光功率预测介绍 ppt课件
- 格式:ppt
- 大小:485.00 KB
- 文档页数:11
张北六歪咀50MW光伏电站项目光伏功率预测系统技术协议中国建筑设计咨询有限公司2015年8月一、技术总的部分1总则1.1 一般规定1.1.1 本技术规范提出了张北六歪咀50MW光伏电站项目光伏发电功率预测预报系统装置的供货范围、设备的技术规格、遵循的技术标准、结构、性能和试验等方面的技术要求。
1.1.2 卖方在本技术规范中提出了最低限度的技术要求,并规定所有的技术要求和适用的标准。
卖方应提供一套满足本技术规范和所列标准要求的高质量产品及其相应服务。
对国家有关强制性标准,必须满足其要求。
1.1.3 卖方须执行本规范书所列标准。
有矛盾时,按较高标准执行。
卖方在设备设计和制造中所涉及的各项规程,规范和标准遵循现行最新版本的标准。
1.1.4技术协议签订5天内,按本规范书的要求,卖方提出合同设备的设计、制造、检验/试验、装配、安装、调试、试运、验收、运行和维护等标准清单给买方,由买方确认。
1.1.5设备采用的专利涉及到的全部费用均被认为已包含在设备价中,卖方保证买方不承担有关设备专利的一切责任。
1.1.6卖方提供高质量的设备。
这些设备是成熟可靠、技术先进的产品,且制造厂已有相同容量升压站合同设备制造、运行的成功经验。
卖方应熟悉国网公司风功率预测系统的技术规范要求,并长期从事风功率预测相关方向的研究。
提供的功率预测系统在同类型企业运行1年以上业绩清单。
投标人在同类型的系统工程上至少已有2年以上的从业经验,使用的产品应具有自主知识产权且有不少于3套的成功运行经验,且经实践证明是成熟可靠的产品,经过电力行业相关部门的验收,具有软件产品自主知识产权者优先。
卖方在投标书中应以应用业绩为题做专门说明。
其分包商亦应具有相同的经验和业绩并完全执行本规范书的要求,分包商资格应由买方书面认可,不允许分包商再分包。
1.1.7在签订合同之后,买方有权提出因规范标准和规程发生变化而产生的一些补充要求,具体项目由双方共同商定。
当主机参数发生变化时而引起的变化要求,设备不加价。
发光二极管LEDPPT课件•发光二极管LED基本概念与原理•发光二极管LED材料与制备技术•发光二极管LED器件结构与封装形式•发光二极管LED驱动电路设计与应用实例目录•发光二极管LED性能测试与评估方法•总结回顾与展望未来发展趋势01发光二极管LED基本概念与原理发光二极管定义及分类定义发光二极管(LED)是一种能将电能转化为光能的半导体电子元件,具有高效、环保、寿命长等特点。
分类根据发光颜色、芯片材料、封装形式等不同,LED可分为多种类型,如单色LED、双色LED、全彩LED、大功率LED等。
工作原理与发光机制工作原理LED的核心部分是由P型半导体和N型半导体组成的晶片,在PN结附近,当注入少数载流子时,会与多数载流子复合而发出光子,从而实现电能到光能的转换。
发光机制LED的发光颜色与半导体材料的禁带宽度有关,不同材料的禁带宽度不同,发出的光子能量也不同,因此呈现出不同的颜色。
此外,通过改变LED的电流、电压等参数,还可以实现亮度和颜色的变化。
主要参数及性能指标主要参数LED的主要参数包括光通量、发光效率、色温、显色指数等,这些参数决定了LED的发光效果和使用性能。
性能指标评价LED性能的指标主要有寿命、可靠性、安全性等,这些指标对于LED的应用和推广具有重要意义。
应用领域及市场前景应用领域LED广泛应用于照明、显示、指示、背光等领域,如家居照明、商业照明、景观照明、交通信号灯、户外广告屏等。
市场前景随着人们对节能环保意识的提高和LED技术的不断发展,LED市场呈现出快速增长的趋势。
未来,LED将在更多领域得到应用,市场前景广阔。
02发光二极管LED材料与制备技术如砷化镓、磷化镓等,具有高亮度、高效率、长寿命等特点。
半导体材料荧光粉材料封装材料用于LED 的波长转换,可调整LED 的发光颜色。
如环氧树脂、硅胶等,用于保护LED 芯片和提高其稳定性。
030201常用材料类型及特点通过化学气相沉积等方法在衬底上生长出所需的半导体材料。
光伏电站功率预报智能管理系统使用手册北京国能日新系统控制技术有限公司目录一、系统简介 (3)二、系统模块 (3)三、操作步骤 (4)3.1、用户管理 (4)3.2、电场设置 (6)3.2.1电场设置 (6)3.2.2逆变器信息设置 (7)3.2.3组件设置 (8)3.2.4气象站设置 (9)3.2.5预测设置 (10)3.2.6限电设置 (11)3.3、状态监测 (12)3.3.1系统状态 (12)3.3.2逆变器状态 (13)3.4、预测曲线 (13)3.4.1短期预测曲线 (13)3.4.2超短期预测曲线 (14)3.5、气象信息 (15)3.5.1直方图 (15)3.5.2湿度曲线 (16)3.5.3风速曲线 (16)3.5.4辐照度曲线 (17)3.5.5压力曲线 (17)3.5.6温度曲线 (18)3.6、统计分析 (18)3.6.1完整性统计 (19)3.6.2误差统计 (19)3.6.3事件查询 (20)3.6.4历史查询 (20)3.7、数据报表 (21)四、系统维护 (26)4.1数据库连接不上 (26)4.2短期预测数据不显示 (26)4.3超短期预测数据不显示 (26)4.4接收实发功率异常 (27)一、系统简介“光伏功率预测系统”是北京国能日新系统控制技术有限公司依托自有的知识产权独立开发的太阳能并网电场功率预测系统。
本预测系统是以高精度数值气象预报为基础,搭建完备的数据库系统,利用各种通讯接口采集电站综自系统、气象站数据,采用人工智能神经网络、粒子群优化、光电信号数值净化、高性能时空模式分类器及数据挖掘算法对各个光伏电站进行建模,提供人性化的人机交互界面,对光伏电站进行功率预测,为光伏电站管理工作提供辅助手段。
二、系统模块系统按界面分为三个模块:上方控制界面模块,左边菜单模块,中间主题内容模块。
如图2-1所示。
图2-1系统界面上方控制界面模块可以实现界面UI更换,密码修改,重新登录以及退出系统等功能。
《发光二极管》PPT课件•发光二极管基本概念与原理•发光二极管制造工艺及流程•发光二极管应用领域与市场现状•发光二极管性能评价与测试方法目录•发光二极管前沿技术与发展趋势•总结与展望:未来挑战与机遇并存发光二极管基本概念与原理01发光二极管定义及发展历程01发光二极管(LED)是一种半导体发光器件,具有体积小、寿命长、节能环保等优点。
02发展历程:从20世纪60年代诞生至今,LED经历了从低亮度、低效率到高亮度、高效率的技术革新过程。
发光原理与结构特点发光原理LED的核心部分是由P型半导体和N型半导体组成的PN结。
当正向电压作用于PN结时,电子由N区注入P区,空穴由P区注入N区。
进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光。
结构特点LED芯片通常由多层薄膜结构组成,包括衬底、缓冲层、N型层、发光层、P型层等。
此外,为了提高光提取效率,还会在芯片表面制作粗糙结构或添加荧光粉。
材料选择与性能参数材料选择常用的LED材料包括GaAs(砷化镓)、GaP(磷化镓)、GaN(氮化镓)等。
不同材料具有不同的禁带宽度和发光波长,因此可以制作出不同颜色的LED。
性能参数评价LED性能的主要参数包括发光效率、色温、显色指数、寿命等。
其中,发光效率是衡量LED将电能转化为光能的能力的重要指标;色温则决定了LED发出光的颜色;显色指数反映了LED对物体颜色的还原能力;寿命则表示LED的耐用程度。
发光二极管制造工艺及流程02利用MOCVD 等设备,在蓝宝石或硅衬底上生长多层薄膜结构,形成发光层。
外延片生长芯片加工芯片测试与分选通过光刻、蚀刻等工艺,将外延片加工成具有特定电极结构的芯片。
对加工完成的芯片进行测试,筛选出性能符合要求的产品。
030201芯片制备工艺包括引脚式封装、表面贴装式封装等,不同封装技术适用于不同应用场景。
封装技术封装材料需具有良好的透光性、导热性和耐候性,常用材料包括环氧树脂、硅胶等。
《光学》全套课件CONTENTS •光的本质与传播•几何光学基础•波动光学基础•量子光学基础•非线性光学简介•现代光学技术发展趋势光的本质与传播01光的波粒二象性光的波动性质光在传播过程中表现出波动性,如干涉、衍射等现象。
光的粒子性质光在与物质相互作用时表现出粒子性,如光电效应、康普顿散射等现象。
波粒二象性的统一光既具有波动性又具有粒子性,二者是统一的,可以用波函数来描述。
光在真空中传播的速度最快,约为3×10^8米/秒。
光在不同介质中传播速度不同,与介质的折射率有关。
折射率越大,光在该介质中传播速度越慢。
光在真空中的传播速度光在介质中的传播速度折射率与光速关系光的传播速度与介质关系光的直线传播与衍射现象光的直线传播光在同一种均匀介质中沿直线传播。
光的衍射现象光在传播过程中遇到障碍物或小孔时,会偏离直线传播方向,发生衍射现象。
衍射的种类根据障碍物或孔的尺寸不同,衍射现象可以分为夫琅禾费衍射和菲涅尔衍射等。
光的偏振与旋光性光的偏振现象光波在某些方向上振动较强,而在另一些方向上振动较弱或没有振动的现象称为偏振。
偏振光的产生与检测通过偏振片可以获得偏振光,利用检偏器可以检测偏振光。
旋光性某些物质能使偏振光的振动平面发生旋转的现象称为旋光性,具有旋光性的物质称为旋光物质。
几何光学基础02光线与光束概念及分类光线定义表示光传播方向的几何线,忽略光的波动性质。
光束分类平行光束、发散光束、会聚光束等。
反射定律与折射定律应用反射定律入射光线、反射光线、法线在同一平面内,且入射角等于反射角。
折射定律入射光线、折射光线、法线在同一平面内,且入射角的正弦与折射角的正弦之比等于两种介质的折射率之比。
透镜成像原理及性质分析透镜成像基本原理光线经过透镜后发生偏折,形成实像或虚像。
透镜性质分析焦距、焦度、透过率等参数对成像的影响。
光学仪器基本原理介绍望远镜利用透镜或透镜组来放大远处物体的视角,使远处物体看起来更近、更大。
1.1 光功率预算 ODN的光功率预算所容许的损耗定义为S/R和R/S(S: 光发信参考点、R:光收信参考点)参考点之间的光损耗,以dB表示。这一损耗包括了光纤和无源光元件(例如光分路器、活动连接器和光接头等)所引入的损耗。ODN的容许损耗值对下行和上行方向是相同的。 决定整个系统光通道损耗性能的参数主要有下面三项: ODN光通道间的最大损耗差; 最大容许通道损耗,即最小发送功率和最高接收灵敏度的差; 最小容许通道损耗,即最大发送功率和最低接收灵敏度(过载点)的差。
上述定义中的收发机参数均为寿命结束条件下的参数,即包括了温度和老化造成的影响。而且最后的最大和最小损耗值应该在需要的环境和波长范围内规定,而不仅仅是在给定波长,给定时间和给定温度下的测量结果。
光通道的损耗计算方法有最坏值法、统计法和联合设计法。鉴于接入网环境传输距离很短,通常无须使用联合设计法,并建议采用最坏值法。
最坏值法是将所有光通道中的光元件损耗值迭加起来即为ODN光通道的光损耗,这些损耗值都应该是系统寿命终了前处于允许工作范围内任意点的数值。这样设计的系统显然是十分安全的。对于FTTH工程, 可根据下列接光接入网常用的工程数据估算本工程ODN的传输损耗:
OLT光发送电平: -4~2dbm(1490nm); OLT光接收电平: -28~-8dbm(1310nm); ONU光发送电平:-4.0~2.0dbm(1310nm); ONU光接收电平: -24.0~-8.0dbm(1490nm); 建议的ODN衰耗:10~26db, (取23dB); G.652单模光纤衰耗:≤0.34 dB/km(1310nm); 光纤跳纤、尾纤插入损耗:0.1db~0.3db; 法兰盘插入损耗:≤0.4db; 1:2双窗口单模光纤树型耦合器的插入衰耗:≤4db; 1:8双窗口单模光纤树型耦合器的插入衰耗:≤10db; 1:16双窗口单模光纤树型耦合器的插入衰耗:≤13.5db 本工程用最坏值法在G652光纤衰耗较大的1310nm窗口估算光通道损耗: 针对本工程,最长片区主干光缆按照5km计算,从路边光交接箱到监控点最长配线光缆按照2km计算;从OLT的PON口到ONU的PON口,光通道经过一个1:32分光器,3个法兰盘,最大损耗如下表:
光伏电站发电功率预测系统PSPF V1.2PSPF V1.2由保定澳斯达电力信息技术有限公司与华北电力大学电力系统自动化研究所合作研发,历经千锤百炼并不断完善,该系统的开发成功适应了市场迫切需求,能够为光伏电站及其接入电网的运行管理提供重要技术支撑,具有很好的市场推广价值和前景。
一. 核心价值光伏发电是受太阳辐照度、环境温度、风速等多元气象因素影响的电源,其出力具有明显的波动性和间歇性。
随着越来越多的光伏发电并网运行,尤其是我国特有的大规模光伏发电集中接入的开发模式,将给电力系统的功率平衡、安全稳定与经济运行带来巨大挑战。
准确的光伏发电功率预测是提高电网接纳波动性间歇式电源能力的有效方法之一,其核心价值体现在:1.满足电网调度需求。
发电功率的波动性和间歇性是电网无法接纳大规模光伏发电的主要原因。
根据《光伏发电功率预测系统功能规范》、《光伏发电站功率预测技术要求》等标准要求,光伏发电功率预测系统可向电网调度机构提供光伏电站准确的超短期和短期发电功率预测曲线,不仅能够为电网的发电计划制定、调峰调频、潮流优化和安全控制等调度决策行为提供可靠依据,而且可为风、光、水、储的多能互补协调控制提供技术支撑,使电网最大限度地利用光伏发电资源。
在不久的将来,电网公司会优先购买预测准确的光伏电站电量并给予奖励,而限制预测不准的光伏电站电量并给予处罚。
2.提高光伏电站发电效率。
建立光伏电站端发电功率预测系统对于光伏电站合理安排发电设备检修计划具有重要价值。
据德国、西班牙等欧洲光伏发电发达国家的经验,若结合光伏发电功率预测合理安排设备的维护与检修,将显著提高光伏电站发电设备的利用效率,可显著提高光伏发电的经济效益、大大缩短投资回收周期。
此外,光伏电站发电功率预测将有助于发电公司在电力市场环境下制定正确的电能交易计划,提高光伏发电企业的经济效益和市场竞争力。
二. 系统功能★短期功率预测:可接收来自气象部门的专业数值天气预报,实现对本光伏电站至少未来三天的发电功率预测(该时间长短由来自气象部门的专业气象预报时间决定),预测功率曲线时间分辨率为15min。
光功率预测现状光功率预测是一种重要的技术,在许多领域都有广泛的应用。
它可以用于光通信、光伏发电、激光技术等领域,能够帮助我们更好地理解和控制光的特性和行为。
在光通信领域,光功率预测是非常关键的技术。
光通信是一种通过光传输信息的方式,它具有高传输速率、低传输损耗等优点。
然而,光信号在传输过程中会受到许多因素的影响,如大气湍流、光纤损耗等。
因此,准确地预测光功率可以帮助我们优化光通信系统的性能,提高传输质量和可靠性。
在光伏发电领域,光功率预测也是非常重要的。
光伏发电是利用太阳能转化为电能的一种方式,它具有清洁、可再生等优点。
然而,太阳能的输出受到天气条件的影响,如云量、日照时间等。
因此,准确地预测光功率可以帮助我们更好地规划和管理光伏发电系统,提高能源利用效率。
现如今,光功率预测技术已经取得了很大的进展。
传统的光功率预测方法主要基于统计和经验模型,通过分析历史数据和环境因素来预测未来的光功率。
然而,这种方法往往存在一定的局限性,无法考虑到一些复杂的动态变化和非线性关系。
为了克服这些问题,近年来出现了一些新的光功率预测方法。
其中,基于机器学习的方法受到了广泛关注。
机器学习是一种通过让计算机自己学习和优化算法,从而实现预测和决策的方法。
通过训练大量的数据和算法模型,机器学习可以从中学习到光功率的规律和特征,从而实现准确的预测。
还有一些基于物理模型的光功率预测方法。
这些方法通过建立光传输的物理模型,考虑光的传播规律和光学特性,从而预测光功率。
这种方法可以更好地考虑到光的物理特性,提高预测的准确性。
除了以上方法,还有一些其他的光功率预测方法,如基于深度学习的方法、基于数据挖掘的方法等。
这些方法都在不同的场景和应用中取得了一定的成果。
总的来说,光功率预测是一项重要的技术,对于优化光通信系统和光伏发电系统具有重要意义。
随着科学技术的不断发展,光功率预测技术也在不断创新和完善。
相信在不久的将来,光功率预测技术将会取得更大的突破,并为我们的生活和工作带来更多的便利和效益。