴AM +MN =AM +MC =AC , ∴此时△ANM 周长取最小值. 当x =﹣1时,y =﹣x +1=2, ∴此时点M 的坐标为(﹣1,2).∵点A 的坐标为(1,0),点C 的坐标为(﹣2,3),点N 的坐标为(0,3),∴AC=,AN ,∴C△ANM=AM+MN+AN=AC+AN=32+10.∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为32+10.【点睛】本题考查待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出S△APC=﹣32x2﹣32x+3的最值;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位置.3.已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c 的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P2个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.【答案】(1)223y x x =--;(2)C (3,0),D (1,﹣4),△BCD 是直角三角形;(3)2213(03)2213(03)22t t t S t t t t ⎧-+⎪⎪=⎨⎪-⎪⎩<<<或>【解析】试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与x 轴的交点,再判断出△BOC 和△BED 都是等腰直角三角形,从而得到结论;(3)先求出QF=1,再分两种情况,当点P 在点M 上方和下方,分别计算即可. 试题解析:解(1)∵2+430x x +=,∴11x =-,23x =-,∵m ,n 是一元二次方程2+430x x +=的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线223y x x =--的图象经过点A (m ,0),B (0,n ),∴10{3b c c -+==-,∴2{3b c =-=-,∴抛物线解析式为223y x x =--;(2)令y=0,则2230x x --=,∴11x =-,23x =,∴C (3,0),∵223y x x =--=2(1)4x --,∴顶点坐标D (1,﹣4),过点D 作DE ⊥y 轴,∵OB=OC=3,∴BE=DE=1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD 是直角三角形;(3)如图,∵B (0,﹣3),C (3,0),∴直线BC 解析式为y=x ﹣3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P (t ,t ﹣3),M (t ,223t t --),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵2,∴QF=1.①当点P 在点M 上方时,即0<t <3时,PM=t ﹣3﹣(223t t --)=23t t -+,∴S=12PM×QF=21(3)2t t -+=21322t t -+,②如图3,当点P 在点M 下方时,即t <0或t>3时,PM=223t t --﹣(t ﹣3)=23t t -,∴S=12PM×QF=12(23t t -)=21322t t -.综上所述,S=2213 (03)22{13 (03)22t t t t t t t 或-+<<-.考点:二次函数综合题;分类讨论.4.对于某一函数给出如下定义:若存在实数m ,当其自变量的值为m 时,其函数值等于﹣m ,则称﹣m 为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n 称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n 为零.例如,图中的函数有4,﹣1两个反向值,其反向距离n 等于5. (1)分别判断函数y =﹣x +1,y =1x-,y =x 2有没有反向值?如果有,直接写出其反向距离;(2)对于函数y =x 2﹣b 2x , ①若其反向距离为零,求b 的值; ②若﹣1≤b ≤3,求其反向距离n 的取值范围;(3)若函数y =223()3()x x x m x x x m ⎧-≥⎨--<⎩请直接写出这个函数的反向距离的所有可能值,并写出相应m 的取值范围.【答案】(1)y =−1x有反向值,反向距离为2;y =x 2有反向值,反向距离是1;(2)①b =±1;②0≤n ≤8;(3)当m >2或m ≤﹣2时,n =2,当﹣2<m ≤2时,n =4. 【解析】 【分析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)①根据题意可以求得相应的b的值;②根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题.【详解】(1)由题意可得,当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,当﹣m=1m-时,m=±1,∴n=1﹣(﹣1)=2,故y=1x-有反向值,反向距离为2,当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距离为零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=223()3() x x x mx x x m⎧-≥⎨--<⎩,∴当x≥m时,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;当x<m时,﹣m=﹣m2﹣3m,解得,m=0或m=﹣4,∴n=0﹣(﹣4)=4,∴﹣2<m≤2,由上可得,当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.5.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【答案】(1)抛物线解析式为y=﹣x2+6x﹣5;(2)①P点的横坐标为4或412或5-41 2;②点M的坐标为(136,﹣176)或(236,﹣76).【解析】分析:(1)利用一次函数解析式确定C(0,-5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程-x2+6x-5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以2,接着根据平行四边形的性质得到2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到2PQ=4,设P(m,-m2+6m-5),则D(m,m-5),讨论:当P点在直线BC上方时,PD=-m2+6m-5-(m-5)=4;当P点在直线BC下方时,PD=m-5-(-m2+6m-5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,-2),AC的解析式为y=5x-5,E点坐标为(12,-52),利用两直线垂直的问题可设直线EM1的解析式为y=-15x+b,把E(12,-52)代入求出b得到直线EM1的解析式为y=-15x-125,则解方程组511255 y xyx-⎧⎪⎨--⎪⎩==得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x-5),根据中点坐标公式得到3=13+62x,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.详解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得253005a cc++=⎧⎨=-⎩,解得15ab=-⎧⎨=-⎩,∴抛物线解析式为y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),∵B(5,0),C(0,﹣5),∴△OCB为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB为等腰直角三角形,∴AM=2AB=2×4=22,∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,∴PQ=AM=22,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,∴222=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=5+41,m2=5-41,综上所述,P点的横坐标为4或5+412或5-412;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(12,﹣52,设直线EM1的解析式为y=﹣15x+b,把E(12,﹣52)代入得﹣110+b=﹣52,解得b=﹣125,∴直线EM1的解析式为y=﹣15x﹣125解方程组511255y xy x=-⎧⎪⎨=--⎪⎩得136176xy⎧=⎪⎪⎨⎪=-⎪⎩,则M1(136,﹣176);作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=13+62x∴x=236,∴M 2(236,﹣76).综上所述,点M 的坐标为(136,﹣176)或(236,﹣76). 点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.6.如图1,在平面直角坐标系中,直线AB :y =kx +b (k <0,b >0),与x 轴交于点A 、与y 轴交于点B ,直线CD 与x 轴交于点C 、与y 轴交于点D .若直线CD 的解析式为y =﹣1k(x +b ),则称直线CD 为直线AB 的”姊线”,经过点A 、B 、C 的抛物线称为直线AB 的“母线”.(1)若直线AB 的解析式为:y =﹣3x +6,求AB 的”姊线”CD 的解析式为: (直接填空);(2)若直线AB 的”母线”解析式为:2142y x x =-+,求AB 的”姊线”CD 的解析式; (3)如图2,在(2)的条件下,点P 为第二象限”母线”上的动点,连接OP ,交”姊线”CD 于点Q ,设点P 的横坐标为m ,PQ 与OQ 的比值为y ,求y 与m 的函数关系式,并求y 的最大值;(4)如图3,若AB 的解析式为:y =mx +3(m <0),AB 的“姊线”为CD ,点G 为AB 的中点,点H 为CD 的中点,连接OH ,若GH =5,请直接写出AB 的”母线”的函数解析式.【答案】(1)1(6)3y x =+;(2)(2,0)、(0,4)、(﹣4,0);(3)当m =﹣32,y 最大值为338;(4)y =x 2﹣2x ﹣3. 【解析】【分析】(1)由k ,b 的值以及”姊线”的定义即可求解;(2)令x =0,得y 值,令y =0,得x 值,即可求得点A 、B 、C 的坐标,从而求得直线CD 的表达式;(3)设点P 的横坐标为m ,则点P (m ,n ),n =﹣12m 2﹣m+4, 从而求得直线OP 的表达式,将直线OP 和CD 表达式联立并解得点Q 坐标,由此求得P Q y y ,从而求得y =﹣12m 2﹣32m+3,故当m =﹣32,y 最大值为338;(4)由直线AB 的解析式可得AB 的“姊线”CD 的表达式y =﹣1m(x+3),令x =0,得 y 值,令y =0,得x 值,可得点C 、D 的坐标,由此可得点H 坐标,同理可得点G 坐标, 由勾股定理得:m 值,即可求得点A 、B 、C 的坐标,从而得到 “母线”函数的表达式. 【详解】(1)由题意得:k =﹣3,b =6,则答案为:y =13(x+6); (2)令x =0,则y =4,令y =0,则x =2或﹣4,点A 、B 、C 的坐标分别为(2,0)、(0,4)、(﹣4,0), 则直线CD 的表达式为:y =12(x+4)=12x+2; (3)设点P 的横坐标为m ,则点P (m ,n ),n =﹣12m 2﹣m+4, 则直线OP 的表达式为:y =n mx , 将直线OP 和CD 表达式联立得122ny x my x ⎧=⎪⎪⎨⎪=+⎪⎩, 解得:点Q (2438m m m --+,222838m m m m +-+-)则P Q y y =﹣12m 2﹣32m+4, y =1P Q P Q Q y y y PQ OQ y y -==-=﹣12m 2﹣32m+3, 当m =﹣32,y 最大值为338; (4)直线CD 的表达式为:y =﹣1m(x+3),令x=0,则y=﹣3m,令y=0,则x=﹣3,故点C、D的坐标为(﹣3,0)、(0,﹣3m),则点H(﹣32,﹣32m),同理可得:点G(﹣32m,32),则GH2=(32+32m)2+(32﹣32m)2=(5)2,解得:m=﹣3(正值已舍去),则点A、B、C的坐标分别为(1,0)、(0,3)、(﹣3,0),则“母线”函数的表达式为:y=a(x﹣1)(x+3)=a(x2﹣2x﹣3),即:﹣3a=﹣3,解得:a=1,故:“母线”函数的表达式为:y=x2﹣2x﹣3.【点睛】此题是二次函数综合题目,考查了“姊线”的定义,待定系数法求二次函数解析式,二次函数的最值问题,掌握二次函数的有关性质是解答此题的关键.7.温州茶山杨梅名扬中国,某公司经营茶山杨梅业务,以3万元/吨的价格买入杨梅,包装后直接销售,包装成本为1万元/吨,它的平均销售价格y(单位:万元/吨)与销售数量x(2≤x≤10,单位:吨)之间的函数关系如图所示.(1)若杨梅的销售量为6吨时,它的平均销售价格是每吨多少万元?(2)当销售数量为多少时,该经营这批杨梅所获得的毛利润(w)最大?最大毛利润为多少万元?(毛利润=销售总收入﹣进价总成本﹣包装总费用)(3)经过市场调查发现,杨梅深加工后不包装直接销售,平均销售价格为12万元/吨.深加工费用y(单位:万元)与加工数量x(单位:吨)之间的函数关系是y=12x+3(2≤x≤10).①当该公司买入杨梅多少吨时,采用深加工方式与直接包装销售获得毛利润一样?②该公司买入杨梅吨数在范围时,采用深加工方式比直接包装销售获得毛利润大些?【答案】(1)杨梅的销售量为6吨时,它的平均销售价格是每吨10万元;(2)当x=8时,此时W 最大值=40万元;(3)①该公司买入杨梅3吨;②3<x ≤8. 【解析】 【分析】(1)设其解析式为y =kx +b ,由图象经过点(2,12),(8,9)两点,得方程组,即可得到结论;(2)根据题意得,w =(y ﹣4)x =(﹣12x +13﹣4)x =﹣12x 2+9x ,根据二次函数的性质即可得到结论;(3)①根据题意列方程,即可得到结论;②根据题意即可得到结论. 【详解】(1)由图象可知,y 是关于x 的一次函数. ∴设其解析式为y =kx +b ,∵图象经过点(2,12),(8,9)两点,∴21289k b k b +=⎧⎨+=⎩,解得k =﹣12,b =13, ∴一次函数的解析式为y =﹣12x +13, 当x =6时,y =10,答:若杨梅的销售量为6吨时,它的平均销售价格是每吨10万元; (2)根据题意得,w =(y ﹣4)x =(﹣12x +13﹣4)x =﹣12x 2+9x , 当x =﹣2ba=9时,x =9不在取值范围内, ∴当x =8时,此时W 最大值=﹣12x 2+9x =40万元; (3)①由题意得:﹣12x 2+9x =9x ﹣(12x +3) 解得x =﹣2(舍去),x =3, 答该公司买入杨梅3吨;②当该公司买入杨梅吨数在 3<x ≤8范围时,采用深加工方式比直接包装销售获得毛利润大些.故答案为:3<x ≤8. 【点睛】本题是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.8.若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数y=kx(k为常数,k≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c(a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(ca,ba)与原点O的距离OP的取值范围.【答案】(1)不能,理由见解析;(2)t的值为﹣4、﹣2或2;(3)①证明见解析;≤OPOP≠1.【解析】【分析】(1)由和谐三组数的定义进行验证即可;(2)把M、N、R三点的坐标分别代入反比例函数解析式,可用t和k分别表示出y1、y2、y3,再由和谐三组数的定义可得到关于t的方程,可求得t的值;(3)①由直线解析式可求得x1=﹣cb,联立直线和抛物线解析式消去y,利用一元二次方程根与系数的关系可求得x2+x3=﹣ba,x2x3=ca,再利用和谐三数组的定义证明即可;②由条件可得到a+b+c=0,可得c=﹣(a+b),由a>2b>3c可求得ba的取值范围,令m=ba,利用两点间距离公式可得到OP2关于m的二次函数,利用二次函数的性质可求得OP2的取值范围,从而可求得OP的取值范围.【详解】(1)不能,理由如下:∵1、2、3的倒数分别为1、12、13,∴12+13≠1,1+12≠13,1+13≠12,∴实数1,2,3不可以构成“和谐三组数”;(2)∵M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数kx(k为常数,k≠0)的图象上,∴y1、y2、y3均不为0,且y1=kt ,y2=1kt+,y3=3kt+,∴11y =t k ,21y =1t k +,31y =3t k +, ∵y 1,y 2,y 3构成“和谐三组数”, ∴有以下三种情况:当11y =21y +31y 时,则t k =1t k ++3t k+,即t =t+1+t+3,解得t =﹣4;当21y =11y +31y 时,则1t k +=t k +3t k+,即t+1=t+t+3,解得t =﹣2;当31y =11y +21y 时,则3t k +=t k +1t k+,即t+3=t+t+1,解得t =2; ∴t 的值为﹣4、﹣2或2; (3)①∵a 、b 、c 均不为0, ∴x 1,x 2,x 3都不为0,∵直线y =2bx+2c(bc≠0)与x 轴交于点A(x 1,0), ∴0=2bx 1+2c ,解得x 1=﹣cb, 联立直线与抛物线解析式,消去y 可得2bx+2c =ax 2+3bx+3c ,即ax 2+bx+c =0, ∵直线与抛物线交与B(x 2,y 2),C(x 3,y 3)两点, ∴x 2、x 3是方程ax 2+bx+c =0的两根, ∴x 2+x 3=﹣b a ,x 2x 3=c a, ∴21x +31x =2323x x x x +=b a c a-=﹣b c =11x ,∴x 1,x 2,x 3构成“和谐三组数”; ②∵x 2=1, ∴a+b+c =0, ∴c =﹣a ﹣b , ∵a >2b >3c ,∴a >2b >3(﹣a ﹣b),且a >0,整理可得253a b b a>⎧⎨>-⎩,解得﹣35<b a <12,∵P(c a ,ba), ∴OP 2=(c a )2+(b a )2=(a b a --)2+(b a )2=2(b a )2+2b a +1=2(b a +12)2+12, 令m =b a ,则﹣35<m <12且m≠0,且OP 2=2(m+12)2+12, ∵2>0,∴当﹣35<m<﹣12时,OP2随m的增大而减小,当m=﹣35时,OP2有最大临界值1325,当m=﹣12时,OP2有最小临界值12,当﹣12<m<12时,OP2随m的增大而增大,当m=﹣12时,OP2有最小临界值12,当m=12时,OP2有最大临界值52,∴12≤OP2<52且OP2≠1,∵P到原点的距离为非负数,∴2≤OP<10且OP≠1.【点睛】本题为二次函数的综合应用,涉及新定义、函数图象的交点、一元二次方程根与系数的关系、勾股定理、二次函数的性质、分类讨论思想及转化思想等知识.在(1)中注意利用和谐三数组的定义,在(2)中由和谐三数组得到关于t的方程是解题的关键,在(3)①中用a、b、c分别表示出x1,x2,x3是解题的关键,在(3)②中把OP2表示成二次函数的形式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.9.(12分)如图,在平面直角坐标系xOy中,二次函数()的图象与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.【答案】(1);(2)E的坐标为(,)、(0,﹣4)、(,);(3),(,).【解析】试题分析:(1)采用待定系数法求得二次函数的解析式;(2)先求得直线BC的解析式为,则可设E(m,),然后分三种情况讨论即可求得;(3)利用△PBD的面积即可求得.试题解析:(1)∵二次函数()的图象与x轴交于A(﹣2,0)、C (8,0)两点,∴,解得:,∴该二次函数的解析式为;(2)由二次函数可知对称轴x=3,∴D(3,0),∵C(8,0),∴CD=5,由二次函数可知B(0,﹣4),设直线BC的解析式为,∴,解得:,∴直线BC的解析式为,设E(m,),当DC=CE时,,即,解得,(舍去),∴E(,);当DC=DE时,,即,解得,(舍去),∴E(0,﹣4);当EC=DE时,,解得=,∴E(,).综上,存在点E,使得△CDE为等腰三角形,所有符合条件的点E的坐标为(,)、(0,﹣4)、(,);(3)过点P作y轴的平行线交x轴于点F,∵P点的横坐标为m,∴P点的纵坐标为:,∵△PBD的面积===,∴当m=时,△PBD 的最大面积为,∴点P 的坐标为(,).考点:二次函数综合题.10.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元. (1)直接写出书店销售该科幻小说时每天的销售量y (本)与销售单价x (元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠(06)a a <≤元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a 的值.【答案】(1)10500(3038)y x x =-+剟;(2)2a =. 【解析】 【分析】(1)根据题意列函数关系式即可;(2)设每天扣除捐赠后可获得利润为w 元.根据题意得到w=(x-20-a )(-10x+500)=-10x 2+(10a+700)x-500a-10000(30≤x≤38)求得对称轴为x =35+12a ,且0<a ≤6,则30<35+12a ≤38,则当1352x a =+时,w 取得最大值,解方程得到a 1=2,a 2=58,于是得到a=2. 【详解】解:(1)根据题意得,()()2501025105003038y x x x =--=-+剟; (2)设每天扣除捐赠后可获得利润为w 元.()()()()220105001010700500100003038w x a x x a x a x =---+=-++--剟对称轴为x =35+12a ,且0<a ≤6,则30<35+12a ≤38, 则当1352x a =+时,w 取得最大值, ∴1135201035500196022a a x a ⎡⎤⎛⎫⎛⎫+---++= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∴122,58a a ==(不合题意舍去),∴2a =. 【点睛】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.11.如图,已知二次函数图象的顶点坐标为(1,4)A ,与坐标轴交于B 、C 、D 三点,且B 点的坐标为(1,0)-. (1)求二次函数的解析式;(2)在二次函数图象位于x 轴上方部分有两个动点M 、N ,且点N 在点M 的左侧,过M 、N 作x 轴的垂线交x 轴于点G 、H 两点,当四边形MNHG 为矩形时,求该矩形周长的最大值;(3)当矩形MNHG 的周长最大时,能否在二次函数图象上找到一点P ,使PNC ∆的面积是矩形MNHG 面积的916?若存在,求出该点的横坐标;若不存在,请说明理由.【答案】(1)2y x 2x 3=-++ (2)最大值为10 (3)故点P 坐标为:315(,)24或332362+--或332362--+. 【解析】 【分析】(1)二次函数表达式为:()214y a x =-+,将点B 的坐标代入上式,即可求解; (2)矩形MNHG 的周长()()2222222223282C MN GM x x x x x =+=-+-++=-++,即可求解;(3)2711sin4532822PNC S PK CD PH ∆==⨯⨯=⨯⨯︒⨯94PH HG ==,即可求解. 【详解】(1)二次函数表达式为:()214y a x =-+,将点B 的坐标代入上式得:044a =+,解得:1a =-, 故函数表达式为:223y x x =-++…①;(2)设点M 的坐标为()2,23x x x -++,则点()22,23N x x x --++, 则222MN x x x =-+=-,223GM x x =-++,矩形MNHG 的周长()()2222222223282C MN GM x x x x x =+=-+-++=-++,∵20-<,故当22bx a=-=,C 有最大值,最大值为10, 此时2x =,点()0,3N 与点D 重合; (3)PNC ∆的面积是矩形MNHG 面积的916, 则99272316168PNC S MN GM ∆=⨯⨯=⨯⨯=, 连接DC ,在CD 得上下方等距离处作CD 的平行线m 、n , 过点P 作y 轴的平行线交CD 、直线n 于点H 、G ,即PH GH =, 过点P 作PK CD ⊥于点K ,将()3,0C 、()0,3D 坐标代入一次函数表达式并解得: 直线CD 的表达式为:3y x =-+,OC OD =,∴45OCD ODC PHK ∠=∠=︒=∠,32CD =设点()2,23P x x x -++,则点(),3H x x -+,2711sin4532822PNC S PK CD PH ∆==⨯⨯=⨯⨯︒⨯ 解得:94PH HG ==, 则292334PH x x x =-+++-=, 解得:32x =, 故点315,24P ⎛⎫⎪⎝⎭, 直线n 的表达式为:93344y x x =-+-=-+…②, 联立①②并解得:332x ±=即点'P 、''P 的坐标分别为332362,⎛⎫+-- ⎪⎪⎝⎭、332362,⎛⎫--+ ⎪ ⎪⎝⎭; 故点P 坐标为:315,24⎛⎫ ⎪⎝⎭或332362,24⎛⎫+-- ⎪ ⎪⎝⎭或332362,24⎛⎫--+ ⎪ ⎪⎝⎭. 【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.12.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用y=16-x 2+bx+c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为172m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x 2+2x+4,拱顶D 到地面OA 的距离为10 m ;(2)两排灯的水平距离最小是3. 【解析】 【详解】试题分析:根据点B 和点C 在函数图象上,利用待定系数法求出b 和c 的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA 的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y 的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x 的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C ⎛⎫⎪⎝⎭在抛物线上所以41719326c b c =⎧⎪⎨=-⨯++⎪⎩,解得24b c =⎧⎨=⎩,所以21246y x x =-++ 所以,当62bx a=-=时,10t y =≦ 答:21246y x x =-++,拱顶D 到地面OA 的距离为10米 (2)由题知车最外侧与地面OA 的交点为(2,0)(或(10,0)) 当x=2或x=10时,2263y =>,所以可以通过 (3)令8y =,即212486x x -++=,可得212240x x -+=,解得1266x x =+=-12x x -=答:两排灯的水平距离最小是考点:二次函数的实际应用.13.已知函数()()22,1,222x nx n x n y n nx x x n ⎧-++≥⎪=⎨-++<⎪⎩(n 为常数) (1)当5n =,①点()4,P b 在此函数图象上,求b 的值; ②求此函数的最大值.(2)已知线段AB 的两个端点坐标分别为()()2,24,2A B 、,当此函数的图象与线段AB 只有一个交点时,直接写出n 的取值范围.(3)当此函数图象上有4个点到x 轴的距离等于4,求n 的取值范围.【答案】(1)①92b =②458;(2)1845n <≤,823n ≤<时,图象与线段AB 只有一个交点;(3)函数图象上有4个点到x 轴的距离等于4时,8n >或3142n ≤<. 【解析】 【分析】(1)①将()4,P b 代入2155222y x x =-++;②当5x ≥时,当5x =时有最大值为5;当5x <时,当52x =时有最大值为458;故函数的最大值为458;(2)将点()4,2代入2y x nx n =-++中,得到185n =,所以1845n <≤时,图象与线段AB 只有一个交点;将点()2,2)代入2y x nx n =-++和21222n n y x x =-++中,得到82,3n n ==, 所以823n ≤<时图象与线段AB 只有一个交点; (3)当xn =时,42n >,得到8n >;当2n x =时,1482n +≤,得到312n ≥,当x n=时,22y n n n n =-++=,4n <. 【详解】解:(1)当5n =时,()()225551555222x x x y x x x ⎧-++≥⎪=⎨-++<⎪⎩, ①将()4,P b 代入2155222y x x =-++, ∴92b =; ②当5x ≥时,当5x =时有最大值为5; 当5x <时,当52x =时有最大值为458; ∴函数的最大值为458; (2)将点()4,2代入2y x nx n =-++中,∴185n =, ∴1845n <≤时,图象与线段AB 只有一个交点; 将点()2,2代入2y x nx n =-++中, ∴2n =, 将点()2,2代入21222n ny x x =-++中, ∴83n =, ∴823n ≤<时图象与线段AB 只有一个交点;综上所述:1845n <≤,823n ≤<时,图象与线段AB 只有一个交点; (3)当xn =时,22112222n n y n n =-++=,42n>,∴8n >; 当2n x =时,182n y =+, 1482n +≤,∴312n ≥, 当xn =时,22y n n n n =-++=,4n <;∴函数图象上有4个点到x 轴的距离等于4时,8n >或3142n ≤<. 【点睛】考核知识点:二次函数综合.数形结合分析问题是关键.14.如图,已知抛物线y=ax 2+bx ﹣2(a≠0)与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且D (2,3),tan ∠DBA=12. (1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C 、A ,求四边形BMCA 面积的最大值;(3)在(2)中四边形BMCA 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.【答案】(1)y=12x 2+32x ﹣2;(2)9;(3)点Q 的坐标为(﹣2,4)或(﹣2,﹣1).【解析】(1)如答图1所示,利用已知条件求出点B 的坐标,然后用待定系数法求出抛物线的解析式.(2)如答图1所示,首先求出四边形BMCA 面积的表达式,然后利用二次函数的性质求出其最大值.(3)如答图2所示,首先求出直线AC 与直线x=2的交点F 的坐标,从而确定了Rt △AGF 的各个边长;然后证明Rt △AGF ∽Rt △QEF ,利用相似线段比例关系列出方程,求出点Q 的坐标.考点:二次函数综合题,曲线上点的坐标与方程的关系,锐角三角函数定义,由实际问题列函数关系式,二次函数最值,勾股定理,相似三角形的判定和性质,圆的切线性质.15.如图1,四边形OABC 是矩形,点A 的坐标为(3,0),点c 的坐标为(0,6).点P 从点O 出发,沿OA 以每秒1个单位长度的速度向点A 运动,同时点Q 从点A 出发,沿AB 以每秒2个单位长度的速度向点B 运动,当点P 与点A 重合时运动停止.设运动时间为t 秒.(1)当2t =时,线段PQ 的中点坐标为________; (2)当CBQ ∆与PAQ ∆相似时,求t 的值;(3)当1t =时,抛物线2y x bx c =++经过P 、Q 两点,与y 轴交于点M ,抛物线的顶点为K ,如图2所示.问该抛物线上是否存在点D ,使12MQD MKQ ∠=∠,若存在,求出所有满足条件的D 点坐标;若不存在,说明理由. 【答案】(1)PQ 的中点坐标是(2.5,2);(2)935t -=或3t 4=;(3)124(,)39D ,2240(,)39D -. 【解析】分析:(1)先根据时间t=2,和速度可得动点P 和Q 的路程OP 和AQ 的长,再根据中点坐标公式可得结论;(2)根据矩形的性质得:∠B=∠PAQ=90°,所以当△CBQ 与△PAQ 相似时,存在两种情。
2020年中考数学压轴题之二次函数专题突破1. 如图,抛物线y=-x 2+bx+c 与x 轴交于A 、B 两点,交y 轴正半轴于C 点,D 为抛物线的顶点,A (-1,0),B (3,0).(1)求出二次函数的表达式.(2)点P 在x 轴上,且∠PCB=∠CBD,求点P 的坐标.(3)在x 轴上方抛物线上是否存在一点Q ,使得以Q ,C ,B ,O 为顶点的四边形被对角线分成面积相等的两部分?如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.【答案】(1)y=-x 2+2x+3;(2)P (6,0)或P 3,02⎛⎫ ⎪⎝⎭;(3)存在,点Q 1122⎛⎫+ ⎪ ⎪⎝⎭或17,24⎛⎫- ⎪⎝⎭. 【分析】(1)将点A 、B 坐标代入解析式求出b 、c 的值即可得;(2)∠PCB=∠CBD 有两种情况,①P 在B 的右侧时,延长BD 交y 轴于点H ,由∠OCB=∠OBC=45°,可证明∠HCB=∠CBP,从而△PCB≌△HBC,由直线BD 即可求得:OH=OP=6,从而得到P 点坐标;②P 在B 的左侧时,此时PC∥BD,根据一次函数解析式即可求出P ;(3)分以下两种情况分别求解,①点Q 在y 轴右侧时,由OB=OC ,可得出OQ 是∠BOC 的平分线,联立二次函数解析式与直线OQ 的解析式即可求解;②点Q 在y 轴左侧时,可得这条对角线只能是BQ ,过点C 作x 轴的平行线EF ,过点Q ,B 分别作EF 的垂线,垂足分别为F ,E ,延长FQ 交x 轴于点G ,设点Q 的坐标为(m ,n),根据S △BOQ =S △CBQ =S 梯形FQBE -S △FCQ -S △BEC 可得出关于m ,n 的关系式,再与二次函数的解析式联立即可求解.2.已知,如图,二次函数2y ax bx c =++图像交x 轴于(1,0)A -,交y 交轴于点(0,3)C ,D 是抛物线的顶点,对称轴DF 经过x 轴上的点(1,0)F .(1)求二次函数关系式;(2)对称轴DF 与BC 交于点M ,点P 为对称轴DF 上一动点.①求AP PD +的最小值及取得最小值时点P 的坐标; ②在①的条件下,把APF V 沿着x 轴向右平移t 个单位长度(04)t ≤≤时,设APF V 与MBF V 重叠部分面积记为S ,求S 与t 之间的函数表达式,并求出S 的最大值.【答案】(1)2y x 2x 3=-++;(2P 坐标为(1,1);②2221(2)1(01)4751(12)12331(4)(24)6t t S t t t t t ⎧--+≤≤⎪⎪⎪=-+-<<⎨⎪⎪-≤≤⎪⎩,当107t =时,S 最大值67=. 【分析】(1)函数对称轴为x=1,则点B (3,0),用交点式表达式得:y=a (x+1)(x-3)=a (x 2-2x-3),即可求解;(2)①连接BD ,过点A 作AH⊥BD 于点H ,交DF 于点P ,PD=AP+PD ,此时PD=AH 最小,即可求解;②根据题意,可分为0≤t≤1、1<t <2、2≤t≤4三种情况,分别求解,即可得到答案.3.平面直角坐标系中,0是坐标原点,抛物线21233y x x c =-+交x 轴于,A B 两点(如图),顶点是C ,对称轴交x 轴于点,2,D OB OA =(1)如图(1)求抛物线的解析式;(2)如图(2)E 是第三象限抛物线上一点,连接ED 并延长交抛物线于点F ,连接,,EC FC 求证:90ECF ∠=︒;(3)如图(3)在(2)问条件下,,M N 分别是线段,OA CD 延长线上一点,连接,MN CM ,过点C 作CQ MN ⊥于,Q CQ 交DM 于点P ,延长FE 交MC 于R ,若2,NMD DMC ∠=∠DN BO +,:7:3,MP MR RC ==求点F 坐标.【答案】(1)2128333y x x =--;(2)证明见解析;(3)75,3F ⎛⎫ ⎪⎝⎭. 【分析】(1)设DA=DB=m ,根据抛物线对称性和OB=2OA ,建立方程求解即可;(2)配方法可求得抛物线顶点坐标,过点E 作EH⊥CD 于G ,过F 作FG⊥CD 于G ,可证明△DEH∽△DFG,tan∠GFC=tan∠ECH,即可证明∠ECF=90°;(3)以DM 为边在x 轴上方作正方形DMKT ,延长CQ 交KT 于S ,过S 作SG⊥DM 于G ,连接MT ,作∠SCT 平分线交MT 于I ,过点I 作IJ⊥CT 于J ,设DM=t ,则DT=TK=t ,易证:△MDC≌△CJI,△MDN≌△SGP,可得:SZ=SL=t-7,CZ=CJ=t ,CS=2t-7,利用勾股定理建立方程即可求得点M 坐标,再利用相似三角形性质可求得点R 坐标,运用待定系数法即可求得直线DR 解析式,解方程组可求得点F 的坐标.4.如图,抛物线y =ax 2+bx ﹣2经过点A (﹣2,与x 轴相交于B ,C 两点,且B 点坐标为(﹣1,0).(1)求抛物线的函数表达式;(2)点D 在抛物线的对称轴上,且位于x 轴的上方,将△BCD 沿直线BD 翻折得到△BC′D,若点C′恰好落在抛物线的对称轴上,求点C′和点D 的坐标;(3)抛物线与y 轴交于点Q ,连接BQ ,DQ ,在抛物线上有一个动点P ,且S △PBD =S △BDQ ,求满足条件的点P 的横坐标.【答案】(1)2y x =-(2)1D ⎛ ⎝⎭;(3)83 【分析】(1)利用待定系数法可求解析式;(2)设对称轴于BC 的交点为E ,先求出点C ,点E 坐标,可求BC=4,BE=CE=2,由折叠的性质可得BC'的长,由勾股定理可求C'E ,DE 的长,即可求解;(3)分两种情况讨论,利用等底等高的两个三角形的面积相等,可求解.5.已知:在平面直角坐标系中,抛物线223y ax ax a =--与x 轴交于点A ,B (点B 在点A 的右侧),点C 为抛物线的顶点,点C 的纵坐标为-2.(1)如图1,求此抛物线的解析式;(2)如图2,点P 是第一象限抛物线上一点,连接AP ,过点C 作//CD y 轴交AP 于点D ,设点P 的横坐标为t ,CD 的长为m ,求m 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,点E 在DP 上,且ED AD =,点F 的横坐标大于3,连接EF ,BF ,PF ,且EP EF BF ==,过点C 作//CG PF 交DP 于点G ,若8CG AG =,求点P 的坐标.【答案】(1)21322y x x =--;(2)1m t =-;(3)933,28P ⎛⎫ ⎪⎝⎭【分析】 (1)将抛物线解析式化为顶点式可得y=a (x-1)2-4a ,则C 点为(1,-4a ),再由-4a=-2即可求a 的值,进而确定函数解析式;(2)由已知分别求出点P 和点A 的坐标,可得AP 的直线解析式,求出D 点坐标则可求CD ;(3)设CD 与x 轴的交点为H ,连接BE ,由三角形中位线的性质可求BE=2(t-3)=2t-6;过点F 作FN⊥BE 于点N ,过点P 作PM⊥BE 交BE 的延长线于点M ,可证明Rt△PME≌Rt△ENF (HL ),从而推导出∠EPF=∠EFP=45°;过点C 作CK⊥CG 交PA 的延长线于点K ,连接AC 、BC ,能够进一步证明△ACK≌△BCG (SAS ),得到∠KGB=90°;令AG=8m ,则CG=BG=6m ,过点G 作GL⊥x 轴于点L ,在Rt△ABG 中,AG=10m=4,求出m 值,利用等积法可求G 点的坐标,再将G 点坐标代入3322t t y x --=+,求出t ,即可求出点P 坐标. 6.已知函数12y kx k =+与函数2223,y x x =-+定义新函数21y y y =-(1)若2,k =则新函数y = ;(2)若新函数y 的解析式为22,y x bx =+-则k = ,b = ; (3)设新函数y 顶点为(),m n .①当k 为何值时,n 有最大值,并求出最大值;②求n 与m 的函数解析式;(4)请你探究:函数1y 与新函数y 分别经过定点,A B ,函数2223y x x =-+的顶点为C ,新函数y 上存在一点D ,使得以点,,,A B C D 为顶点的四边形为平行四边形时,直接写出k 的值.【答案】(1)261-+x x ;(2)5,12-;(3)①当32k =-时,174n =最大值;②24=--+n m m ;(4)1712=k 或1712k =-或3512k =- 【分析】(1)将k=2代入函数,然后用21y y -得到新函数;(2)先求出新函数,然后比较2个函数,利用对应位置的系数相同可求得;(3)①先用k 表示新函数的定点,得出m 、n 和k 的关系式,再利用配方法求得n 最大时k 的值;②已求得m 、n 关于k 的关系式,将1k m =-代入n 中,化简可得m 、n 的关系式;(4)先求出定点A 、B 、C ,如下图,存在3处D 可构成平行四边形,利用平行四边形的特点求出点D 的坐标,进而得出k 的值.。
2020-2021中考数学——二次函数的综合压轴题专题复习及答案解析一、二次函数1.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6).【解析】【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可.【详解】(1)当y=0时,140 33x-=,解得x=4,即A(4,0),抛物线过点A,对称轴是x=32,得161203322a ca-+=⎧⎪-⎨-=⎪⎩,解得14ac=⎧⎨=-⎩,抛物线的解析式为y=x2﹣3x﹣4;(2)∵平移直线l经过原点O,得到直线m,∴直线m的解析式为y=13x.∵点P是直线1上任意一点,∴设P(3a,a),则PC=3a,PB=a.又∵PE=3PF,∴PC PBPF PE=.∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴22x x x xQ P F E++=,22y y y yQ P F E++=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18,∴OF=3a ﹣20.∴F (0,20﹣3a ).∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a . 将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.2.已知,点M 为二次函数y =﹣(x ﹣b )2+4b +1图象的顶点,直线y =mx +5分别交x 轴正半轴,y 轴于点A ,B .(1)判断顶点M 是否在直线y =4x +1上,并说明理由.(2)如图1,若二次函数图象也经过点A ,B ,且mx +5>﹣(x ﹣b )2+4b +1,根据图象,写出x 的取值范围.(3)如图2,点A 坐标为(5,0),点M 在△AOB 内,若点C (14,y 1),D (34,y 2)都在二次函数图象上,试比较y 1与y 2的大小.【答案】(1)点M在直线y=4x+1上;理由见解析;(2)x的取值范围是x<0或x>5;(3)①当0<b<12时,y1>y2,②当b=12时,y1=y2,③当12<b<45时,y1<y2.【解析】【分析】(1)根据顶点式解析式,可得顶点坐标,根据点的坐标代入函数解析式检验,可得答案;(2)根据待定系数法,可得二次函数的解析式,根据函数图象与不等式的关系:图象在下方的函数值小,可得答案;(3)根据解方程组,可得顶点M的纵坐标的范围,根据二次函数的性质,可得答案.【详解】(1)点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,∴M的坐标是(b,4b+1),把x=b代入y=4x+1,得y=4b+1,∴点M在直线y=4x+1上;(2)如图1,直线y=mx+5交y轴于点B,∴B点坐标为(0,5)又B在抛物线上,∴5=﹣(0﹣b)2+4b+1=5,解得b=2,二次函数的解析是为y=﹣(x﹣2)2+9,当y=0时,﹣(x﹣2)2+9=0,解得x1=5,x2=﹣1,∴A(5,0).由图象,得当mx+5>﹣(x﹣b)2+4b+1时,x的取值范围是x<0或x>5;(3)如图2,∵直线y=4x+1与直线AB交于点E,与y轴交于F,A(5,0),B(0,5)得直线AB的解析式为y=﹣x+5,联立EF,AB得方程组415 y xy x=+⎧⎨=-+⎩,解得45215 xy⎧=⎪⎪⎨⎪=⎪⎩,∴点E(45,215),F(0,1).点M在△AOB内,1<4b+1<215,∴0<b<45.当点C,D关于抛物线的对称轴对称时,b﹣14=34﹣b,∴b=12,且二次函数图象开口向下,顶点M在直线y=4x+1上,综上:①当0<b<12时,y1>y2,②当b=12时,y1=y2,③当12<b<45时,y1<y2.【点睛】本题考查了二次函数综合题,解(1)的关键是把点的坐标代入函数解析式检验;解(2)的关键是利用函数图不等式的关系:图象在上方的函数值大;解(3)的关键是解方程组得出顶点M的纵坐标的范围,又利用了二次函数的性质:a<0时,点与对称轴的距离越小函数值越大.3.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x xy x⎧-++⎪⎨--⎪⎩==,解得1xy=-⎧⎨=⎩或103139xy⎧=⎪⎪⎨⎪=-⎪⎩,则此时P点坐标为(103,﹣139).综上所述,符合条件的点P的坐标为(73,209)或(103,﹣139).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.4.如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B,C的坐标;(2)判断△CDB的形状并说明理由;(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.【答案】(Ⅰ)B(3,0);C(0,3);(Ⅱ)CDB∆为直角三角形;(Ⅲ)22333(0)221933(3)222t t tSt t t⎧-+<≤⎪⎪=⎨⎪=-+<<⎪⎩.【解析】【分析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B,C的坐标.(2)分别求出△CDB三边的长度,利用勾股定理的逆定理判定△CDB为直角三角形.(3)△COB沿x轴向右平移过程中,分两个阶段:①当0<t≤32时,如答图2所示,此时重叠部分为一个四边形; ②当32<t <3时,如答图3所示,此时重叠部分为一个三角形. 【详解】解:(Ⅰ)∵点()1,0A -在抛物线()21y x c =--+上, ∴()2011c =---+,得4c = ∴抛物线解析式为:()214y x =--+, 令0x =,得3y =,∴()0,3C ;令0y =,得1x =-或3x =,∴()3,0B .(Ⅱ)CDB ∆为直角三角形.理由如下:由抛物线解析式,得顶点D 的坐标为()1,4.如答图1所示,过点D 作DM x ⊥轴于点M ,则1OM =,4DM =,2BM OB OM =-=.过点C 作CN DM ⊥于点N ,则1CN =,1DN DM MN DM OC =-=-=. 在Rt OBC ∆中,由勾股定理得:22223332BC OB OC =+=+=; 在Rt CND ∆中,由勾股定理得:2222112CD CN DN =+=+=; 在Rt BMD ∆中,由勾股定理得:22222425BD BM DM =+=+=.∵222BC CD BD +=,∴CDB ∆为直角三角形.(Ⅲ)设直线BC 的解析式为y kx b =+,∵()()3,0,0,3B C ,∴303k b b +=⎧⎨=⎩, 解得1,3k b =-=,∴3y x =-+,直线QE 是直线BC 向右平移t 个单位得到,∴直线QE 的解析式为:()33y x t x t =--+=-++; 设直线BD 的解析式为y mx n =+,∵()()3,0,1,4B D ,∴304m n m n +=⎧⎨+=⎩,解得:2,6m n =-=, ∴26y x =-+.连续CQ 并延长,射线CQ 交BD 交于G ,则3,32G ⎛⎫ ⎪⎝⎭. 在COB ∆向右平移的过程中:(1)当302t <≤时,如答图2所示:设PQ 与BC 交于点K ,可得QK CQ t ==,3PB PK t ==-.设QE 与BD 的交点为F ,则:263y x y x t =-+⎧⎨=-++⎩. 解得32x t y t =-⎧⎨=⎩, ∴()3,2F t t -.111222QPE PBK FBE F S S S S PE PQ PB PK BE y ∆∆∆=--=⋅-⋅-⋅ ()221113333232222t t t t t =⨯⨯---⋅=-+. (2)当332t <<时,如答图3所示:设PQ 分别与BC BD 、交于点K 、点J . ∵CQ t =,∴KQ t =,3PK PB t ==-.直线BD 解析式为26y x =-+,令x t =,得62y t =-, ∴(),62J t t -.1122PBJ PBK S S S PB PJ PB PK ∆∆=-=⋅-⋅ ()()()211362322t t t =---- 219322t t =-+. 综上所述,S 与t 的函数关系式为:2233302219333222t t t S t t t ⎧⎛⎫-+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-+<< ⎪⎪⎝⎭⎩.5.已知,点M 为二次函数2()41y x b b =--++图象的顶点,直线5y mx =+分别交x 轴正半轴,y 轴于点,A B .(1)如图1,若二次函数图象也经过点,A B ,试求出该二次函数解析式,并求出m 的值. (2)如图2,点A 坐标为(5,0),点M 在AOB ∆内,若点11(,)4C y ,23(,)4D y 都在二次函数图象上,试比较1y 与2y 的大小.【答案】(1)2(2)9y x =--+,1m =-;(2)①当102b <<时,12y y >;②当12b =时,12y y =;③当1425b <<时,12y y < 【解析】 【分析】 (1)根据一次函数表达式求出B 点坐标,然后根据B 点在抛物线上,求出b 值,从而得到二次函数表达式,再根据二次函数表达式求出A 点的坐标,最后代入一次函数求出m 值.(2)根据解方程组,可得顶点M 的纵坐标的范围,根据二次函数的性质,可得答案. 【详解】(1)如图1,∵直线5y mx =+与y 轴交于点为B ,∴点B 坐标为(0,5)又∵(0,5)B 在抛物线上,∴25(0)41b b =--++,解得2b =∴二次函数的表达式为2(2)9y x =--+ ∴当0y =时,得15=x ,21x =- ∴(5,0)A代入5y mx =+得,550m +=,∴1m =-(2)如图2,根据题意,抛物线的顶点M 为(,41)b b +,即M 点始终在直线41y x =+上,∵直线41y x =+与直线AB 交于点E ,与y 轴交于点F ,而直线AB 表达式为5y x =-+解方程组415y x y x =+⎧⎨=-+⎩,得45215x y ⎧=⎪⎪⎨⎪=⎪⎩∴点421(,)55E ,(0,1)F ∵点M 在AOB ∆内,∴405b <<当点,C D 关于抛物线对称轴(直线x b =)对称时,1344b b -=-,∴12b =且二次函数图象的开口向下,顶点M 在直线41y x =+上 综上:①当102b <<时,12y y >;②当12b =时,12y y =;③当1425b <<时,12y y <.【点睛】本题考查二次函数与一次函数的综合应用,难度系数大同学们需要认真分析即可.6.如图,抛物线y =ax 2+bx +4与x 轴交于点A (﹣1,0)、B (3,0),与y 轴交于点C . (1)求抛物线的解析式;(2)如图1,D 为抛物线对称轴上一动点,求D 运动到什么位置时△DAC 的周长最小; (3)如图2,点E 在第一象限抛物线上,AE 与BC 交于点F ,若AF :FE =2:1,求E 点坐标;(4)点M 、N 同时从B 点出发,分别沿BA 、BC 方向运动,它们的运动速度都是1个单位/秒,当点M 运动到点A 时,点N 停止运动,则当点N 停止运动后,在x 轴上是否存在点P ,使得△PBN 是等腰三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)248433y x x =-++(2)81,3D ⎛⎫⎪⎝⎭(3)点P 的坐标P 1(﹣1,0)或P 2(7,0)或P 3(﹣95,0)或P 4(13,0). 【解析】 【分析】(1)直接待定系数法代入求解即可 (2)找到D 点在对称轴时是△DAC 周长最小的点,先求出直线BC ,然后D 点横坐标是1,直接代入直线BC 求出纵坐标即可 (3)作EH ∥AB交BC 于H ,则∠FAB =∠FEH ,∠FBA =∠FHE ,易证△ABF ∽△EHF ,得AB AF2EH EF==,得EH=2,设E (x ,248x x 433-++),则H (x ﹣2,420x 33-+),y E =y H ,解出方程x =1或x =2,得到E 点坐标 (4)△PBN 是等腰三角形,分成三种情况,①BP =BC 时,利用等腰三角性质直接得到P 1(﹣1,0)或P 2(7,0),②当NB =NP 时,作NH ⊥x 轴,易得△NHB ∽△COB ,利用比例式得到NH 、 BH 从而得到 PH =BH ,BP ,进而得到OP ,即得到P 点坐标,③当PN =PB 时,取NB 中点K ,作KP ⊥BN ,交x 轴于点P ,易得△NOB ∽△PKB ,利用比例式求出PB ,进而得到OP ,即求出P 点坐标 【详解】解:(1)将A (﹣1,0)、B (3,0)代入y =ax 2+bx+4, 得 40930a b a b c -+=⎧⎨++=⎩解得a =43-,b =83, ∴抛物线的解析式248433y x x =-++; (2)22484164(1)3333=-++=--+y x x x ∴抛物线对称轴为直线x =1, ∴D 的横坐标为1,由(1)可得C (0,4), ∵B (3,0), ∴直线BC :4y 43x =-+ ∵DA =DB ,△DAC 的周长=AC+CD+AD =AC+CD+BD , 连接BC ,与对称轴交于点D ,此时CD+BD 最小, ∵AC 为定值,∴此时△DAC 的周长, 当x =1时,y =﹣43×1+4=83, ∴D (1,83); (3)作EH ∥AB 交BC 于H ,则∠FAB =∠FEH ,∠FBA =∠FHE ,∴△ABF ∽△EHF , ∵AF :FE =2:1,∴AB AF2EH EF ==, ∵AB =4, ∴EH =2,设E (x ,248x x 433-++),则H (x ﹣2,420x 33-+) ∵EH ∥AB , ∴y E =y H ,∴248x x 433-++=420x 33-+ 解得x =1或x =2,y =163或4, ∴E (1,163)或(2,4); (4)∵A (﹣1,0)、B (3,0),C (0,4) ∴AB =4,OC =4,点M 运动到点A 时,BM =AB =4, ∴BN =4,∵△PBN 是等腰三角形, ①BP =BC 时,若P 在点B 左侧,OP =PB ﹣OB =4﹣3=1, ∴P 1(﹣1,0),若P 在点B 右侧,OP =OB+BP =4+3=7, ∴P 2(7,0);②当NB =NP 时,作NH ⊥x 轴, △NHB ∽△COB ,∴45NH BH BN OC OB BC === ∴NH =45OC =445⨯=165,BH =45BC =125, ∴PH =BH =125, BP =245, ∴OP =BP ﹣OB =249355-=, ∴P 3(﹣95,0); ③当PN =PB 时,取NB 中点K ,作KP ⊥BN ,交x 轴于点P , ∴△NOB ∽△PKB ,∴PB BKBN OB= ∴PB =83,∴OP =OB ﹣PB =3﹣83=13P 4(13,0) 综上,当△PBN 是等腰三角形时,点P 的坐标P 1(﹣1,0)或P 2(7,0)或P 3(﹣95,0)或P 4(13,0). 【点睛】本题考查二次函数、平行线性质、相似三角形、等腰三角形性质及最短距离等知识点,综合程度比较高,对综合能力要求比较高. 第一问比较简单,考查待定系数法;第二问最短距离,找到D 点是解题关键;第三问证明出相似是关键;第四问能够分情况讨论是解题关键7.已知抛物线2y ax bx c =++上有两点M (m +1,a )、N (m ,b ). (1)当a =-1,m =1时,求抛物线2y ax bx c =++的解析式; (2)用含a 、m 的代数式表示b 和c ;(3)当a <0时,抛物线2y ax bx c =++满足24b ac a -=,2b c a +≥,34m ≤-, 求a 的取值范围. 【答案】(1)11b c =⎧⎨=⎩;(2)b=-am ,c=-am ;(3)161393a -≤≤- 【解析】 【分析】(1)根据题意得到M (2,-1)、N (1,b ),代入抛物线解析式即可求出b 、c ;(2)将点M (m +1,a )、N (m ,b )代入抛物线2y ax bx c =++,可得22(1)(1)a m b m c aam bm c b⎧++++=⎨++=⎩,化简即可得出;(3)把b am =-,c am =-代入24b ac a -=可得214a m m=+,把b am =-,c am =-代入2b c a +≥可得1m ≥-,然后根据m 的取值范围可得a 的取值范围.【详解】解:(1)∵a =-1,m =1,∴M (2,-1)、N (1,b ) 由题意,得4211b c b c b -++=-⎧⎨-++=⎩,解,得11b c =⎧⎨=⎩ (2) ∵点M (m +1,a )、N (m ,b )在抛物线2y ax bx c =++上22(1)(1)a m b m c a am bm c b ⎧++++=⎨++=⎩①②①-②得,2am b b +=-,∴b am =- 把b am =-代入②,得c am =-(3)把b am =-,c am =-代入24b ac a -=得2224a m a m a +=0a <Q ,22141,4am am a m m∴+=∴=+把b am =-,c am =-代入2b c a +≥得22am a -≥,1m ∴≥-34m Q ≤-,314m ∴-≤≤-224(2)4m m m +=+-Q ,当2m >-时,24m m +随m 的增大而增大2393416m m ∴-≤+≤-216113943m m ∴-≤≤-+ 即161393a -≤≤- 【点睛】本题考查待定系数法求函数解析式以及二次函数的图像和性质,由函数图像上点的坐标特征求出b am =-,c am =-是解题关键.8.如果一条抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点,那么以抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”,[a ,b ,c ]称为“抛物线系数”. (1)任意抛物线都有“抛物线三角形”是 (填“真”或“假”)命题;(2)若一条抛物线系数为[1,0,﹣2],则其“抛物线三角形”的面积为 ;(3)若一条抛物线系数为[﹣1,2b ,0],其“抛物线三角形”是个直角三角形,求该抛物线的解析式;(4)在(3)的前提下,该抛物线的顶点为A ,与x 轴交于O ,B 两点,在抛物线上是否存在一点P ,过P 作PQ ⊥x 轴于点Q ,使得△BPQ ∽△OAB ?如果存在,求出P 点坐标;如果不存在,请说明理由.【答案】(1)假;(2)3)y =-x 2+2x 或y =-x 2-2x ;(4)P (1,1)或P (-1,-3)或P (1,-3)或(-1,1). 【解析】分析:(1)当△>0时,抛物线与x 轴有两个交点,由此可得出结论;(2)根据“抛物线三角形”定义得到22y x =-,由此可得出结论;(3)根据“抛物线三角形”定义得到y =-x 2+2bx ,它与x 轴交于点(0,0)和(2b ,0);当抛物线三角形是直角三角形时,根据对称性可知它一定是等腰直角三角形, 由抛物线顶点为(b ,b 2),以及直角三角形斜边上的中线等于斜边的一半得到2122b b =⨯,解方程即可得到结论; (4)分两种情况讨论:①当抛物线为y =-x 2+2x 时,②当抛物线为y =-x 2-2x 时. 详解:(1)当△>0时,抛物线与x 轴有两个交点,此时抛物线才有“抛物线三角形”,故此命题为假命题;(2)由题意得:22y x =-,令y =0,得:x=,∴ S=122⨯=12x x ;(3)依题意:y =-x 2+2bx ,它与x 轴交于点(0,0)和(2b ,0); 当抛物线三角形是直角三角形时,根据对称性可知它一定是等腰直角三角形.∵y =-x 2+2bx =22()x b b --+,∴顶点为(b ,b 2),由直角三角形斜边上的中线等于斜边的一半得到:2122b b =⨯,∴2b b =,解得:b =0(舍去)或b =±1, ∴y =-x 2+2x 或y =-x 2-2x .(4)①当抛物线为y =-x 2+2x 时.∵△AOB 为等腰直角三角形,且△BPQ ∽△OAB ,∴△BPQ 为等腰直角三角形,设P (a ,-a 2+2a ),∴Q ((a ,0),则|-a 2+2a |=|2-a |,即(2)2a a a -=-.∵a -2≠0,∴1a =,∴a =±1,∴P (1,1)或(-1, -3). ②当抛物线为y =-x 2-2x 时.∵△AOB 为等腰直角三角形,且△BPQ ∽△OAB ,∴△BPQ 为等腰直角三角形,设P (a ,-a 2-2a ),∴Q ((a ,0), 则|-a 2-2a |=|2+a |,即(2)2a a a +=+.∵a +2≠0,∴1a =,∴a =±1,∴P (1,-3,)或(-1,1). 综上所述:P (1,1)或P (-1,-3)或P (1,-3,)或(-1,1).点睛:本题是二次函数综合题.考查了二次函数的性质以及“抛物线三角形”的定义.解题的关键是弄懂“抛物线三角形”的定义以及分类讨论.9.综合与探究如图,抛物线26y ax bx =++经过点A(-2,0),B(4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC . (1)求抛物线的函数表达式; (2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.【答案】(1)233642y x x =-++;(2)3;(3)1234(8,0),(0,0),(14,0),(14,0)M M M M -. 【解析】 【分析】(1)利用待定系数法进行求解即可;(2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F ,先求出S △OAC =6,再根据S △BCD =34S △AOC ,得到S △BCD =92,然后求出BC 的解析式为362y x =-+,则可得点G 的坐标为3(,6)2m m -+,由此可得2334DG m m =-+,再根据S △BCD =S △CDG +S △BDG =12DG BO ⋅⋅,可得关于m 的方程,解方程即可求得答案;(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图,以BD 为边时,有3种情况,由点D 的坐标可得点N 点纵坐标为±154,然后分点N 的纵坐标为154和点N 的纵坐标为154-两种情况分别求解;以BD 为对角线时,有1种情况,此时N 1点与N 2点重合,根据平行四边形的对边平行且相等可求得BM 1=N 1D=4,继而求得OM 1= 8,由此即可求得答案. 【详解】(1)抛物线2y ax bx c =++经过点A(-2,0),B(4,0),∴426016460a b a b -+=⎧⎨++=⎩, 解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为233642y x x =-++; (2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F , ∵点A 的坐标为(-2,0),∴OA=2,由0x =,得6y =,∴点C 的坐标为(0,6),∴OC=6, ∴S △OAC =1126622OA OC ⋅⋅=⨯⨯=, ∵S △BCD =34S △AOC , ∴S △BCD =39642⨯=,设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩,解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+, ∴点G 的坐标为3(,6)2m m -+, ∴2233336(6)34224DG m m m m m =-++--+=-+, ∵点B 的坐标为(4,0),∴OB=4,∵S △BCD =S △CDG +S △BDG =1111()2222DG CF DG BE DG CF BE DG BO ⋅⋅+⋅⋅=⋅+=⋅⋅, ∴S △BCD =22133346242m m m m -+⨯=-+(), ∴239622m m -+=, 解得11m =(舍),23m =, ∴m 的值为3;(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图, 以BD 为边时,有3种情况, ∵D 点坐标为15(3,)4,∴点N 点纵坐标为±154,当点N 的纵坐标为154时,如点N 2,此时233156424x x -++=,解得:121,3x x =-=(舍), ∴215(1,)4N -,∴2(0,0)M ; 当点N 的纵坐标为154-时,如点N 3,N 4, 此时233156424x x -++=-,解得:12114,114x x =-=+ ∴315(114,)4N +-,415(114,)4N --, ∴3(14,0)M ,4(14,0)M -;以BD 为对角线时,有1种情况,此时N 1点与N 2点重合,∵115(1,)4N -,D(3,154),∴N 1D=4, ∴BM 1=N 1D=4, ∴OM 1=OB+BM 1=8, ∴M 1(8,0),综上,点M 的坐标为:1234(80)(00)(140)(140)M M M M -,,,,,,,.【点睛】本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.10.在平面直角坐标系xOy 中(如图).已知抛物线y=﹣12x 2+bx+c 经过点A (﹣1,0)和点B (0,52),顶点为C ,点D 在其对称轴上且位于点C 下方,将线段DC 绕点D 按顺时针方向旋转90°,点C 落在抛物线上的点P 处. (1)求这条抛物线的表达式; (2)求线段CD 的长;(3)将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,如果点M 在y 轴上,且以O 、D 、E 、M 为顶点的四边形面积为8,求点M 的坐标.【答案】(1)抛物线解析式为y=﹣12x 2+2x+52;(2)线段CD 的长为2;(3)M 点的坐标为(0,72)或(0,﹣72). 【解析】【分析】(1)利用待定系数法求抛物线解析式;(2)利用配方法得到y=﹣12(x ﹣2)2+92,则根据二次函数的性质得到C 点坐标和抛物线的对称轴为直线x=2,如图,设CD=t ,则D (2,92﹣t ),根据旋转性质得∠PDC=90°,DP=DC=t ,则P (2+t ,92﹣t ),然后把P (2+t ,92﹣t )代入y=﹣12x 2+2x+52得到关于t 的方程,从而解方程可得到CD 的长;(3)P 点坐标为(4,92),D 点坐标为(2,52),利用抛物线的平移规律确定E 点坐标为(2,﹣2),设M (0,m ),当m >0时,利用梯形面积公式得到12•(m+52+2)•2=8当m <0时,利用梯形面积公式得到12•(﹣m+52+2)•2=8,然后分别解方程求出m 即可得到对应的M 点坐标.【详解】(1)把A (﹣1,0)和点B (0,52)代入y=﹣12x 2+bx+c 得 10252b c c ⎧--+=⎪⎪⎨⎪=⎪⎩,解得252b c =⎧⎪⎨=⎪⎩,∴抛物线解析式为y=﹣12x 2+2x+52;(2)∵y=﹣12(x﹣2)2+92,∴C(2,92),抛物线的对称轴为直线x=2,如图,设CD=t,则D(2,92﹣t),∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处,∴∠PDC=90°,DP=DC=t,∴P(2+t,92﹣t),把P(2+t,92﹣t)代入y=﹣12x2+2x+52得﹣12(2+t)2+2(2+t)+52=92﹣t,整理得t2﹣2t=0,解得t1=0(舍去),t2=2,∴线段CD的长为2;(3)P点坐标为(4,92),D点坐标为(2,52),∵抛物线平移,使其顶点C(2,92)移到原点O的位置,∴抛物线向左平移2个单位,向下平移92个单位,而P点(4,92)向左平移2个单位,向下平移92个单位得到点E,∴E点坐标为(2,﹣2),设M(0,m),当m>0时,12•(m+52+2)•2=8,解得m=72,此时M点坐标为(0,72);当m<0时,12•(﹣m+52+2)•2=8,解得m=﹣72,此时M点坐标为(0,﹣72);综上所述,M点的坐标为(0,72)或(0,﹣72).【点睛】本题考查了二次函数的综合题,涉及到待定系数法、抛物线上点的坐标、旋转的性质、抛物线的平移等知识,综合性较强,正确添加辅助线、运用数形结合思想熟练相关知识是解题的关键.11.在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为“中国结”。
2020年中考数学二轮专题——二次函数与几何图形综合(压轴)题型一、基础过关1. (2019宿迁)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,-3).(1)求抛物线的函数表达式;(2)如图①,连接AC,点P在抛物线上,且满足∠P AB=2∠ACO.求点P的坐标;(3)如图②,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.第1题图2. (2019贺州)如图,在平面直角坐标系中,已知点B的坐标为(-1,0),且OA=OC=4OB,抛物线y =ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P 的坐标及PD的最大值.第2题图二、能力提升1. (2019菏泽)如图,抛物线与x 轴交于A ,B 两点,与y 轴交于点C (0,-2),点A 的坐标是(2,0),P 为抛物线上的一个动点,过点P 作PD ⊥x 轴于点D ,交直线BC 于点E ,抛物线的对称轴是直线x =-1.(1)求抛物线的函数表达式;(2)若点P 在第二象限内,且PE =14OD ,求△PBE 的面积;(3)在(2)的条件下,若M 为直线BC 上一点,在x 轴的上方,是否存在点M ,使△BDM 是以BD 为腰的等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.第1题图三、满分冲关1. (2019襄阳)如图,在直角坐标系中,直线y =-12x +3与x 轴,y 轴分别交于点B ,点C ,对称轴为x=1的抛物线过B , C 两点,且交x 轴于另一点A ,连接A C.(1)直接写出点A ,点B ,点C 的坐标和抛物线的解析式;(2)已知点P 为第一象限内抛物线上一点,当点P 到直线BC 的距离最大时,求点P 的坐标; (3)抛物线上是否存在一点Q (点C 除外),使以点Q ,A ,B 为顶点的三角形与△ABC 相似?若存在,求出点Q 的坐标;若不存在,请说明理由.第1题图2、(2019滨州)如图①,抛物线y =-18x 2+12x +4与y 轴交于点A ,与x 轴交于点B ,C ,将直线AB 绕点A 逆时针旋转90°,所得直线与x 轴交于点D .(1)求直线AD 的函数解析式;(2)如图②,若点P 是直线AD 上方抛物线上的一个动点. ①当点P 到直线AD 的距离最大时,求点P 的坐标和最大距离; ②当点P 到直线AD 的距离为524时,求sin ∠P AD 的值.3、(2019金牛区一诊)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴的两个交点分别为A (-3,0)、B (1,0),与y 轴交于点D (0,3),过顶点C 作CH ⊥x 轴于点H .(1)求抛物线的解析式和顶点C 的坐标;(2)连接AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.第1题图备用图参考答案一、基础过关1. 解:(1)把A (1,0),C (0,-3)代入y =x 2+bx +c 得,⎩⎪⎨⎪⎧1+b +c =0c =-3,解得⎩⎪⎨⎪⎧b =2c =-3, ∴抛物线的函数表达式为y =x 2+2x -3;(2)如解图,作点A 关于y 轴的对称点A ′,连接A ′C ,作AD ⊥A ′C 于点D , ∴点A ′的坐标为(-1,0), 则AA ′=2,OC =3,A ′C =10, ∵S △A ′AC =12AA ′·OC =12A ′C ·AD ,∴AD =AA ′·OC A ′C =3105,在Rt △A ′AD 中,∵A ′D 2+AD 2=A ′A 2, ∴A ′D 2+(3105)2=22.解得A ′D =105(负值已舍去), ∴DC =4105,∴tan ∠ACA ′=AD DC =34. 由对称可得∠ACD =2∠ACO ,则∠P AB =∠ACA ′, 设P (a ,a 2+2a -3),①如解图,当点P 在x 轴的上方时,作P 1H 1⊥x 轴于点H 1, ∴tan ∠P 1AB =P 1H 1AH 1=a 2+2a -31-a =34,解得a 1=1(舍),a 2=-154,把a =-154代入得P (-154,5716);②如解图,当点P 在x 轴的下方时,作P 2H 2⊥x 轴于点H 2, ∴tan ∠P 2AB =P 2H 2AH 2=-a 2-2a +31-a =34,解得a 3=1(舍),a 4=-94,把a =-94代入得P (-94,-3916),综上所述,点P 的坐标为(-154,5716)或(-94,-3916);第1题解图(3)是.设Q (m ,m 2+2m -3),则-3<m <1. 设直线AQ 的解析式为y =k 1x +b 1,把A (1,0),Q (m ,m 2+2m -3),代入解析式解得⎩⎪⎨⎪⎧k 1=m +3b 1=m -3, ∴y =(m +3)x -m -3, 当x =-1时,y =-2m -6, 设直线BQ 的解析式为y =k 2x +b 2,把B (-3,0),Q (m ,m 2+2m -3)代入y =k 2x +b 2,解得⎩⎪⎨⎪⎧k 2=m -1b 2=3m -3,∴y =(m -1)x +3m -3, 当x =-1时,y =2m -2, ∴DM =2m +6,DN =-2m +2, ∴DM +DN =2m +6-2m +2=8. 2. 解:(1)∵B (-1,0), ∴OB =1.又∵OA =OC =4OB , ∴OA =OC =4, ∴A (4,0),C (0,-4);(2)将A 、B 、C 三点坐标代入y =ax 2+bx +c 得,⎩⎪⎨⎪⎧16a +4b +c =0a -b +c =0c =-4,解得⎩⎪⎨⎪⎧a =1b =-3c =-4, ∴抛物线的解析式为y =x 2-3x -4;(3)如解图,过点P 作PE ⊥x 轴交AC 于点E , ∴PE ∥y 轴. ∵OA =OC ,∴∠PED =∠OCA =45°, ∴△DEP 为等腰直角三角形, ∴PD =22PE , ∴当PE 取得最大值时,PD 取得最大值, 易得直线AC 的解析式为y =x -4, 设P (x ,x 2-3x -4),则E (x ,x -4),则PE =(x -4)-(x 2-3x -4)=-x 2+4x =-(x -2)2+4, ∵0<x <4,∴当x =2时,PE 取得最大值,最大值为4, 此时PD 取得最大值,最大值为4×22=22,∴点P 的坐标为(2,-6).第2题解图二、能力提升1. 解:(1)∵抛物线与x 轴交于A ,B 两点,点A 的坐标为(2,0),抛物线的对称轴为直线x =-1, ∴点B 的坐标为(-4,0).∴设抛物线的函数表达式为y =a (x +4)(x -2),将点C (0,-2)代入得-8a =-2,解得a =14.∴抛物线的函数表达式为y =14(x +4)(x -2)=14x 2+12x -2;(2)设点P 的坐标为(x ,14x 2+12x -2),则点D 的坐标为(x ,0),设BC 所在直线的表达式为y =kx +b , 将B (-4,0),C (0,-2)代入得,⎩⎪⎨⎪⎧-4k +b =0b =-2,解得⎩⎪⎨⎪⎧k =-12b =-2, ∴BC 所在直线的表达式为y =-12x -2.∴点E 的坐标为(x ,-12x -2).∴PE =14x 2+x .∵PE =14OD ,∴14x 2+x =-14x ,即14x 2+54x =0, 解得x =-5或x =0(舍). ∴PE =54,BD =1,∴S △PBE =12PE ·BD =12×54×1=58;(3)存在.①当DM =DB =1时,如解图①,过点M 作MF ⊥x 轴于点F , 设M (m ,-12m -2),则MF =-12m -2,DF =-m -5,∵MF 2+DF 2=DM 2,∴(-12m -2)2+(-m -5)2=1,解得m =-285或m =-4(舍去).∴点M 的坐标为(-285,45);第1题解图①②当BD =BM =1时,如解图②,过点M 作x 轴的垂线,垂足为N , ∵DE ⊥x 轴, ∴DE ∥MN ,∴BN ∶BD =BM ∶BE ,∴BN ∶1=1∶BE . ∵E (-5,12),∴DE =12,∴BE =52, ∴BN ∶1=1∶52,解得BN =255. ∴点M 的横坐标为-4-255,将x =-4-255代入y =-12x -2,得y =55,即点M 的坐标为(-4-255,55).综上所述,点M 的坐标为(-285,45)或(-4-255,55).第1题解图②三、满分冲关1. 解:(1)A (-4,0),B (6,0),C (0,3),抛物线的解析式为y =-18x 2+14x +3;【解法提示】令y =-12x +3=0,解得x =6,令x =0,得y =3,∴B (6,0),C (0,3).∵抛物线的对称轴为x =1,且过点B 、A ,∴抛物线与x 轴的另一交点A 坐标为(-4,0),设抛物线的解析式为y =a (x +4)(x -6),将点C (0,3)代入得-24a =3,解得a =-18.∴y =-18(x +4)(x -6)=-18x 2+14x +3(2)如解图①,过点P 作PG ⊥x 轴于点G ,交BC 于点Q ,过点P 作PH ⊥BC 于点H . ∵OC =3,OB =6, ∴BC =OC 2+OB 2=3 5. 又∵∠HQP =∠GQB , ∴∠HPQ =∠CBO , ∴sin ∠HPQ =sin ∠CBO =55. 故点P 到直线BC 的距离最大,即PQ 最大. 设P (m ,-18m 2+14m +3),Q (m ,-12m +3),∴PQ =-18m 2+14m +3-(-12m +3)=-18(m -3)2+98.∵-18<0,∴当m =3时,PQ 有最大值为98.∴P (3,218);第1题解图①(3)存在.由(1)得A (-4,0)、B (6,0)、C (0,3), ∴AB =10,AC =32+42=5. 分为两种情况分类讨论:①当△ABC ∽△AQB 时,如解图②所示. ∴AC AB =ABAQ,∠CAB =∠BAQ . ∴AQ =AB 2AC =1025=20,过点Q 作QD ⊥x 轴,垂足为点D , ∴QD =AQ ·sin ∠BAQ =20×35=12,AD =AQ ·cos ∠BAQ =20×45=16.∴Q (12,-12).第1题解图②②当△ABC ∽△BQA 时,如解图③所示, ∴AB BQ =ACAB,∠CAB =∠ABQ . ∴BQ =AB 2AC=20,过点Q 作QE ⊥x 轴,垂足为E ,同理可得QE =BQ ·sin ∠ABQ =20×35=12,BE =BQ ·cos ∠ABQ =20×45=16, ∴Q (-10,-12).综上所述,点Q 的坐标是(12,-12)或(-10,-12).第1题解图③2、解:(1)抛物线y =-18x 2+12x +4, 令x =0,可得A 点的坐标为(0,4),令y =0,可得B 点的坐标为(-4,0),C 点的坐标为(8,0).易得直线AB 的函数解析式为y =x +4,∵OA =OB ,∴∠BAO =45°.又∵直线AD 由直线AB 逆时针旋转90°而来,∴∠BAD =90°,∴∠OAD =45°,△OAD 为等腰直角三角形,∴OD =OA =4,D (4,0),易得直线AD 的函数解析式为y =-x +4;(2)①如解图①,过点P 作PE ⊥x 轴交AD 于点E ,PF ⊥AD 于点F ,第1题解图①易得△PEF 为等腰直角三角形,∴PF =22PE , ∴当PE 取得最大值时,PF 取得最大值,设P (x ,-18x 2+12x +4), 则E (x ,-x +4),∴PE =-18x 2+12x +4-(-x +4)=-18x 2+32x =-18(x -6)2+92, ∴当x =6时,PE 有最大值92, 此时PF 有最大值924, ∴当x =6时,-18x 2+12x +4=52, ∴当点P 到直线AD 的距离最大时,点P 的坐标为(6,52),最大距离为924; ②如解图②,连接AP ,过点P 作PE ⊥x 轴,交AD 于点E ,PF ⊥AD 于点F ,当点P 到AD 的距离为524时,PF =524, 则此时PE =2PF =52, 将PE =52代入PE =-18(x -6)2+92中, 解得x 1=10,x 2=2,∴此时点P 的坐标为(10,-72)或(2,92), 当点P 的坐标为(2,92)时,AP =22+(92-4)2=172, ∴sin ∠P AD =524172=53434; 当点P 的坐标为(10,-72)时, AP =102+(-72-4)2=252, ∴sin ∠P AD =PF AP =524252=210. 综上,sin ∠P AD 的值是53434或210.3、1. 解:(1)把点A 、B 、D 的坐标分别代入抛物线的解析式中得:⎩⎪⎨⎪⎧a +b +c =09a -3b +c =0c =3,解得⎩⎪⎨⎪⎧a =-1b =-2c =3,∴抛物线的解析式为y =-x 2-2x +3,∴抛物线的对称轴为直线x =-b 2a=-1, ∴点C 的坐标为(-1,4);(2)如解图①,过点C 作CE ∥AD 交抛物线于点E ,交y 轴于点T ,则△ADE 与△ACD 面积相等,直线AD 过点D ,设其解析式为y =mx +3,将点A 的坐标代入得:0=-3m +3,解得m =1,则直线AD 的解析式为y =x +3,∵CE ∥AD ,设直线CE 的解析式为y =x +n ,将点C 的坐标代入上式得:4=-1+n ,解得n =5,则直线CE 的解析式为y =x +5,则点T 的坐标为(0,5),联立⎩⎪⎨⎪⎧y =-x 2-2x +3y =x +5, 解得x =-1或x =-2(x =-1为点C 的横坐标),即点E 的坐标为(-2,3);在y 轴取一点H ′,使DT =DH ′=2,过点H ′作直线E ′E ″∥AD ,则△ADE ′和△ADE ″都与△ACD 面积相等,同理可得直线E ′E ″的解析式为y =x +1,联立⎩⎪⎨⎪⎧y =-x 2-2x +3y =x +1, 解得x =-3±172, ∴点E ″、E ′的坐标分别为(-3+172,-1+172)、(-3-172,-1-172), 综上,满足要求的点E 的坐标为(-2,3)或(-3+172,-1+172)或(-3-172,-1-172);第1题解图①(3)如解图②,设点P 的坐标为(m ,n ),则n =-m 2-2m +3,把点C 、D 的坐标代入一次函数的解析式y =kx +b 得:⎩⎪⎨⎪⎧4=-k +b b =3, 解得⎩⎪⎨⎪⎧k =-1b =3, 即直线CD 的解析式为y =-x +3,由(1)得,直线AD 的解析式为y =x +3,∴AD ⊥CD ,而直线PQ ⊥CD ,故直线PQ 的解析式中的k 值与直线AD 的解析式中的k 值相同, 同理可得直线PQ 的解析式为y =x +(n -m ),联立⎩⎪⎨⎪⎧y =-x +3y =x +(n -m ), 解得x =3+m -n 2,即点Q 的坐标为(3+m -n 2,3-m +n 2), 则PQ 2=(m -3+m -n 2)2+(n -3-m +n 2)2=(m +n -3)22=12(m +1)2·m 2, 同理可得:PC 2=(m +1)2[1+(m +1)2],AH =2,CH =4,则AC =25,当△ACH ∽△CPQ 时,PC PQ =AC CH =52, 即4PC 2=5PQ 2,整理得3m 2+16m +16=0,解得m =-4或m =-43, ∴点P 的坐标为(-4,-5)或(-43,359); 当△ACH ∽△PCQ 时,同理可得,点P 的坐标为(-23,359)或(2,-5), 综上所述,点P 的坐标为(-4,-5)或(-43,359)或(-23,359)或(2,-5).第1题解图②。
函数——二次函数2一.选择题(共9小题)1.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个B.3个C.2个D.1个2如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x≥3.5;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述4个判断中,正确的是()A.①② B.①④ C.①③④D.②③④3.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.c>﹣1 B.b>0 C.2a+b≠0D.9a+c>3b4.如图,二次函y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(,y2)是抛物线上的两点,则y1<y2,其中说法正确的是()A.①②④B.③④ C.①③④D.①②5.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()A.b2>4ac B.ac>0 C.a﹣b+c>0 D.4a+2b+c<06.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3 B.﹣1 C.2 D.57.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位 B.向右平移2个单位 C.向上平移2个单位 D.向下平移2个单位8.将抛物线y=(x﹣1)2+3向左平移1个单位,得到的抛物线与y轴的交点坐标是()A.(0,2)B.(0,3)C.(0,4)D.(0,7)9.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2二.填空题(共6小题)10.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=_________ .11.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为_________ 米.12.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是_________ .13.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为_________ 元.14.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是_________ .15.请写出一个以直线x=﹣2为对称轴,且在对称轴左侧部分是上升的抛物线的表达式,这条抛物线的表达式可以是_________ .三.解答题(共8小题)16.如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).17.如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.18.已知二次函数y=x2﹣4x+3.(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(2)求函数图象与x轴的交点A,B的坐标,及△ABC的面积.19.如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNF的面积之比.20.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.21.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].22.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x的函数关系式分别为y A=kx+b,y B=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求y A、y B关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?23.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?函数——二次函数2参考答案与试题解析一.选择题(共9小题)1.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个B.3个 C 2个D.1个考点:二次函数图象与系数的关系.专题:数形结合.分析:利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.解答:解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x=﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b+2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选:B.点评:此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法,同时注意特殊点的运用.2.如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x≥3.5;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述4个判断中,正确的是()A.①②B.①④C.①③④D.②③④考点:二次函数图象与系数的关系;二次函数图象上点的坐标特征;二次函数与不等式(组).专题:数形结合.分析:根据抛物线与x轴有两个交点可得b2﹣4ac>0,进而判断①正确;根据题中条件不能得出x=﹣2时y的正负,因而不能得出②正确;如果设ax2+bx+c=0的两根为α、β(α<β),那么根据图象可知不等式ax2+bx+c>0的解集是x<α或x>β,由此判断③错误;先根据抛物线的对称性可知x=﹣2与x=4时的函数值相等,再根据二次函数的增减性即可判断④正确.解答:解:①∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故①正确;②x=﹣2时,y=4a﹣2b+c,而题中条件不能判断此时y的正负,即4a﹣2b+c可能大于0,可能等于0,也可能小于0,故②错误;③如果设ax2+bx+c=0的两根为α、β(α<β),那么根据图象可知不等式ax2+bx+c>0的解集是x<α或x>β,故③错误;④∵二次函数y=ax2+bx+c的对称轴是直线x=1,∴x=﹣2与x=4时的函数值相等,∵4<5,∴当抛物线开口向上时,在对称轴的右边,y随x的增大而增大,∴y1<y2,故④正确.故选:B.点评:主要考查图象二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,以及二次函数与不等式的关系,根的判别式的熟练运用.3二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.c>﹣1 Bb>0 C.2a+b≠0D.9a+c>3b考点:二次函数图象与系数的关系.专题:压轴题;数形结合.分析:由抛物线与y轴的交点在点(0,﹣1)的下方得到c<﹣1;由抛物线开口方向得a>0,再由抛物线的对称轴在y轴的右侧得a、b异号,即b<0;根据抛物线的对称性得到抛物线对称轴为直线x=﹣,若x=1,则2a+b=0,故可能成立;由于当x=﹣3时,y>0,所以9a﹣3b+c>0,即9a+c>3b.解答:解:∵抛物线与y轴的交点在点(0,﹣1)的下方.∴c<﹣1;故A错误;∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b<0;故B错误;∵抛物线对称轴为直线x=﹣,∴若x=1,即2a+b=0;故C错误;∵当x=﹣3时,y>0,∴9a﹣3b+c>0,即9a+c>3b.故选:D.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.4.如图,二次函y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(,y2)是抛物线上的两点,则y1<y2,其中说法正确的是()A.①②④B③④C.①③④D.①②考点:二次函数图象与系数的关系.专题:数形结合.分析:①根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c 的符号;②根据对称轴求出b=﹣a;③把x=2代入函数关系式,结合图象判断函数值与0的大小关系;④求出点(﹣2,y1)关于直线x=的对称点的坐标,根据对称轴即可判断y1和y2的大小.解答:解:①∵二次函数的图象开口向下,∴a<0,∵二次函数的图象交y轴的正半轴于一点,∴c>0,∵对称轴是直线x=,∴﹣=,∴b=﹣a>0,∴abc<0.故①正确;②∵由①中知b=﹣a,∴a+b=0,故②正确;③把x=2代入y=ax2+bx+c得:y=4a+2b+c,∵抛物线经过点(2,0),∴当x=2时,y=0,即4a+2b+c=0.故③错误;④∵(﹣2,y1)关于直线x=的对称点的坐标是(3,y1),又∵当x>时,y随x的增大而减小,<3,∴y1<y2.故④正确;综上所述,正确的结论是①②④.故选:A.点评:本题考查了二次函数的图象和系数的关系的应用,注意:当a>0时,二次函数的图象开口向上,当a<0时,二次函数的图象开口向下.5如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()A.b2>4ac B.ac>0 C.a﹣b+c>0 D.4a+2b+c<0考点:二次函数图象与系数的关系.专题:数形结合.分析:根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向下得a<0,由抛物线与y轴的交点在x轴上方得c>0,则可对B进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对C选项进行判断;由于x=2时,函数值大于0,则有4a+2b+c>0,于是可对D选项进行判断.解答:解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项正确;∵抛物线开口向下,∴a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴ac<0,所以B选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以C选项错误;∵当x=2时,y>0,∴4a+2b+c>0,所以D选项错误.故选:A.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.6.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3 B﹣1 C.2 D.5考点:二次函数图象上点的坐标特征.专题:整体思想.分析:把点(1,1)代入函数解析式求出a+b,然后代入代数式进行计算即可得解.解答:解:∵二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),∴a+b﹣1=1,∴a+b=2,∴1﹣a﹣b=1﹣(a+b)=1﹣2=﹣1.故选:B.点评:本题考查了二次函数图象上点的坐标特征,整体思想的利用是解题的关键.7.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位 B.向右平移2个单位C向上平移2个单位D.向下平移2个单位考点:二次函数图象与几何变换.分析:根据图象左移加,可得答案.解答:解:将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是向左平移了2个单位,故选:A.点评:本题考查了二次函数图象与几何变换,函数图象平移规律是:左加右减,上加下减.8.将抛物线y=(x﹣1)2+3向左平移1个单位,得到的抛物线与y轴的交点坐标是()A.(0,2)B.(0,3)C.(0,4)D.(0,7)考点:二次函数图象与几何变换.专题:几何变换.分析:先根据顶点式确定抛物线y=(x﹣1)2+3的顶点坐标为(1,3),再利用点的平移得到平移后抛物线的顶点坐标为(0,3),于是得到移后抛物线解析式为y=x2+3,然后求平移后的抛物线与y轴的交点坐标.解答:解:抛物线y=(x﹣1)2+3的顶点坐标为(1,3),把点(1,3)向左平移1个单位得到点的坐标为(0,3),所以平移后抛物线解析式为y=x2+3,所以得到的抛物线与y轴的交点坐标为(0,3).故选:B.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.9.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2考点:二次函数图象与几何变换.专题:几何变换.分析:先得到抛物线y=x2的顶点坐标为(0,0),再得到点(0,0)向右平移1个单位得到点的坐标为(1,0),然后根据顶点式写出平移后的抛物线解析式.解答:解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移1个单位得到点的坐标为(1,0),所以所得的抛物线的表达式为y=(x﹣1)2.故选:C.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.二.填空题(共6小题)10.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y= a(1+x)2.考点:根据实际问题列二次函数关系式.专题:计算题.分析:由一月份新产品的研发资金为a元,根据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.解答:解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.点评:此题主要考查了根据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.11.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.考点:二次函数的应用.专题:函数思想.分析:根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.解答:解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=,所以水面宽度增加到米,故答案为:米.点评:此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.12.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是y=﹣(x+6)2+4 .考点:二次函数的应用.专题:数形结合.分析:根据题意得出A点坐标,进而利用顶点式求出函数解析式即可.解答:解:由题意可得出:y=a(x+6)2+4,将(﹣12,0)代入得出,0=a(﹣12+6)2+4,解得:a=﹣,∴选取点B为坐标原点时的抛物线解析式是:y=﹣(x+6)2+4.故答案为:y=﹣(x+6)2+4.点评:此题主要考查了二次函数的应用,利用顶点式求出函数解析式是解题关键.13.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为25 元.考点:二次函数的应用.专题:销售问题.分析:本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.解答:解:设最大利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.点评:本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.14.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是﹣1<x<3 .考点:二次函数与不等式(组).专题:计算题.分析:利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出ax2+bx+c<0的解集.解答:解:由图象得:对称轴是x=1,其中一个点的坐标为(3,0)∴图象与x轴的另一个交点坐标为(﹣1,0)利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴﹣1<x<3故填:﹣1<x<3点评:此题主要考查了二次函数利用图象解一元二次方程根的情况,很好地利用数形结合,题目非常典型.15.请写出一个以直线x=﹣2为对称轴,且在对称轴左侧部分是上升的抛物线的表达式,这条抛物线的表达式可以是y=﹣(x+2)2等.考点:二次函数的性质.专题:开放型.分析:在对称轴左侧部分是上升的抛物线必然开口向下,即a<0,直线x=﹣2为对称轴可直接利用配方法的形式写出一个二次函数的解析式.解答:解:根据题意得:y=﹣(x+2)2.(答案不唯一).点评:配方法:将解析式化为顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.二次函数当a>0,函数开口向上,当a<0,函数开口向下.三.解答题(共8小题)16.如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).考点:待定系数法求二次函数解析式;二次函数的性质.专题:计算题.分析:(1)将A与B代入抛物线解析式求出a与c的值,即可确定出抛物线解析式;(2)利用顶点坐标公式表示出D点坐标,进而确定出E点坐标,得到DE与OE的长,根据B点坐标求出BO的长,进而求出BE的长,在直角三角形BED中,利用勾股定理求出BD的长.解答:解:(1)∵抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),∴将A与B坐标代入得:,解得:,则抛物线解析式为y=﹣x2+2x+3;(2)点D为抛物线顶点,由顶点坐标(﹣,)得,D(1,4),∵对称轴与x轴交于点E,∴DE=4,OE=1,∵B(﹣1,0),∴BO=1,∴BE=2,在Rt△BED中,根据勾股定理得:BD===2.点评:此题考查了待定系数法求二次函数解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.17.如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.考点:抛物线与x轴的交点;待定系数法求二次函数解析式;二次函数与不等式(组).专题:待定系数法.分析:(1)根据抛物线的对称性来求点D的坐标;(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),把点A、B、C的坐标分别代入函数解析式,列出关于系数a、b、c的方程组,通过解方程组求得它们的值即可;(3)根据图象直接写出答案.解答:解:(1)∵如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,∴对称轴是x==﹣1.又点C(0,3),点C、D是二次函数图象上的一对对称点,∴D(﹣2,3);(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),根据题意得,解得,所以二次函数的解析式为y=﹣x2﹣2x+3;(3)如图,一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.点评:本题考查了抛物线与x轴的交点,待定系数法求二次函数解析式以及二次函数与不等式组.解题时,要注意数形结合数学思想的应用.另外,利用待定系数法求二次函数解析式时,也可以采用顶点式方程.18.已知二次函数y=x2﹣4x+3.(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(2)求函数图象与x轴的交点A,B的坐标,及△ABC的面积.考点:抛物线与x轴的交点;二次函数的性质;二次函数的三种形式.专题:数形结合.分析:(1)配方后求出顶点坐标即可;(2)求出A、B的坐标,根据坐标求出AB、CD,根据三角形面积公式求出即可.解答:解:(1)y=x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1,所以顶点C的坐标是(2,﹣1),当x<2时,y随x的增大而减少;当x>2时,y随x的增大而增大;(2)解方程x2﹣4x+3=0得:x1=3,x2=1,即A点的坐标是(1,0),B点的坐标是(3,0),过C作CD⊥AB于D,∵AB=2,CD=1,∴S△ABC=AB×CD=×2×1=1.点评:本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.19.如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNF的面积之比.考点:抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式;相似三角形的判定与性质.专题:代数几何综合题.分析:(1)直接将(﹣1,0)代入求出即可,再利用配方法求出顶点坐标;(2)利用EM∥BN,则△EMF∽△BNF,进而求出△EMF与△BNE的面积之比.解答:解:(1)由题意可得:﹣(﹣1)2+2×(﹣1)+c=0,解得:c=3,∴y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M(1,4);(2)∵A(﹣1,0),抛物线的对称轴为直线x=1,∴点B(3,0),∴EM=1,BN=2,∵EM∥BN,∴△EMF∽△BNF,∴=()2=()2=.点评:此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质,得出△EMF∽△BNF是解题关键.20.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.考点:二次函数的应用;反比例函数的应用.专题:应用题;数形结合.分析:(1)①利用y=﹣200x2+400x=﹣200(x﹣1)2+200确定最大值;②直接利用待定系数法求反比例函数解析式即可;(2)求出x=11时,y的值,进而得出能否驾车去上班.解答:解:(1)①y=﹣200x2+400x=﹣200(x﹣1)2+200,∴x=1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);②∵当x=5时,y=45,y=(k>0),∴k=xy=45×5=225;(2)不能驾车上班;理由:∵晚上20:00到第二天早上7:00,一共有11小时,∴将x=11代入y=,则y=>20,∴第二天早上7:00不能驾车去上班.点评:此题主要考查了反比例函数与二次函数综合应用,根据图象得出正确信息是解题关键.21.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].考点:二次函数的应用;一元二次方程的应用.专题:销售问题.分析:(1)根据销售量=240﹣(销售单价每提高5元,销售量相应减少20套)列函数关系即可;(2)根据月销售额=月销售量×销售单价=14000,列方程即可求出销售单价;(3)设一个月内获得的利润为w元,根据利润=1套球服所获得的利润×销售量列式整理,再根据二次函数的最值问题解答.解答:解:(1),∴y=﹣4x+480(x≥60);(2)根据题意可得,x(﹣4x+480)=14000,解得,x1=70,x2=50(不合题意舍去),∴当销售价为70元时,月销售额为14000元.(3)设一个月内获得的利润为w元,根据题意,得w=(x﹣40)(﹣4x+480),=﹣4x2+640x﹣19200,=﹣4(x﹣80)2+6400,当x=80时,w的最大值为6400∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.点评:本题考查了二次函数的应用以及一元二次方程的应用,并涉及到了根据二次函数的最值公式,熟练记忆公式是解题关键.22.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x的函数关系式分别为y A=kx+b,y B=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求y A、y B关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?。
2020-2021中考数学与二次函数有关的压轴题含详细答案一、二次函数1.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,以每秒12个单位的速度沿线段AD向点D运动,运动时间为t秒.过点P作PE⊥x轴交抛物线于点M,交AC 于点N.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)当t为何值时,△ACM的面积最大?最大值为多少?(3)点Q从点C出发,以每秒1个单位的速度沿线段CD向点D运动,当t为何值时,在线段PE上存在点H,使以C、Q、N、H为顶点的四边形为菱形?【答案】(1)A(1,4);y=-x2+2x+3;(2)当t=2时,△AMC面积的最大值为1;(3)2085或20 13.【解析】(1)由矩形的性质得到点A的坐标,由抛物线的顶点为A,设抛物线的解析式为y=a(x -1)2+4,把点C的坐标代入即可求得a的值;(2)由点P的坐标以及抛物线解析式得到点M的坐标,由A、C的坐标得到直线AC的解析式,进而得到点N的坐标,即可用关于t的式子表示MN,然后根据△ACM的面积是△AMN和△CMN的面积和列出用t表示的△ACM的面积,利用二次函数的性质即可得到当t=2时,△AMC面积的最大值为1;(3)①当点H在N点上方时,由PN=CQ,PN∥CQ,得到四边形PNCQ为平行四边形,所以当PQ=CQ时,四边形FECQ为菱形,据此得到,解得t值;②当点H在N点下方时,NH=CQ=,NQ=CQ时,四边形NHCQ为菱形,NQ2=CQ2,得:,解得t值.解:(1)由矩形的性质可得点A(1,4),∵抛物线的顶点为A,设抛物线的解析式为y =a (x -1)2+4,代入点C (3, 0),可得a =-1.∴y =-(x -1)2+4=-x 2+2x +3.(2)∵P (112t +,4), 将112x t =+代入抛物线的解析式,y =-(x -1)2+4=2144t -, ∴M (112t +,2144t -), 设直线AC 的解析式为,将A (1,4),C (3,0)代入,得:, 将112x t =+代入得, ∴N (112t +,), ∴MN, ∴, ∴当t =2时,△A MC 面积的最大值为1.(3)①如图1,当点H在N点上方时,∵N(112t +,),P (112t +,4), ∴P N=4—()==CQ ,又∵PN ∥CQ , ∴四边形PNCQ 为平行四边形,∴当PQ =CQ 时,四边形FECQ 为菱形,PQ 2=PD 2+DQ 2 =,∴, 整理,得240800t t -+=.解得12085t =-,22085t =+②如图2当点H在N点下方时, NH=CQ=,NQ =CQ 时,四边形NHCQ 为菱形,NQ 2=CQ 2,得:.整理,得213728000t t -+=.()()1320400t t --=.所以12013t =,(舍去).“点睛”此题主要考查二次函数的综合问题,会用顶点式求抛物线,会用两点法求直线解析式,会设点并表示三角形的面积,熟悉矩形和菱形的性质是解题的关键.2.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点。
2020-2021中考数学压轴题专题复习—二次函数的综合含答案一、二次函数1.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P 的坐标,并求出△POB的面积;若不存在,请说明理由.【答案】(1)y=x2﹣3x。
(2)点B的坐标为:(4,4)。
(3)存在;理由见解析;【解析】【分析】(1)将原点坐标代入抛物线中即可求出k的值,从而求得抛物线的解析式。
(2)根据(1)得出的抛物线的解析式可得出A点的坐标,也就求出了OA的长,根据△OAB的面积可求出B点纵坐标的绝对值,然后将符合题意的B点纵坐标代入抛物线的解析式中即可求出B点的坐标,然后根据B点在抛物线对称轴的右边来判断得出的B点是否符合要求即可。
(3)根据B点坐标可求出直线OB的解析式,由于OB⊥OP,由此可求出P点的坐标特点,代入二次函数解析式可得出P点的坐标.求△POB的面积时,求出OB,OP的长度即可求出△BOP的面积。
【详解】解:(1)∵函数的图象与x轴相交于O,∴0=k+1,∴k=﹣1。
∴这个二次函数的解析式为y=x2﹣3x。
(2)如图,过点B做BD⊥x轴于点D,令x 2﹣3x=0,解得:x=0或3。
∴AO=3。
∵△AOB 的面积等于6,∴12AO•BD=6。
∴BD=4。
∵点B 在函数y=x 2﹣3x 的图象上,∴4=x 2﹣3x ,解得:x=4或x=﹣1(舍去)。
又∵顶点坐标为:( 1.5,﹣2.25),且2.25<4, ∴x 轴下方不存在B 点。
∴点B 的坐标为:(4,4)。
(3)存在。
∵点B 的坐标为:(4,4),∴∠BOD=45°,22BO 442=+=。
若∠POB=90°,则∠POD=45°。
专题:二次函数中的面积问题1.如图①,在平面直角坐标系xOy 中,抛物线W 的函数表达式为y =-421x 2+1621x +4,抛物线W 与x 轴交与A ,B 两点(点B 在点A 的右侧),与y 轴相交于点C ,它的对称轴与x 轴交于点D ,直线l 经过C ,D 两点.(1)求A ,B 两点的坐标及直线l 的函数表达式;(2)将抛物线W 沿x 轴向右平移得到抛物线W ′,设抛物线W ′的对称轴与直线l 交于点F ,当△ACF 为直角三角形时,求点F 的坐标,并直接写出抛物线W ′的函数表达式.(3)如图②,连接AC ,CB ,将△ACD 沿x 轴向右平移m 个单位(0<m ≤5),得到△A ′C ′D ′.设A ′C ′交直线l 与点M ,C ′D ′交CB 于点N ,连接CC ′、MN .求四边形CMNC ′的面积(用含m 的代数式表示)2. 如图,在平面直角坐标系中,抛物线y =ax 2+bx -3(a ≠0)与x 轴交于点A (-2,0)、B (4,0)两点,与y 轴交于点C .(1)求抛物线的表达式;(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ 存在时,求△PBQ 的面积关于运动时间t 的函数表达式;(3)当△PBQ 的面积最大时,在BC 下方的抛物线上是否存在点K ,使S △CBK =52S △PBQ ,若存在,请直接写出点K 的坐标;若不存在,请说明理由.3. 如图①,在平面直角坐标系中,直线y =x +3与x 轴相交于点A ,与y 轴相交于点C ,点B 在x 轴的正半轴上,且AB =4,抛物线y =ax 2+bx +c 经过点A 、B 、C .(1)求抛物线的表达式;(2)如图②,点D 为抛物线的顶点,DE 是抛物线的对称轴,点E 在x 轴上,在抛物线上存在点Q ,使得△QAE 的面积与△CBE 的面积相等,请直接写出点Q 的坐标;(3) 如图③,若点R 是抛物线上的一点,且位于对称轴的左侧,是否存在点R ,使S △RBC =29.若存在,求出点R 的坐标;若不存在,请说明理由; (4) 如图④,在直线AC 的上方的抛物线上,是否存在一点M ,使四边形MABC 的面积最大.若存在,请求出点M 的坐标;若不存在,请说明理由;(5)如图⑤,若点H(0,1)在y轴上,连接BH,将△BOH沿x轴向左平移得到△B′O′H′.设平移距离为m(0<m<3),△B′O′H′与△AOC重叠部分面积为S,求出S与m之间的函数关系式及相应的自变量m的取值范围;4.如图,已知抛物线y=ax2-3x+c与y轴交于点A(0,-4),与x轴交于点B(4,0),点P是线段AB下方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点的坐标;(2)求点P移动到抛物线的什么位置时,∠P AB=90°,求出此时点P的坐标;(3)当点P从点A出发,沿线段AB下方的抛物线向终点B移动,在移动中,设点P 的横坐标为t,△P AB的面积为S,求S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?5.如图,已知抛物线y=-x2+bx+c与x轴交于A(-1,0)、B两点,与y轴交于点C(0,3).(1)求抛物线的表达式;(2)点D是第一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x 轴于点F,交直线BC于点E,连接BD、CD.设点D的横坐标为m,△BCD的面积为S.①求S关于m的函数关系式及自变量m的取值范围;②当m为何值时,S有最大值,并求这个最大值;(3)在(2)的条件下,直线BC能否把△BDF分成面积之比为2∶3的两部分?若能,请求出点D的坐标;若不能,请说明理由.6. 如图,已知二次函数的图象与x 轴交于A 、B 两点,D 为顶点,其中点B 的坐标为(5,0),点D 的坐标为(1,3).(1)求该二次函数的表达式;(2)点E 是线段BD 上的一点,过点E 作x 轴的垂线,垂足为F ,且ED =EF ,求点E 的坐标;(3)试问在该二次函数图象上是否存在点G ,使得△ADG 的面积是△BDG 的面积的35?若存在,求出点G 的坐标;若不存在,请说明理由.参考答案1. 解:(1)当y =0时,-421x 2+1621x +4=0,解得x 1=-3,x 2=7,∴点A 的坐标为(-3,0),点B 的坐标为(7,0),∵-b2a =-16212×(-421)=2,∴抛物线W 的对称轴为直线x =2, ∴点D 的坐标为(2,0), 当x =0时,y =4, ∴点C 的坐标为(0,4), 设直线l 的表达式为y =kx +b ,则⎩⎪⎨⎪⎧b =42k +b =0, 解得⎩⎪⎨⎪⎧k =-2b =4,∴直线l 的函数表达式为y =-2x +4;(2)∵抛物线W 向右平移,只有一种情况符合要求,如解图①, 即∠F AC =90°,设此时抛物线W ′的对称轴交x 轴于点G , ∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3, ∴tan ∠1=tan ∠3, ∴FG AG =AO CO, 设点F 的坐标为(x F ,-2x F +4), ∴tan ∠1=FG AG =-(-2x F +4)x F -(-3)=34,解得x F =5,-2x F +4=-6.∴点F 的坐标为(5,-6),即抛物线向右移动了三个单位, 此时抛物线W ′的函数表达式为 y =-421x 2+4021x ;(3)由平移可得:点C ′,A ′,D ′的坐标分别为C ′(m ,4),A ′(-3+m ,0),D ′(2+m ,0),CC ′∥x 轴,C ′D ′∥CD ,∴直线A ′C ′的表达式为y =43x +4-43m ,直线BC 的表达式为y =-47x +4,直线C ′D ′的表达式为y =-2x +2m +4, 分别解方程组 ⎩⎪⎨⎪⎧y =43x +4-43m y =-2x +4和 ⎩⎪⎨⎪⎧y =-2x +2m +4y =-47x +4, 解得⎩⎨⎧x =25m y =-45m +4和⎩⎨⎧x =75m y =-45m +4,∴M (25m ,-45m +4),N (75m ,-45m +4),∴y M =y N , ∴MN ∥x 轴, ∵CC ′∥x 轴, ∴CC ′∥MN , ∵C ′D ′∥CD ,∴四边形CMNC ′为平行四边形, ∴S ▱CMNC ′=m [4-(-45m +4)]=45m 2.2. 解:(1)把点A (-2,0)、B (4,0)分别代入y =ax 2+bx -3(a ≠0),得⎩⎪⎨⎪⎧4a -2b -3=0,16a +4b -3=0,解得⎩⎨⎧a =38,b =-34,∴该抛物线的表达式为y =38x 2-34x -3;(2)由题意得AP =3t ,BQ =t . ∴PB =6-3t .由题意得,点C 的坐标为(0,-3). 在Rt △BOC 中,BC =32+42=5. 如解图①,过点Q 作QH ⊥AB 于点H . ∴QH ∥CO , ∴△BHQ ∽△BOC ,∴HQ OC =BQ BC ,即HQ 3=t 5, ∴HQ =35t .∴S △PBQ =12PB ·HQ =12(6-3t )·35t =-910t 2+95t =-910(t -1)2+910;(3)存在.点K 的坐标为(1,-278)或(3,-158).【解法提示】设直线BC 的表达式为y =kx +c (k ≠0).把B (4,0),C (0,-3)代入,得⎩⎪⎨⎪⎧4k +c =0,c =-3,解得⎩⎪⎨⎪⎧k =34,c =-3,∴直线BC 的表达式为y =34x -3.∵点K 在抛物线上.∴设点K 的坐标为(m ,38m 2-34m -3).如解图②,过点K 作KE ∥y 轴,交BC 于点E .则点E 的坐标为(m ,34m -3).∴EK =34m -3-(38m 2-34m -3)=-38m 2+32m .∵S △PBQ =-910(t -1)2+910, 当△PBQ 存在时,0<t <2 ∴当t =1时,S △PBQ 最大=910.当△PBQ 的面积最大时,∵S △CBK =52S △PBQ ,S △PBQ =910.∴S △CBK =94.S △CBK =S △CEK +S △BEK =12EK ·m +12EK ·(4-m ) =12·4·EK =2(-38m 2+32m )=-34m 2+3m .即-34m 2+3m =94.解得m 1=1,m 2=3.综上所述,点K 的坐标为(1,-278)或(3,-158).3. (1)抛物线的表达式为y =-x 2-2x +3;(2)△QAE 与△CBE 的底边AE =BE .要使两三角形面积相等,只要高相等.当△QAE 的边AE 上的高为3时,△QAE 的面积与△CBE 的面积相等.①当y =3时,-x 2-2x +3=3,解得x 1=-2,x 2=0, ∴点Q 的坐标为(-2,3)或(0,3).②当y =-3时,-x 2-2x +3=-3,解得x =-1± √7 , ∴点Q 的坐标为(-1+√7 ,-3)或(-1- √7,-3).综上所述,点Q 的坐标为(-2,3)或(0,3)或(-1+ √7 ,-3)或(-1- √7 ,-3).(3)先假设存在点R ,使得S △RBC =92.利用面积公式不易求解时考虑构造相似求解. 存在点R ,使S △RBC =92 此时点R 的坐标为(21-237, 2373- 215) ;(3)要使△MAC 面积最大,可先把△MAC 的面积用含字母的式子表示出来,再利用二次函数的性质讨论其最值,进而求得M 点坐标.四边形MABC 面积最大时,点M 的坐标为( -32,415); (5)要求S 与m 的关系,先要判断△AOC 与△B ′O ′H ′的位置关系,对m 的取值范围进行分类讨论,在不同的情况下对S 与m 的函数关系进行探求.①当0<m <1时,设B ′H ′y 轴的交点为M ,重叠部分是四边形 S 四边形OMH ′O ′=21(OM +O ′H ′)·OO ′ = -21m 2+m ②当1≤m ≤2时,重叠部分是△B ′O ′H ′, ∴S =21 ×1×1= 21; ③当2<m <3时,重叠部分是四边形B ′MNO ′,设B ′H ′与直线AC 交于点M ,O ′H ′与直线AC 交于点N ,过点H ′作H ′E ∥x 轴交AC 于点E ,在直线AC 上,当y =1时,x =-2,则H ′E =m -2,S 四边形B ′MNO ′=S △B ′O ′H ′-S △H ′MN =-41m 2+m -214. 解:(1)当y =0时,即-421x 2+1621x + 4=0,解得x 1=-3,x 2=7, ∵点B 在点A 的右侧,∴点A 的坐标是(-3,0),点B 的坐标是(7,0). 抛物线的对称轴是直线x =-b 2a =-1621÷[2×(-421)]=2, ∴点D 的坐标是(2,0)对于二次函数y =-421x 2+1621x +4,当x =0时,y =4,所以点C 的坐标为(0,4).设直线l 的函数表达式为y =kx +b (k ≠0),代入C 、D 两点坐标得⎩⎪⎨⎪⎧b =4,2k +b =0,解得⎩⎪⎨⎪⎧k =-2,b =4, 则直线l 的函数表达式为y =-2x +4;(2)∵抛物线W 向右平移只有一种情况符合要求,即是∠F AC =90°,如解图,设此时抛物线W ′的对称轴交x 轴于点G , ∵∠1+∠2=90°,∠2+∠3=90°, ∴∠1=∠3,tan ∠1=tan ∠3. ∴FG AG =AO CO =34由点F 在直线l 上,设点F 坐标为(x F ,-2x F +4), ∴tan ∠1=FG AG =-(-2x F +4)x F -(-3)=34,解得x F =5.∴点F 的坐标为(5,-6). ∵G 点在x 轴上, ∴点G 坐标为(5,0).抛物线y =-421x 2+1621x +4对称轴与x 轴交点坐标是D (2,0),因此把原抛物线向右平移3个单位,得到抛物线W ′,将原函数表示为顶点式得y =-421x 2+1621x +4=-421(x 2-4x +4)+4+1621=-421(x -2)2+10021,此时抛物线W ′的函数表达式为y ′=-421(x -2-3)2+10021=-421(x -5)2+10021=-421x 2+4021x -10021+10021,即y ′=-421x 2+4021x ;(3)由平移可得:点C ′,A ′,D ′的坐标分别为C ′(m ,4),A ′(-3+m ,0),D ′(2+m ,0),CC ′∥x 轴,C ′D ′∥CD ,∴由待定系数法可求出直线A ′C ′的函数表达式是: y =43x +4-43m ,直线BC 的函数表达式是: y =-47x +4,直线C ′D ′的函数表达式是:y =-2x +2m +4, 分别解方程组 ⎩⎪⎨⎪⎧y =43x +4-43m ,y =-2x +4,与⎩⎪⎨⎪⎧y =-2x +2m +4,y =-47x +4,解得 ⎩⎨⎧x =25m ,y =-45m +4,与⎩⎨⎧x =75m ,y =-45m +4,∴点M 、N 的坐标分别是M (25m ,-45m +4)、 N (75m ,-45m +4).∴y M =y N ,则MN ∥x 轴. ∵CC ′∥x 轴, ∴CC ′∥MN . ∵C ′D ′∥CD ,∴四边形CMNC ′为平行四边形. ∴S ▱CMNC ′=m [4-(-45m +4)]=45m 2.5. 解:(1)把A (0,-4),B (4,0)代入y =ax 2-3x +c中得⎩⎪⎨⎪⎧c =-4,16a -12+c =0,解得⎩⎪⎨⎪⎧a =1,c =-4,∴抛物线的表达式为y =x 2-3x -4, 顶点坐标为(32,-254);(2)如解图①,过点P 作PQ ⊥OA 于点Q , ∵OA =OB , ∴∠OAB =45°. 又∵∠P AB =90°, ∴∠P AQ =45°. ∴AQ =PQ .设P (m ,m 2-3m -4), ∴m =-4-(m 2-3m -4). 解得m 1=0(舍去),m 2=2, 将m =2代入抛物线得y =-6. ∴P (2,-6);(3)设AB 的解析式为y =kx +b (k ≠0), 把A (0,-4),B (4,0)代入y =kx +b 中得⎩⎪⎨⎪⎧b =-4,4k +b =0,解得⎩⎪⎨⎪⎧k =1,b =-4. ∴y =x -4;如解图②,过点P 作PN ⊥x 轴交AB 于点M , ∵P (t ,t 2-3t -4),M (t ,t -4). ∴PM =t -4-(t 2-3t -4) =-t 2+4t . ∴S △APB =12PM ·OB=12(-t 2+4t )×4 =-2t 2+8t ,即S =-2t 2+8t (0≤t ≤4). ∵-2<0.∴当t =-b 2a =-82×(-2)=2时,S 有最大值.∴S 最大值=-2×22+8×2=8.6. 解:(1)∵抛物线过A (-1,0)、C (0,3)两点, ∴将A (-1,0)、C (0,3)代入抛物线表达式得⎩⎪⎨⎪⎧-1-b +c =0,c =3,解得⎩⎪⎨⎪⎧b =2,c =3. ∴抛物线的表达式为y =-x 2+2x +3; (2)①令y =0,解得x 1=-1,x 2=3,∴B (3,0) 设直线BC 的函数解析式为y =kx +b .∵直线BC 过点B (3,0),C (0,3),∴⎩⎪⎨⎪⎧0=3k +b ,3=b ,解得⎩⎪⎨⎪⎧k =-1,b =3, ∴y =-x +3.设D (m ,-m 2+2m +3),E (m ,-m +3), ∴DE =(-m 2+2m +3)-(-m +3)=-m 2+3m . ∴S =12OB ·DE =32(-m 2+3m )=-32m 2+92m (0<m <3);②S =-32m 2+92m=-32(m -32)2+278.∵-32<0,∴当m =32时,S 有最大值,最大值S =278;(3)直线BC 能把△BDF 分成面积之比为2∶3的两部分.理由:∵△BDE 和△BFE 是等高的,∴它们的面积比=DE ∶EF . (ⅰ)当DE ∶EF =2∶3时,即-m 2+3m -m +3=23,解得m 1=23,m 2=3(舍),此时点D 坐标为(23,359);(ⅱ)当DE ∶EF =3∶2时,即-m 2+3m -m +3=32,解得m 1=32,m 2=3(舍),此时点D 的坐标为(32,154).综上可知,点D 的坐标为(23,359)或(32,154).(13分)4. 解:(1)∵抛物线的顶点D 的坐标为(1,3), ∴设抛物线表达式为y =a (x -1)2+3,将点B (5,0)代入抛物线表达式,得a (5-1)2+3=0,解得a =-316,∴该二次函数的表达式为y =-316(x -1)2+3;(2)如解图①,设抛物线对称轴交x 轴于点C ,则点C 的坐标为(1,0), 在Rt △BCD 中,BC =BO -CO =4,CD =3, ∴由勾股定理得BD =5. ∵EF ⊥BC ,DC ⊥BC , ∴EF ∥DC , ∴△BEF ∽△BDC . ∴BE BD =EF DC =BF BC. ∵EF =DE , ∴5-EF 5=EF 3,解得EF =158, ∴BF =BC ·EFCD =4×1583=52.∴OF =OB -BF =52.∴点E 的坐标为(52,158);(3)存在.∵抛物线对称轴为直线x =1,点B 的坐标为(5,0),∴点A 的坐标为(-3,0),AB =8.∵S △ADG ∶S △BDG =3∶5,∴点A ,B 到直线DG 的距离之比为3∶5.分两种情况讨论:①A ,B 两点在直线DG 的同侧.如解图②,延长DG 交x 轴于点H ,过点A 作AN ⊥DH于点N ,过点B 作BM ⊥DM 于点M ,则AN BM =35.易得△HAN ∽△HBM , ∴AH BH =AN BM, ∴AH AH +8=35,解得AH =12, ∴点H 的坐标为(-15,0),由点D (1,3),H (-15,0)得直线DH 的解析式为y =316(x +15), 联立得⎩⎨⎧y =-316(x -1)2+3,y =316(x +15), 解得⎩⎪⎨⎪⎧x 1=0,y 1=4516,⎩⎪⎨⎪⎧x 2=1,y 2=3,(不符合题意,舍去) ∴点G 的坐标为(0,4516);②当点A ,B 在直线DG 的两旁时,如解图③,分别过A ,B 作OG 的垂线,垂足分别为点N ,点M ,则AN BM =35,∵OA OB =35,∴直线DG 经过点O ,则直线DG 的表达式为y =3x ,联立得⎩⎪⎨⎪⎧y =-316(x -1)2+3,y =3x ,解得⎩⎪⎨⎪⎧x 3=-15,y 3=-45,⎩⎪⎨⎪⎧x 4=1,y 4=3,(不符合题意,舍去)此时点G 的坐标为(-15,-45),综上,符合条件的点G 有两个,坐标分别为(0,4516),(-15,-45).。
1.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点.(1)求抛物线的解析式;(2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E、F的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.2.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.3.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值.4.如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A (4,0),函数图象最低点M的纵坐标为﹣,直线l的解析式为y=x.(1)求二次函数的解析式;(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P 为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标.5.如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD 沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.6.如图1,在平面直角坐标系中,O是坐标原点,抛物线y=﹣x2﹣x+8与x轴正半轴交于点A,与y轴交于点B,连接AB,点M,N分别是OA,AB的中点,Rt△CDE≌Rt△ABO,且△CDE始终保持边ED经过点M,边CD经过点N,边DE与y轴交于点H,边CD与y轴交于点G.(1)填空:OA的长是,∠ABO的度数是度;(2)如图2,当DE∥AB,连接HN.①求证:四边形AMHN是平行四边形;②判断点D是否在该抛物线的对称轴上,并说明理由;(3)如图3,当边CD经过点O时,(此时点O与点G重合),过点D作DQ∥OB,交AB延长线上于点Q,延长ED到点K,使DK=DN,过点K作KI∥OB,在KI上取一点P,使得∠PDK=45°(点P,Q在直线ED的同侧),连接PQ,请直接写出PQ的长.7.如图,抛物线y=x2+x+c与x轴的负半轴交于点A,与y轴交于点B,连结AB,点C(6,)在抛物线上,直线AC与y轴交于点D.(1)求c的值及直线AC的函数表达式;(2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO 并延长交AB于点N,若M为PQ的中点.①求证:△APM∽△AON;②设点M的横坐标为m,求AN的长(用含m的代数式表示).8.抛物线y=4x2﹣2ax+b与x轴相交于A(x1,0),B(x2,0)(0<x1<x2)两点,与y轴交于点C.(1)设AB=2,tan∠ABC=4,求该抛物线的解析式;(2)在(1)中,若点D为直线BC下方抛物线上一动点,当△BCD的面积最大时,求点D 的坐标;(3)是否存在整数a,b使得1<x1<2和1<x2<2同时成立,请证明你的结论.9.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为2.(1)求A,B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M 为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.10.如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好经过点O,C,A三点.(1)求该抛物线的解析式;(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点)、C、H、N四点构成以OC为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.11.如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=x2+bx+c 经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=x2+bx+c交于第四象限的F点.(1)求该抛物线解析式与F点坐标;(2)如图(2),动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE以每秒个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.①问EP+PH+HF是否有最小值?如果有,求出t的值;如果没有,请说明理由.②若△PMH是等腰三角形,请直接写出此时t的值.12.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.13.如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.14.如图,四边形ABCD是边长为4的正方形,动点P、Q同时从A点出发,点P沿AB以每秒1个单位长度的速度向终点B运动.点Q沿折线ADC以每秒2个单位长度的速度向终点C 运动,设运动时间为t秒.(1)当t=2秒时,求证:PQ=CP;(2)当2<t≤4时,等式“PQ=CP”仍成立吗?试说明其理由;(3)设△CPQ的面积为S,那么S与t之间的函数关系如何?并问S的值能否大于正方形ABCD 面积的一半?为什么?15.如图1,在平面直角坐标系中,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求直线BC的解析式;(2)点D是线段BC中点,点E是BC上方抛物线上一动点,连接CE,DE.当△CDE的面积最大时,过点E作y轴垂线,垂足为F,点P为线段EF上一动点,将△CEF绕点C沿顺时针方向旋转90°,点F,P,E的对应点分别是F′,P′,E′,点Q从点P出发,先沿适当的路径运动到点F′处,再沿F′C运动到点C处,最后沿适当的路径运动到点P′处停止.求△CDE面积的最大值及点Q经过的最短路径的长;(3)如图2,直线BH经过点B与y轴交于点H(0,3)动点M从O出发沿OB方向以每秒1个单位长度向点B运动,同时动点N从B点沿BH方向以每秒2个单位长度的速度向点H 运动,当点N运动到H点时,点M,点N同时停止运动,设运动时间为t.运动过程中,过点N作OB的平行线交y轴于点I,连接MI,MN,将△MNI沿NI翻折得△M′NI,连接HM′,当△M′HN为等腰三角形时,求t的值.16.如图1,直线与x轴、y轴分别交于B、C两点,经过B、C两点的抛物线与x轴的另一交点坐标为A(﹣1,0).(1)求B、C两点的坐标及该抛物线所对应的函数关系式;(2)P在线段BC上的一个动点(与B、C不重合),过点P作直线a∥y轴,交抛物线于点E,交x轴于点F,设点P的横坐标为m,△BCE的面积为S.①求S与m之间的函数关系式,并写出自变量m的取值范围;②求S的最大值,并判断此时△OBE的形状,说明理由;(3)过点P作直线b∥x轴(图2),交AC于点Q,那么在x轴上是否存在点R,使得△PQR 为等腰直角三角形?若存在,请求出点R的坐标;若不存在,请说明理由.17.已知正方形OABC的边OC、OA分别在x、y轴的正半轴上,点B坐标为(10,10),点P 从O出发沿O→C→B运动,速度为1个单位每秒,连接AP.设运动时间为t.(1)若抛物线y=﹣(x﹣h)2+k经过A、B两点,求抛物线函数关系式;(2)当0≤t≤10时,如图1,过点O作OH⊥AP于点H,直线OH交边BC于点D,连接AD,PD,设△APD的面积为S,求S的最小值;(3)在图2中以A为圆心,OA长为半径作⊙A,当0≤t≤20时,过点P作PQ⊥x轴(Q在P的上方),且线段PQ=t+12:①当t在什么范围内,线段PQ与⊙A只有一个公共点?当t在什么范围内,线段PQ与⊙A 有两个公共点?②请将①中求得的t的范围作为条件,证明:当t取该范围内任何值时,线段PQ与⊙A总有两个公共点.18.如图,二次函数y=x2﹣4x的图象与x轴、直线y=x的一个交点分别为点A、B,CD是线段OB上的一动线段,且CD=2,过点C、D的两直线都平行于y轴,与抛物线相交于点F、E,连接EF.(1)点A的坐标为,线段OB的长=;(2)设点C的横坐标为m①当四边形CDEF是平行四边形时,求m的值;②连接AC、AD,求m为何值时,△ACD的周长最小,并求出这个最小值.19.如图,已知二次函数y=﹣x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求二次函数的解析式;(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.20.如图,抛物线y=x2+mx+n与直线y=﹣x+3交于A,B两点,交x轴于D,C两点,连接AC,BC,已知A(0,3),C(3,0).(Ⅰ)求抛物线的解析式和tan∠BAC的值;(Ⅱ)在(Ⅰ)条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E 的坐标是多少时,点M在整个运动中用时最少?21.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A (0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x 于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x 轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF ;(4)连接PE ,在x 轴上点Q 的右侧是否存在一点M ,使△CQM 与△CPE 全等?若存在,试求出点M 的坐标;若不存在,请说明理由.[注:3+2=(+1)2].22.阅读理解抛物线y=x 2上任意一点到点(0,1)的距离与到直线y=﹣1的距离相等,你可以利用这一性质解决问题.问题解决如图,在平面直角坐标系中,直线y=kx +1与y 轴交于C 点,与函数y=x 2的图象交于A ,B 两点,分别过A ,B 两点作直线y=﹣1的垂线,交于E ,F 两点.(1)写出点C 的坐标,并说明∠ECF=90°;(2)在△PEF 中,M 为EF 中点,P 为动点.①求证:PE 2+PF 2=2(PM 2+EM 2);②已知PE=PF=3,以EF 为一条对角线作平行四边形CEDF ,若1<PD <2,试求CP 的取值范围.23.已知抛物线经过A (﹣3,0),B (1,0),C (2,)三点,其对称轴交x 轴于点H ,一次函数y=kx +b (k ≠0)的图象经过点C ,与抛物线交于另一点D (点D 在点C 的左边),与抛物线的对称轴交于点E .(1)求抛物线的解析式;(2)如图1,当S △EOC =S △EAB 时,求一次函数的解析式;(3)如图2,设∠CEH=α,∠EAH=β,当α>β时,直接写出k 的取值范围.24.如图1,已知直线EA 与x 轴、y 轴分别交于点E 和点A (0,2),过直线EA 上的两点F 、G 分别作x 轴的垂线段,垂足分别为M (m ,0)和N (n ,0),其中m <0,n >0.(1)如果m=﹣4,n=1,试判断△AMN 的形状;(2)如果mn=﹣4,(1)中有关△AMN 的形状的结论还成立吗?如果成立,请证明;如果不成立,请说明理由;(3)如图2,题目中的条件不变,如果mn=﹣4,并且ON=4,求经过M 、A 、N 三点的抛物线所对应的函数关系式;(4)在(3)的条件下,如果抛物线的对称轴l 与线段AN 交于点P ,点Q 是对称轴上一动点,以点P 、Q 、N 为顶点的三角形和以点M 、A 、N 为顶点的三角形相似,求符合条件的点Q 的坐标.25.如图,二次函数与x 轴交于A 、B 两点,与y 轴交于C 点,点P 从A 点出发,以1个单位每秒的速度向点B 运动,点Q 同时从C 点出发,以相同的速度向y 轴正方向运动,运动时间为t 秒,点P 到达B 点时,点Q 同时停止运动.设PQ 交直线AC 于点G .(1)求直线AC 的解析式;(2)设△PQC 的面积为S ,求S 关于t 的函数解析式;(3)在y 轴上找一点M ,使△MAC 和△MBC 都是等腰三角形.直接写出所有满足条件的M 点的坐标;(4)过点P 作PE ⊥AC ,垂足为E ,当P 点运动时,线段EG 的长度是否发生改变,请说明理由.26.如图,在平面直角坐标系xOy 中,二次函数的图象与x 轴交于A (﹣1,0)、B (3,0)两点,顶点为C .(1)求此二次函数解析式;(2)点D 为点C 关于x 轴的对称点,过点A 作直线l :交BD 于点E ,过点B 作直线BK∥AD交直线l于K点.问:在四边形ABKD的内部是否存在点P,使得它到四边形ABKD 四边的距离都相等?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,若M、N分别为直线AD和直线l上的两个动点,连结DN、NM、MK,求DN+NM+MK和的最小值.27.如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC 在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ 的周长最小,求出P、Q两点的坐标.28.如图,已知抛物线与x轴交于点A(﹣2,0),B(4,0),与y轴交于点C(0,).(1)求抛物线的解析式及其顶点D的坐标;(2)设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,在直线CD的上方,y轴及y轴的右侧的平面内找一点G,使以点G、F、C为顶点的三角形与△COE相似,请直接写出符合要求的点G的坐标;(3)如图,抛物线的对称轴与x轴的交点M,过点M作一条直线交∠ADB于T,N两点,①当∠DNT=90°时,直接写出的值;②当直线TN绕点M旋转时,=DN•DT;试说明:△DNT的面积S△DNT并猜想:的值是否是定值?说明理由.29.如图①,Rt△ABC中,∠B=90°∠CAB=30°,AC⊥x轴.它的顶点A的坐标为(10,0),顶点B的坐标为,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D (0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.(1)求∠BAO的度数.(直接写出结果)(2)当点P在AB上运动时,△OPQ的面积S与时间t(秒)之间的函数图象为抛物线的一部分(如图②),求点P的运动速度.(3)求题(2)中面积S与时间t之间的函数关系式,及面积S取最大值时,点P的坐标.(4)如果点P,Q保持题(2)中的速度不变,当t取何值时,PO=PQ,请说明理由.30.如图,已知直线l:y=x+2与y轴交于点D,过直线l上一点E作EC丄y轴于点C,且C 点坐标为(0,4),过C、E两点的抛物线y=﹣x2+bx+c交x轴于A、B两点(点A在点B的左侧).(1)求抛物线的解析式:(2)动点Q从点C出发沿线段CE以1单位/秒的速度向终点E运动,过点Q作QF⊥ED于点F,交BD于点H,设点Q运动时间为t秒,△DFH的面积为S,求出S与t的函数关系式(并直接写出自变量t的取值范围);(3)若动点P为直线CE上方抛物线上一点,连接PE,过点E作EM⊥PE交线段BD于点M,当△PEM是等腰直角三角形时,求四边形PMBE的面积.31.已知在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0,且a,b,c为常数)的对称轴为:直线x=,与x轴分别交于点A、点B,与y轴交于点C(0,﹣),且过点(3,﹣5),D为x轴正半轴上的动点,E为y轴负半轴上的动点.(1)求该抛物线的表达式;(2)如图1,当点D为(3,0)时,DE交该抛物线于点M,若∠ADC=∠CDM,求点M的坐标;(3)如图2,把(1)中抛物线平移使其顶点与原点重合,若直线ED与新抛物线仅有唯一交点Q时,y轴上是否存在一个定点P使PE=PQ?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一.解答题(共31小题)1.(2017秋•上杭县期中)如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点.(1)求抛物线的解析式;(2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E、F的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】151:代数综合题;32 :分类讨论.【分析】(1)根据AC=BC,求出BC的长,进而得到点A,B的坐标,利用待定系数法即可求得抛物线的解析式;(2)利用待定系数法求出直线AB的解析式,用含m的式表示出E,F的坐标,求出EF的长度最大时m的值,即可求得E,F的坐标;(3)分两种情况:∠E﹣90°和∠F=90°,分别得到点P的纵坐标,将纵坐标代入抛物线解析式,即可求得点P的值.【解答】解:(1)∵OA=1,OC=4,AC=BC,∴BC=5,∴A(﹣1,0),B(4,5),抛物线y=x2+bx+c经过A,B两点,∴,解得:,∴y=x2﹣2x﹣3;(2)设直线AB解析式为:y=kx+b,直线经过点A,B两点,∴,解得:,∴直线AB的解析式为:y=x+1,设点E的坐标为(m,m+1),则点F(m,m2﹣2m﹣3),∴EF=m+1﹣m2+2m+3=﹣m2+3m+4=﹣(m﹣)2+,∴当EF最大时,m=,∴点E(,),F(,);(3)存在.①当∠FEP=90°时,点P的纵坐标为,即x2﹣2x﹣3=,解得:x1=,x2=,∴点P1(,),P2(,),②当∠EFP=90°时,点P的纵坐标为,即x2﹣2x﹣3=,解得:x1=,x2=(舍去),∴点P3(,),综上所述,P1(,),P2(,),P3(,).【点评】本题主要考查二次函数的综合题,其中第(3)小题要注意分类讨论,分∠E=90°和∠F=90°两种情况.2.(2017秋•鄂城区期中)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.【考点】HF:二次函数综合题.【专题】16 :压轴题.【分析】(1)代入A(1,0)和C(0,3),解方程组即可;(2)求出点B的坐标,再根据勾股定理得到BC,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,运用二次函数的顶点坐标解决问题;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N 在对称轴上x轴下方2个单位处.【解答】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当BP=BC时,OP=OB=3,∴P3(0,﹣3);③当PB=PC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0);(3)如图2,设A运动时间为t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.【点评】本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数,等腰三角形的性质,轴对称的性质等知识,运用数形结合、分类讨论及方程思想是解题的关键.3.(2017•泸州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值.【考点】HF:二次函数综合题.【专题】16 :压轴题.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)当点D在x轴上方时,则可知当CD∥AB时,满足条件,由对称性可求得D点坐标;当点D在x轴下方时,可证得BD∥AC,利用AC的解析式可求得直线BD的解析式,再联立直线BD和抛物线的解析式可求得D点坐标;(3)过点P作PH∥y轴交直线BC于点H,可设出P点坐标,从而可表示出PH的长,可表示出△PEB的面积,进一步可表示出直线AP的解析式,可求得F点的坐标,联立直线BC和PA的解析式,可表示出E点横坐标,从而可表示出△CEF的面积,再利用二次函数的性质可求得S1﹣S2的最大值.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+x+2;(2)当点D在x轴上方时,过C作CD∥AB交抛物线于点D,如图1,∵A、B关于对称轴对称,C、D关于对称轴对称,∴四边形ABDC为等腰梯形,∴∠CAO=∠DBA,即点D满足条件,∴D(3,2);当点D在x轴下方时,∵∠DBA=∠CAO,∴BD∥AC,∵C(0,2),∴可设直线AC解析式为y=kx+2,把A(﹣1,0)代入可求得k=2,∴直线AC解析式为y=2x+2,∴可设直线BD解析式为y=2x+m,把B(4,0)代入可求得m=﹣8,∴直线BD解析式为y=2x﹣8,联立直线BD和抛物线解析式可得,解得或,∴D(﹣5,﹣18);综上可知满足条件的点D的坐标为(3,2)或(﹣5,﹣18);(3)过点P作PH∥y轴交直线BC于点H,如图2,设P(t,﹣t2+t+2),由B、C两点的坐标可求得直线BC的解析式为y=﹣x+2,∴H(t,﹣t+2),∴PH=y P﹣y H=﹣t2+t+2﹣(﹣t+2)=﹣t2+2t,设直线AP的解析式为y=px+q,∴,解得,∴直线AP的解析式为y=(﹣t+2)(x+1),令x=0可得y=2﹣t,∴F(0,2﹣t),∴CF=2﹣(2﹣t)=t,联立直线AP和直线BC解析式可得,解得x=,即E点的横坐标为,∴S1=PH(x B﹣x E)=(﹣t2+2t)(4﹣),S2=••,∴S1﹣S2=(﹣t2+2t)(4﹣)﹣••=﹣t2+4t=﹣(t﹣)2+,∴当t=时,有S1﹣S2有最大值,最大值为.【点评】本题为二次函数的综合应用,涉及待定系数法、平行线的判定和性质、三角形的面积、二次函数的性质、方程思想伋分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中确定出D点的位置是解题的关键,在(3)中用P点的坐标分别表示出两个三角形的面积是解题的关键.本题考查知识点较多,综合性较强,计算量大,难度较大.4.(2017•南充)如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O (0,0)和点A(4,0),函数图象最低点M的纵坐标为﹣,直线l的解析式为y=x.(1)求二次函数的解析式;(2)直线l沿x轴向右平移,得直线l′,l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;(3)在(2)的条件下,l′与y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′,P 为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标.【考点】HF:二次函数综合题.【专题】16 :压轴题.【分析】(1)由题意抛物线的顶点坐标为(2,﹣),设抛物线的解析式为y=a(x﹣2)2﹣,把(0,0)代入得到a=,即可解决问题;(2)如图1中,设E(m,0),则C(m,m2﹣m),B(﹣m2+m,0),由E、B关于对称轴对称,可得=2,由此即可解决问题;(3)分两种情形求解即可①当P1与N重合时,△P1B′N′是等腰三角形,此时P1(0,﹣3).②当N′=N′B′时,设P(m,m﹣3),列出方程解方程即可;【解答】解:(1)由题意抛物线的顶点坐标为(2,﹣),设抛物线的解析式为y=a(x﹣2)2﹣,把(0,0)代入得到a=,∴抛物线的解析式为y=(x﹣2)2﹣,即y=x2﹣x.(2)如图1中,设E(m,0),则C(m,m2﹣m),B(﹣m2+m,0),∵E′在抛物线上,易知四边形EBE′C是正方形,抛物线的对称轴也是正方形的对称轴,∴E、B关于对称轴对称,∴=2,解得m=1或6(舍弃),∴B(3,0),C(1,﹣2),∴直线l′的解析式为y=x﹣3.(3)如图2中,①当P1与N重合时,△P1B′N′是等腰三角形,此时P1(0,﹣3).②当N′=N′B′时,设P(m,m﹣3),则有(m﹣)2+(m﹣3﹣)2=(3)2,解得m=或,∴P2(,),P3(,).综上所述,满足条件的点P坐标为(0,﹣3)或(,)或(,).【点评】本题考查二次函数综合题、待定系数法、等腰三角形的判定和性质、两点间距离公式等知识,解题的关键是学会用分类讨论的思想思考问题,学会根据方程,属于中考压轴题.5.(2017•宜宾)如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD 沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】16 :压轴题.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线的解析式;(2)由题意可求得C点坐标,设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可求得C′点的坐标,则可求得平移的单位,可求得m的值;(3)由(2)可求得E点坐标,连接BE交对称轴于点M,过E作EF⊥x轴于点F,当BE为平行四边形的边时,过Q作对称轴的垂线,垂足为N,则可证得△PQN≌△EFB,可求得QN,即可求得Q到对称轴的距离,则可求得Q点的横坐标,代入抛物线解析式可求得Q点坐标;当BE为对角线时,由B、E的坐标可求得线段BE的中点坐标,设Q(x,y),由P点的横坐标则可求得Q点的横坐标,代入抛物线解析式可求得Q点的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点,∴,解得,∴抛物线解析式为y=﹣x2+4x+5;(2)∵AD=5,且OA=1,∴OD=6,且CD=8,∴C(﹣6,8),设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可得8=﹣x2+4x+5,解得x=1或x=3,∴C′点的坐标为(1,8)或(3,8),∵C(﹣6,8),∴当点C落在抛物线上时,向右平移了7或9个单位,∴m的值为7或9;(3)∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴抛物线对称轴为x=2,∴可设P(2,t),由(2)可知E点坐标为(1,8),①当BE为平行四边形的边时,连接BE交对称轴于点M,过E作EF⊥x轴于点F,过Q作对称轴的垂线,垂足为N,如图,则∠BEF=∠BMP=∠QPN,在△PQN和△EFB中∴△PQN≌△EFB(AAS),∴NQ=BF=OB﹣OF=5﹣1=4,设Q(x,y),则QN=|x﹣2|,∴|x﹣2|=4,解得x=﹣2或x=6,当x=﹣2或x=6时,代入抛物线解析式可求得y=﹣7,∴Q点坐标为(﹣2,﹣7)或(6,﹣7);②当BE为对角线时,∵B(5,0),E(1,8),∴线段BE的中点坐标为(3,4),则线段PQ的中点坐标为(3,4),设Q(x,y),且P(2,t),∴x+2=3×2,解得x=4,把x=4代入抛物线解析式可求得y=5,∴Q(4,5);综上可知Q点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5).【点评】本题为二次函数的综合应用,涉及待定系数法、平移的性质、全等三角形的判定和性质、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)注意待定系数法的应用,在(2)中求得平移后C点的对应点的坐标是解题的关键,在(3)中确定出Q点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
2020中考数学 九年级 压轴题汇编 二次函数专题(含答案)1. 如图,抛物线L :y =ax 2+bx +c 与x 轴交于A ,B (3,0)两点(A 在B 的左侧),与y 轴交于点C (0,3),已知对称轴x =1.(1)求抛物线L 的解析式;(2)将抛物线L 向下平移h 个单位长度,使平移后所得抛物线的顶点落在△OBC 内(包括△OBC 的边界),求h 的取值范围;(3)设点P 是抛物线L 上任一点,点Q 在直线l :x =-3上,△PBQ 能否成为以点P 为直角顶点的等腰直角三角形?若能,求出符合条件的点P 的坐标;若不能,请说明理由.第1题图解:(1)把C (0,3)代入y =ax 2+bx +c ,得c =3, 把B (3,0)代入y =ax 2+bx +3, 得9a +3b +3=0,又∵抛物线的对称轴为x =1,∴联立⎩⎨⎧9a +3b +3=0-b 2a =1,解得⎩⎪⎨⎪⎧a =-1b =2,∴抛物线L 的解析式是y =-x 2+2x +3; 设所求抛物线L 的解析式为y =m (x -1)2+n ,把B (3,0),C (0,3)分别代入得⎩⎪⎨⎪⎧4m +n =0m +n =3,解得⎩⎪⎨⎪⎧m =-1n =4,∴抛物线L 的解析式是y =-(x -1)2+4,即y =-x 2+2x +3. (2)由y =-x 2+2x +3=-(x -1)2+4得抛物线的顶点D (1,4), 如解图①,过点D 作y 轴的平行线分别交CB ,OB 于点E 、F , 则△BEF ∽△BCO , ∴EF OC =BFBO , ∴EF =2,∴4-2≤h ≤4,即2≤h ≤4;第1题解图①(3)能.设P (x ,-x 2+2x +3),如解图②,过点P 分别作x 轴、直线l 的垂线,垂足分别是点M ,N ,第1题解图②∴∠NPM =∠QPB =90°,即∠NPQ =∠MPB , 又∵PB =PQ 且∠PMB =∠PNQ =90°, ∴△PMB ≌△PNQ (AAS), ∴PM =PN .①当点P 在x 轴上方时,-x 2+2x +3=x +3, 即x 2-x =0,解得x 1=0,x 2=1, ∴P 1(0,3),P 2(1,4);②当点P 在x 轴下方,直线l 右侧时,-(-x 2+2x +3)=x +3, 即x 2-3x -6=0,解得x =3±332,分别代入y =-x 2+2x +3得P 3(3-332,-9-332),P 4(3+332,-9+332),当点P 在x 轴下方,直线l 左侧时,-(-x 2+2x +3)=-3-x , 解得x 1=0(舍去),x 2=1(舍去),综上所述,满足条件的点P 有四个点,分别是P 1(0,3),P 2(1,4),P 3(3-332,-9-332),P 4(3+332,-9+332).2. 如图,直线y =-33x +3分别与x 轴、y 轴交于B 、C 两点,点A 在x 轴上,∠ACB =90°,抛物线y =ax 2+bx +3经过A 、B 两点.第2题图(1)求A 、B 两点的坐标; (2)求抛物线的解析式;(3)点M 是直线BC 上方抛物线上的一点,过点M 作MH ⊥BC 于点H ,作MD ∥y 轴交BC 于点D ,求△DMH 周长的最大值.解:(1)∵直线y =-33x +3分别与x 轴、y 轴交于B 、C 两点, ∴B (3,0),C (0,3), ∴OB =3,OC =3, ∴t an ∠BCO =33=3, ∴∠BCO =60°, ∵∠ACB =90°, ∴∠ACO =30°,∴t an30°=AO CO =33,即AO 3=33,解得AO =1,∴A (-1,0);(2)∵抛物线y =ax 2+bx +3经过A ,B 两点, ∴⎩⎪⎨⎪⎧a -b +3=09a +3b +3=0,解得⎩⎪⎨⎪⎧a =-33b =233,∴抛物线解析式为y =-33x 2+233x +3; (3)∵MD ∥y 轴,MH ⊥BC , ∴∠MDH =∠BCO =60°, 则∠DMH =30°,∴DH =12DM ,MH =32DM ,∴△DMH 的周长=DM +DH +MH =DM +12DM +32DM =3+32DM , ∴当DM 有最大值时,其周长有最大值, ∵点M 是直线BC 上方抛物线上的一点, ∴可设M (t ,-33t 2+233t +3),。